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Abstract: In a recent paper (Xu and Liu, Conirel Theory & Applications, vol.15, no.4, pp. 501-506, 1998}, a suffi-
cimtcmﬂiﬁonis:epmwdfa'nbustdehy—depmdemesmbﬂityintamscfaboundonspecmlmdiusufaprm'ibedmmngaﬂvc
matrix. It seems to be fairly powerful, but we argue here that their result may be incorrect. A corrected result is present=d in

this paper also.

Key words: robustmess; siability; delay differential systems

Document code: A

HUR TSN SHRDOE M RENM HAXREEEN"—XHIER

HEE

(BRXFRS SEE IR £, 410082)
(M T ¥ SRR TSR - B M. 411201)

' W
(M AXFESXSHATREE £, 410082)

MR BiEHE - XEBEREFRLEBHE, QU T REMEREN PRI RE I ERBEX 48
BOESLERFTRY AXEE T —SRENIETHER, HAHTHERNE®,

XMW : wtE; BEY; HENATE

1 Background and remarks
Inareuentpapel“](XuandLiu. 1998), the anthors
proposed a sufficient condition in terms of a bound on
the spectral radius of a prescribed nonnegative matrix by
delay integral inequality. An example was given to
demonstrate the validity of their results, which were
much more powerful than those obtained in {2 ~5].
Unfortunately their results may be incorrect. In this paper
we argue that both Theorem 1 and Theorem 2 in {1] may
be incorrect, we also highlight other flaws in their paper.

The system considered in { 1] is described as

2{t) = Aga(e) + Ayx(e — A(2)) + A2, x(2)) +

AA(,x (e - Ba(2))),

x(e) = (), 1 € (20 - 7,20],
(1)

| Adg(e,x(e) 1 Ap | x(2) I,

b AA (6,20t - 2a(2))) b g A | (e - Ba(2)) 1.
(2)

For the notations see {1].

‘We now point out some ambiguities and flaws in their
paper through the following remarks. For convenience,
we assure { x(0)]* = 0, which does not lose any gen-
erality.

Remark 1 In their proof of Theoreml , the authors
claimed that one does obtain inequality (9) from in-
equality (8). We first point out that it is impossible.
See this example

Let x{¢) = 1.5sin{x ~ ), by choosing appropriate
L, T, we get

{x(2)]*= 0.5, y(¢) = sup[2(s)]* = L5,
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it is obvious that the inequality
[x(t}]"'s‘o.Sy{t‘J
holds, i.e. that inequality (8) (where IT = 0.5) holds,
while the following nequality
y(t) < 0.5y (¢)
does not hold, i.e. that inequality {9) in [1] does

not holds. So their statement “ let y(¢} = sup [=x

{s)y]*, then [x{5)]*< y(¢) and” should be"let y(¢)
= sup [x(s)]*, then [x(s)]* < y(2) if" (see

ao-2r< T4

also Remark 5) .

Remark 2 Almost all the results in [1] were ob-
wined from the inequality (9), we think that the av-
thors’ Theorem 1 contradicts its premise. In fact p(II)
> 1 if the inequality {(9) in [1] holds. Let’s use the
contradiction to give a brief proof of this assertion.

Assume the inequality (9) holds, it follows immedi-
ately that

(7 -My(e) <0, (3)

since y(¢) = 0, for all ¢, then

I-I <0;
and if

(Il <1,
then

(1 -1 >0,
it leads (o
—-(I-m{-m'>o,

i.e.

I<O. {4)

It contradicts 7 = 0, so p(II) = 1. This completes
our assertion. Q.E.D.

So we argue that the results obtained in [1] may be
incormect .

Remark 3 As noted in Remark 1, their Theorem 2
may be incorrect either, in addition, the method does
not decrease dimensions. As shown by Example 2 in
(1], for the two 2 x 2 composite systems, computations
are required to a 4 x 4 mafrix, such a technique helps
little to decrease the computational difficulty .

Remark 4
[1] seems to be [x, ]} and [ x, }3, respectively.

[x,]; and [x,]} in equation (6) in

Remark 5 The statement ° Let y{(¢) =
sup [x(s)]*"secemstobey{t) = sup [x(s)]*.
TR Jﬂ-h;l‘r

2 A correction result
Our correction of the result in [ 1] is as follows
Let T € R™"be nonsingular, which transfers 7' 4,
+ AT = Jand [ is the Jordan canonical form of A, +
A;. Consider the variable transformation
z(t) = Tx{4). (5)
Substituting (5) into (4) in [1], then z{¢) satisfies
ift) =
Je(e) + TAA (e, T 'z(e)) +
TaA (e, T'z(t - hy)) -
TAIJ-: . [ApT 'z(s) + A; T 'z{s - ;) +
]

AAs, T'z(s)) + A4y (s, T z(s - hp(2))) ]dls,

2(t) = W(t), t € [~ 7,0]. (6)

Theorem Let Ag + A, be stable, system (1) is
asymptotically stable if the test matrix
P=Re(J)+I T (I+c | B 1){Ap+Ar) | T I+

(| TA;ApT™" 141 TAIT™! 1) (N

is stable.

The proof of this theorem can be referred to the ap-
pendix .
3 INustrative example

Example (Sv and Huang 1992; Xuv 1994; Yongm
Gu 1998, Xov and Liu, 1998). Consider the following
system described by system (1) where

[__2 07 [_..1 0
Ao=lo M=l b
[0. 3cost 0 z(1)
Adole,x(e)) = 0 O.ZSint][xz{‘)]’
0. 0 {¢)
AA (1, x(2)) = ] ESOSI 0 SSinzl[Z;(z)] '

By the Theorem the asymptotic stability delay bound
ist < 0.2030, the results given in [2~ 5] were r <
0.1614, 7 < 0.1575, 7 < 0.1583,1 < 0.1575 respec-
tively. This shows our method is valid. The result ob-
tained in [ 1] was r < 0.6, but as we have noted above,
this result may be incorrect.
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Appendix
Proof Through the variation of parameter formula, one can ob-
tain the sclution of equation (&) as
z{1) =

up(]t)z(0}+j;€xp(1(t—s]){TMn(s,T']t-(s))+
TAA (s, T 'z(s = hy)) - TAlr_hz[AuT‘]z(uJ -

TAlT-]z(H’. - h]) + Mn(uy T_IZ(H)} -

AA (e, T 2{u - £)) ]delds. (8)
D':ﬁm,ef.(af.:'_ﬂ = z{- r},y{t) = | z(t+5) |, then
¥{(s) =1 z(¢) |, one can ohiain the following inequality by ap-
plying the modular arithmetic to (8)

| z{¢) | mexp(Re{J)2)p{0) +

j;exp(nz(m: - )P - Re( 7))3(s)ds.

(9

The right half of {8) is the sclution of the differential equation
¥} = Py(eh. {10}
Let W{t) € E" denote the maximum solution of differential e-
quation {10) , by Lemma 3 in [6] one gets | z{¢) | < W(t). If
P defined by (7) is stable, then any sclution of (10} will be
asympiotically stable. It implies lim | z(¢) | = 0, so systems (6)
and (1) are asymptotically sathle. Since the asymptotic stableness
of system (1) is equivalent to that of system (&), systemm {1) is

asymptotically stable.  Q.E.D.
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