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Abstract: A new hierarchical optimal control production and setup scheduling model is discussed in an inflexible manufac-
turing system with jump Markov disturbances consisting of a single machine. The system can produce several types of products,
but each time it can produce only one type of product. A setup (with setup time or cost or both) is required if production is to
be switched from one type of product to another. The objective is to minimize the costs of setup, production and inventory. The
decision variables are a sequence of setups and the production plan. Based on the idea of hierarchical control policy, a new hier-
archical framework and hedging point control policy construct the hierarchical optimal control policy. An algorithm on receding
horizon is also addressed.

Key words: hierarchical optimal control; receding horizon; manufacturing systems; scheduling; machine setup

Document code: A

HiE R py R XL R
KERK REE T B F ¥
(HR LK 2 T ok #2 1 B R W5 I - M, 310027)

HE . FIA BRI A — & R T failure-prone) YL 44 B3 55 & T MIE RO, R G e 2 7= 5 07 3, (L2
Fl— i 2o RO 7= B 7= 5, 3 EL 0L 88 o o 7 — 7 8 1 2 7 55— = AR, T B IR serup B B) B SEAR
AR TR serup P B F= B P A SO A ST 2 RMEBIE RGEMAE 4, 5 ABI R R0 B, R TR
S 0 4 H A S G EL AB , XE L AT 418 ST T 2508 setup I ) B AR 0030 S 4 A A0 FE AR,

HERTENMRMMAESE THEREY, ZHPEREES TIREEH.
X8R BERAES; BIyeR; SERLE; WA PLAF sewp

1 Introduction

In the production systems in process industry, the
characteristics of products and process recipe are quite
different from those in workshop or job-shop. In real-
time, both continuous processes and discrete events are
contained in the systerus, because uncertainties and
stochastic perturbations can be unavoidable. Such sys-
tems own the characteristics of hybrid dynamic systems.
There are few literatures on scheduling and optimal mod-
elling of these hybrid systems due to their complexities .
A review of previous researches on manufacturing sys-
tems tells us that Prof. Gershwin S. B. has made some
remarkable contributions to the field. He discussed flow
rate control model, hierarchical flow control, hedging

point (HP) control, etc. [1] gave a hierarchical flow
control framework of manufacturing systems based on
the production process. The levels of the hierarchy cor-
respond to the classes of events that occur with distinct
frequencies. [2] discussed the selection of setup times
via a hierarchical control policy of inflexible manufactur-
ing systems, which involve setup. But in those litera-
tures, the optimal solution is treated over infinite hori-
zon, which is not feasible and computational in the engi-
neering for dimension problems.

In this paper, discussions are extended from discrete
manufactuning systems to production systems in process
industry. Owing to the nature of such production sys-

tems, the setup is a vital factor and can not be ignored.
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A production planning model involving setup times is
considered at length. From the viewpoint of practical ap-
plications, a two-level hierarchical framework is pro-
posed. At the first level, setup times as typical events
are determined in view of optimal inventory. At the sec-
ond level, setup times and production rate are justified
on real-time according to the frequency of machine fail-
ure. Part loading is considered at the lowest level by
new hedging point control policy. From the viewpoint of
asymptotic optimality, the production and setup schedul-
ing model is discussed in an inflexible manufacturing
system, based on the hierarchical flow control and hedg-
ing point policy. The hierarchy and hedging point are re-
defined in this paper according to [ 1], which decreases
the dimensions and is computational and feasible in engi-
neering .

In the paper, Section 2 presents the production system
dynamic model and the objective function. In Section 3,
the framework of the hierarchical control policy is de-
scribed. The first level, where setup is treated as a typi-
cal event, is discussed in Section 4. Then in Section 5 &
6, the second level and the lowest level is described re-
spectively. The basic advantage of the method illusrated
by an example in Section 7. Finally, Section 8 con-
cludes the paper.

2 Description of the problem

A production systern is considered, which consists of
a set of unreliable equipment and can produce n different
types of products P;,i = 1, --,n. Each time only one
type of product can be produced by the system. More-
over, the system is not completely flexible. A setup is
required if production is to be switched from one type of
product to another. This kind of system can be described
as follows.

2.1 Setup time and cost

Suppose, fori,j = 1,---,nand i« j,6; =0, which
denotes the setup duration for switching from production
of P; to P;, and K;; = 0, which denotes the setup costs
of switching from production of P; to P;. The setup du-
ration 6;; and the setup costs K;; are constants. Moreover,
for any ¢,7,k = 1,>~,n,i % j and j # k,max
{65, Kl > 0,05 + 04 — 64 =0and K;; + Kye % -
Ky >0.Ifi = j, thend; = K; = 0. Here0< p< 1

denotes the discount rate.

2.2 Dynamic model of the system

Fort >0, letx;(:) ER = (- ®,0), u(t) €
R* = [0,»), and z(¢) € R* = [0, ) denote the
surplus, production rate, and the rate of demand for
product P;,i = 1,
used to denote vectors [z, ,x,]" € R*, [uy, -,
u, )" € R**, and [zy,",2,]T € &*", respectively,

where AT denotes the transpose of a vector (or a matrix)

,n, respectively. x,u and z are

A. The ordinary differential equation can be satisfied as
follows
() = u(t) - z(¢), x(0) = x. (2.1)
For ¢t = 0, the production constraints are given as fol-
lows:
O<u(t) <, i =1,2,--,n,
{ . . (2.2)
w(t) =0, J#E L,
r; denotes the maximum production rate of P;.
x,u respectively denote state variable and control
variable in 2. 1. Considering that the machine is subject
to random failures and repairs, the machine states can be
classified into i) operational, denoted by state 1; ii) un-
der repair, denoted by state 0. When the equipment is
operational, any type of the products can be produced;
when it is under repair, nothing is produced. So the hy-
brid model of the systems is described in the following:
_ u(e)-z(e), ¥ e(e)=1,
x(t):F({(t),t,x,u):{_:(t), [ e(s) = 0,
(2.3)
x(0) = x € R*,£(0) = B € E (index set).
Where F = [f1,f2,",f, 1", because of single sct of
equipment, we have fy = f, = - = f, = f.
In Eq. (2.3), £ = {¢(t):t = O} is a finite state
controlled Markov process with state-space £ = {0, 1}.
According to our notation, if there is a jump from state

B to state a, then the derivatives F(f3,x,u) jumps to

Fla,x,u).
Definition 1  (A;,) denotes the generator matrix,
An Ay )
and(Aﬂa): = },Va,,BE E.,a = (3, with
Aw Ag

Az, = Oand EA;;,, =0,¥YB€ E. a,f are exogenous

Markov process with parameter A. Here A ,5/Aq; denotes
the rate of transition from the operational/breakdown to
the breakdown/operational state.

- Awsde = - Agr-

Moreover, A; =
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Foreachf € E, let F(+, +):R* x R*" x E ~R"
be a bounded continuously differentiable function with
bounded partial derivatives in x. Let U(8),8 € E, (a
close subset of R*" ) denote the control constraints.
Any measurable function u(z) defined on [0, T'] with
value in U(R), for each 8 € E, is called an admissible
control, and U = {u(z):: = 0O} denotes admissible
policy. The admissible control function u(t) is sup-
posed to be piecewise continuous in ¢ and continuously
differentiable with bounded partial derivatives in x.

2.3 Cost function

Over the infinite horizon, the cost function J can be

defined as
J(i,z,s,2,u(+)) =

J;C_P‘G(x(t),O)dt +

E(re‘f"c(x(t) ;u(e))de + i}e‘”’fKi,im) ,

s -

(2.4)
where s denotes the remaining setup time, 0 < s < 0;.
Moreover, the setup cost is assumed to be charged at the
beginning of the setup. The decision variables are the
rates of production u(+) over time and a sequence of

setups denoted by = = {(zp,ipiy), (ty,i1i2), "},

where a setup (r,ij) is defined by the time r when it

begins and a pair ij denoting that the equipment was al-
ready set up to produce P; and is being switched to be
able to produce P;.

Let G(x(t),u(t)) denote the running cost function
of surplus and production, and it is locally Lipschitz and
has at the most polynomial growth. Usually G(x(z),
u(t)) = i cixi(t) + ¢yx7 (). Suppose a holding

1=1

cost of ¢} per unit commodity per unit time is incurred
by positive surplus, while a cost of ¢ is incurred by
negative surplus, with ¢/ > 0,¢7 > 0. And x7: =
max(x;,0),x7: = max( - x;,0). The problem is to
find an admissible decision (&, u(-)) that minimizes
JCGisx,s,B,u(+)),
3 Framework of the hierarchical control
policy

In this section, the framework of the hierarchical con-
trol policy is described, according to the properties of
the system.

In unreliable manufacturing systems, events can be
categorized into the events that may or may not be under
the control of the decision-maker. For the purpose of
this paper, an event is considered to be controllable if its
time of occurrence may be chosen, whether or not there
are constraints on that choice. An event is uncontrollable
otherwise. Setup and production rate are controllable,
for example, while failures are not. The structure of the
hierarchy is based on events tending to occur on a dis-
crete spectrum. Classes of events have frequency that
cluster near discrete points on the spectrum. The control
hierarchy is tied to the spectrum. Each level £ in the hi-
erarchy corresponds to a discrete point on the spectrum.
So the events in the manufacturing system are classified
into classes based on the frequency of their occurrence.
It is assumed that the events in different classes occur
with very different frequencies. Each level of the hierar-
chy responds to events in a single frequency class,
schedules the controllable events of that class and sets
target rates for lower levels. The least frequent events
are treated at the highest level whercas more frequent
events are assigned to lower levels of the hierarchy. A
special case of the system with a three-level hierarchy is
considered. Level 1 is the highest level where all dis-
crete events are represented by their average rates. By
the nature of the production system, the setup which is a
controllable event is treated as a typical event in the level
based on the optimal inventory. Level 2 corresponds to
failures and repairs which are more frequent than setup
changes. Part loading is the most frequent kind of event
and is treated at the lowest level.

Each scheduling algorithm is carried out only to one
type of product by using receding horizon scheme based
on the optimal inventory. The policy is receding carried
out on line not off line. The original inventory of the hi-
erarchy is renewed by real-time detected inventory. As
in many literatures receding horizon scheme is adopted,
by which the adverse effects in the control policy caused
by random events, random demands, model inaccuracy
and the mismatch between model and the real system can
be minimized.

The setup times and the duration of producing T are
chosen to agree with the production rate, so the produc-

tion rate affects them badly. The receding horizon
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scheme here is of importance. Now the framework of the

hierarchical receding control policy can be given. The

setup times and the expected optimal production rate are

decided by Level 1. The real time production rate is kept

close to the expected rate by Level 2 in view of the dy-.
namic properties of the system by using receding horizon

scheme. Part loading is carried out in the lowest level on

real-time. The framework of the hierarchical control pol-

icy is described as Fig.1.

initial condition:
X(O),91/~ Klj NN Rl WIS NS

(0

Level |

[ Lever3 Partioading |

Fig. 1 Framework of the hierarchical control policy
4 Level 1—Optimization of stable state
The failure-prone of the machine is not considered,
and the production process of the system is treated as a
continuous process in this section. For the nature of the
system, only one type of product can be produced by the
system at any given time, and the objective function of
stable state can be written in the followingm :

JSGL,x,u()) =
J:ge‘”G(x(t),O)dt N

(] e 6 (0),u(D)dr12(0) = x,4(0) = ) +e K

(4.1)
which denotes the cost function of running and setup cost
in horizon [0, T] not considering the dynamic property
of the system, where T denotes the time when the first
setup is finished and the system is already set up to pro-
duce the second type of product. And Tty denotes the ini-
tial time of setup, without losing generality, 7, = 0. In
Eq. (4.1), the problem is to find the following deci-
sion variables: i) which type of product P; is to be pro-
duced according to the current producing product P;; ii)
the duration T of producing the type of product P;; iii)
the production rate u;( ¢) of P;, which makes the objec-

tive function JS(i,x,u) minimum. T = T° + 6,

where T" denotes the duration over which the inventory
of P; reaches its optimal inventory at the optimal produc-
tion rate u; (). As to the manufacturing system with
jump Markov disturbances, only one type of product can
be produced and optimal production control is hedging
point policy. And the optimal inventory x * of this sys-
tem is given by [4]. But new hedging point policy is
given by the following paragraph.

. 1 c*
x :ma_x{o,l_log[ ¢t 4 c_(l +
w0 )1}
/‘102(!)—(‘0+/\01+Z(I)A_)(r_z(l)) ’
(4.2)
where A _ is the only negative eigenvalue of the matrix
£+ Aw A
Al: = r— z(!) r — z(l)
Aol A — p
z(t) =(¢t)

4.1 Decision of HP T
8.
Joye“""c(x(z) ,0)d¢ and e”*0 K; are independent of

the production rate u;(¢) in Eq. (4.1). As a result, the
problem of 4.1 can be converted to the following prob-

lem: :
T

{min](u(t)) = min [ e PG x(e) u(0))dr,
uj(t)EU ]

s.t. £(t) = u(e) - z(¢), x(0) = =o.
(4.3)
The terminal condition is: x(7T) = [x(T),x:(T),
e (T, 2 % (T) 2, (T) T, where T s
the duration over which the optimal production rate
uj(t) drives x;(0) to x] .

n

From G(x(t),u(¢)) = > [etxf + ¢ix7], the

=1

following can be gotten:

T
Ju() = e ree(0),ule))ar =
jTe-ﬂau(z) 0)d: jTe—«" Ce () m(1))de
0 ’ + 0 g X y U )

where

G(x(),0) = E Lefxf + o)x; ],
J=1j=1

glx: (), u;(t)) = cixf + cixy.
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G(x(t),0) can be rewritten as G(x(z),0) = ¢ | x§ -
z(¢)¢ | responding to the constant demand z(¢) and the

definition of x{ and x;, where ¢ is a constant parameter

determined by ¢; and ¢; .
Then the tendency of the function L(:) =
e PG(x(t),0) is illustrated by the solid lines in Fig.

T _
2(n = 2). Let J, = foe—wc(x(t),o)d; then J, can

be rewritten as J, = A — e ?" (BT + A), where A, B
are piecewise constants according to the initial condi-
tions. And the dash lines in Fig. 2 illustrate the tenden-

T _
cy of function J;. '(0 e PG (x(t),0)d: only is a function
of T and monotonously increases to 7. As a result,
T _
when T decreases, '(0 e PG (x(t),0)dt decreases too.

Another shortest time objective function J, = — e *" ( BT

+ A) can be incurred, which converts the optimal prob- -

lem of Eq. (4.3) into the problem of finding the opti-

mal solution of the following objective function:

T
(D) = i+ | e Pglail) m(e)d, =

—e (BT + A) + f:e_“g(xi(t),ui(t))dt,

(4.4)
and T can be obtained by the following:

(1) = (1) - zi(t):'[:xi(t)dt ,
T T
J wi (t)de —J z(t)dt=
0 0

T
2~ 2(0) = fou;(t)dz _ T

Letu®(t) = U} (z), then
xi* —xi(O) =

T
[Coz e - zr = vz () - 07 0) - 2

0.6 1.2
|
0_5_ -4 _ L
P
o

04 - - oL L

L(n, J,

Fig.2 Tendency of L(#)=

4.2 Static programming
Eq. (4.4) can be solved to get the optimal produc-
tion rate u ;" (¢) by static programming method. A series
of u; (¢) can be gotten, fori = 1,2,---
algorithm . The setup times j and hedging point T can be
first gotten by comparing the values of objective func-
tion, for more details in [3]. And the result as a set
value to Level 2 will be adjusted for more accuracy at
Level 2.
5 Level 2—Machine failure involved
Definition 2
and production rate of product P; at the level k respec-

xf‘ , uf-‘ denotes the production surplus

tively.

Based on the dynamic property, i.e. failure-prone,
of the system, keep u? close to u! at the level. The pro-
duction surplus of Level 2 satisfies the following equa-

tion:

, n, by iterative -

U(T) - U* X :
ro UilD - U (2) 2l 4 %0, g
..-___-__—__,__:_flla
J_ L _
10 l8"9 10

¥ G(x(1).0) andf e G(x(1),0) de

23(t) = '(tu%(s)ds —'(tuﬁ(s)ds ord*xzi = u? - ul.
0 0 d:
(5.1)
5.1 Resolve ui(t,a)
Based on the setup times ij set by Level 1, the opti-
mal feedback variable 1:2( ¢, a ) can be found to make the
following objective function minimal :

JS'(i,x,u(+)) =
'(Zije_’”c(x(t),O)dt +

E[(ﬂe—mc(x(z),u(z))dz | 2(0) = x,8(0) = B) +e 0K, ],

the initial conditions are x%(0) = =x,a%*(0) = a.
Kimemai and Gershwinl®! derived a Bellman’s equation
for this problem

min{ G(a?) + st (i - Proj(u},2)) + 3 &
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DiAgJS'[x2,8,¢1} =0, (5.2)
B

where Proj(u',2) = E(u?) = u'. Proj(u,k) is the
projection of the vector u into the space of u;. As to the
production process without setup changes, since the
function JS’ is given, Eq. (5.1) can reduced to solve

a !
min, %(fdu%, u € Ula).

(5.3)

For the system, the constrain set of u; is a linear func-
tion, which makes 5.3 a linear programming problem.
(4] and [7] have obtained analytic solution for the ver-
sions of this problem. The optimal production rate
u?(¢,a) can also be gotten by using a numerical

method for the finite horizon [0, T'] deducing the dimen- |

sion.
5.2 Update setup times

The real-time setup times are carried out in practice
and updated by using the optimal production rate gotten
by Eq. (5.3) via iterative method. The algorithm to
update setup times is similar to that in Level 1.
6 Level 3—Part loading

The new hedging point policy is to check the hedging
point T and the system will produce another type of
product P; as soon as T’ comes. The definition of hedg-
ing point policy is different from that in [1]. 7 as the
hedging point is reasonable according to the analysis in
Section 4. At T, the objective function J reaches its

minimum over horizon [0, 7]. T is also the time when

the next seip begins and part loading is carried out at
Level 3, by which it is convenient to get setup times.
Since the hedging point policy is based on the optimal
inventory, the time when one type of product reaches its
optimal inventory is definite. 7T is employed to judge
whether the part loading can be carried out or not. This
method provides a particular welcome additional feature
that the hedging point can be gotten analytically, and
can be feasibly used in practice.

According to Eq. (4.5), the terminate time is T =
U'(T) ~ U (0) - x + %,(0)

2i

at which the process

of producing P; is over. The type of product P; is being

produced until ¢ = 7. When the time 7 is reached, the’

system is switched to produce the type of product P;.
The optimization of the system is renewed.

7 Simulation

The performance of the hierarchical receding control
policy is shown with an example with the following
specifications: n =2, 0=0.9. The demand rate is z; = z,
=0.4 and the initial conditions are x,(0) = -2.0, x,(0)

All AIO
=0.0,a € E={0,1}, (Ag) = ].Theother
Aww Ao

parameters are shown in Table 1. Figs. 3, 4 are the
simulation results. According to the results, the setup
times of producing the products P, P, will reach a dy-
namic balance after a finite horizon, which agrees with
the fact based on the optimal inventory. Moreover,
whenz > r, as time goes by, T will be infinite, which
also agrees with the fact. The later condition (z > r) is
not illustrated here,

Table 1 Parameters of the system

Cf € CF G 6 0y Ko Ky Ap Ay

1.0 1.0 3.0 3.0 0.4 0.5 0.95 0.85 0.1 0.2

34

32

35y
28]

< 26l-}
24 N

22

6 1 2 3 4 35 6 7 8 9
setup times
Fig. 3 Production duration tendency of Py, Pa

J0nononoan

NENININININEN]
"0 5 10 15 20 25 30
Fig.4 The Gantt graphlofreceding scheduling

8 Conclusions

Hierarchical control policy is presented based on the
hierarchical flow control policy in [1]. But the hierar-
chy is redefined. In the paper, the setup, a controllable
event, is treated in Level 1 as a typical event without
considering the dynamic property of the system. A new
objective function is discussed in Level 1 and the solu-
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tion of the problem is submitted. The hedging point pol-
icy based on the optimal inventory is carried out. At the
lowest level, part loading is set up at the new hedging
point. By decomposition and simplification, the original
problem is turned into the problem on one dimensicn,

which is computational and tractable. And the policy -

makes the control law more accurate and be carried out
in time. The method of simplification and definition of
the new hedging point is reasonable and have strong ap-
plication background. The fault of the policy is that the
solution to this problem is not globally optimal but
asymptotical optimal. However, the receding control
policy can decrease the drawback to some extent.
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