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Abstract: We consider the problem concerning the control of the discrete-time chaotic and hyper-chaotic dynamical sys-
tems in noisy environment. Due to the ergodicity property of orbits in the chaotic attractors, including chaos and hyper-chaos,
an optimal control is presented to direct the orbit of the discrete-time chaotic dynamical system quickly towards a pre-specified
neighbourhood of the target, and feedback correction is added to deal with noise. After entering the neighbourhood in which the
local controller is effective, the controller consisting of small perturbations is used to stabilize the orbit in the system. The nu-
merical simulations of controlling two typical chaotic dynamical systems, one chaotic and the other hyper-chaotic, show that the
combined method is effective for a wide range of discrete-time chaotic and hyper-chaotic dynamics.
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1 Introduction

If chaotic motion is undesirable, they should be elimi-
nated and converted into desired low-period motion, es-
pecially the period-1 (a fixed point) motion. After the
paper by Ott, Grebogi, and Yorke!!! presented a method
to make small time-dependent perturbations in an acces-
sible system parameter and thereby achieve a desired pe-
riodic output, many techniques of controlling chaos have
been proposed over the past decade'! . In practice, con-
trolling a fully unstable system (hyper-chaos) is as inter-
esting and important as the partly stable manifold
(chaos) . However, the issue of controlling such hyper-
chaos has not been particularly and adequately ad-
dressed. Yang et al presented a paper about controlling

hyper—chaosm , yet the controller they designed is effec-
tive only in sufficiently small neighbourhood of the target
and its control set is not bounded. Due to the ergodicity
property, Yang’s controller can be utilized to direct the
orbits in the hyper-chaotic dynamics in the small neigh-
bourhood of the desired target towards the target. How-
ever, the state may wander chaotically for a rather long
time before entering the neighbourhood in which the lo-
cal controller is effective. In this paper, under the con-
dition of arbitrary initial state in the hyper-chaotic attrac-
tor, an optimal control method based on the Minimum
Principle is introduced to direct the trajectory in hyper-
chaotic attractor towards a pre-specified sufficiently small
neighbourhood of the target as quickly as possible. The
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hyper-chaotic dynamics in noisy environment is also tak-
en into consideration in the paper, and the feedback cor-
rection is added to deal with noise. After entering the
neighbourhood in which the local controller is effective,

the controller consisting of small perturbations is used to

robustly stabilize the orbit at the target in the noisy sys-
temns.

Because the hyper-chaotic cases are more general for
consideration than chaotic cases, comparatively speak-
ing, the combined method presented to control hyper-
chaos in the paper is as well effective for controlling
chaos, which indicates the combined method could be
applied to a wide range of chaotic and hyper-chaotic dy-
namics. We consider only a class of nonlinear discrete-
time dynamics where the analytical expression of the
map is assurmed available. That is, we may assume that
there is enough data for the reconstruction of the map of
the hyper-chaotic or chaotic attractor with its gradient.
The above assumption is similar to the paper Yang pre-
sented.

This paper is organized as follows: in Section 2,
small perturbations are used to direct orbits of a nonlin-
ear discrete-time chaotic or hyper-chaotic dynamics
quickly towards the target, which is posed as a discrete-
time optimal control problem. In Section 3, a design
method for the construction of required local feedback
comrection is given. This local feedback correction acts
as a supplementary controller to deal with the effect due
to the noisy environment. In Section 4, a controller con-
sisting of small perturbations is used to stabilize the orbit
of the dynamics in the neighbourhood of the target and
to deal with noise. In Section 5, thorough numerical
simulations are given to illustrate the efficiency of the
proposed combined method in this paper. And some im-
portant conclusions are presented in the last section.

2 Direct the trajectory towards the neig-
hbourhood of target

Consider a class of discrete-time dynamical systems.
While the control set is assumed to satisfy the bounded-
ness constraints, it is a typical problem of optimal time
control to direct the trajectory in hyper-chaotic attractor
towards a pre-specified sufficiently small neighbourhood
of the target as quickly as possible. However, the tra-
jectory entering a pre-specified neighbourhood of the tar-

get makes the terminal state constrained equation be con-
strained by inequalities, thus it is not easy to obtain nu-
merical resolutions. The above problem could be sub-
stantially converted into another equivalent one, which is
to get the optimal control sequence to satisfy the desired
minimal distance between the terminal state and the tar-
get state within given time. Thus the problem in the case
of discrete-time dynamical systems becomes that, the
objective function || x(N¥) - ' || is minimized with
given N steps. The following Theorem 1 can provide the
solution to the above problem, which is just a special

(4] , and

improved application of the Minimum Principle
the process of proving Theorem 1 is ignored.

Theorem 1 Consider the discrete-time dynamical
systerns,

{ x(k +1) = f(x(k),u(k), k), z(0) = zo,
k =0,1,2,~,N -1,

(1)
where x (k) = [%,(k), ", 2, (k) ]T € R" is the state,
u(k) = [ (k),, un(k)]T € R™ is the control se-
quence and satisfies the boundedness constraints u (k) &
0, is the constrained set, and the objective function is
given as follows

J=olx(N),N] = [l =(N) - 2[% (2)
where «' is the terminal state, and f = (f,-",f,) :R"
x B™ x R—R", ¢:R" — [R, is continuously differen-
tiable with respect to each of the components of x and u,
respectively .

If u” (k) is the optimal control sequence to minimize
the objective function and x* (k) is the corresponding
optimal state sequence, then there exists an n-dimen-
sional vector function A(k) to make u”(k),x" (k)
and A (k) satisfy the following necessary conditions:

1) x* (k) and A (k) satisfy the following difference
equations

. _9H(k) _ IH (k)
x (k+1) = a/\(k+1), /\(k) = ax(k)’(3)

where H( k) is a discrete Hamiltonian function,
H(k) =H[{x(k),u(k),A(k +1),k] =
ATk + DA (k) , uCk), k]. (4)
2) x" (k) and A(k) satisfy the following terminal

conditions

A(N) = 390[;((”—]\[))1” 2(0) = xp.  (5)
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3) The optimal control sequence u * (%) also make
the discrete Hamiltonian function satisfy
Hlx"(k),u”(k), k] =
u(n;)iélnH[x*(k),u(k),A(k + 1, k). (6)

3 Feedback correction in noisy environ-

ment

Because the trajectory is extremely sensitive with re-
spect to initial conditions and dense in chaotic or hyper-
chaotic attractor, the above open-loop controller is lack
of robustness. In an analytical view, it is necessary to
add a feedback correction to the optimal control sequence
u* (k) calculated off-line so as to deal with noise. For
simplicity, we only consider the uniformly distributed
random noise added to the vector function f(x, k) in the
Eq.(1).

Without loss of generality, assume the augmented
control vector v(k) = (u(k),",u.(k),0,--,0)T

€ R”, then the controlled systems is expressed as fol-

lows
x(k +1) = flx(k), k) + v(k). (7)
Assume the obtained optimal control sequence v* =
{v*(0),v*(1),~,v* (N - 1)}, and the correspond-
ing optimal state sequence x* = {x*(0),x*(1),-:-,
2" (N - 1)}. Then we may regard x * as the reference
trajectory. To prevent a trajectory from escaping from
the neighbourhood of the reference trajectory, a feedback
correction based on the reference » * (k) should be added
to make sure that the proposed feedback correction will
act as a supplementary controller to pull the trajectory to-
wards the corresponding reference trajectory at each
step. Define
9(k) =v" (k) + o(k)[2(k) - 2™ (k) ],
o(k) € R™™. (8)
Substituting Eq. (8) into Eq.(7) yields
x(k+ 1) = f(x(k)) + 9(k) =
fx(E)) + v (k) + o(k)(x(k) - 2" (k).
(9)
Forx"(k +1) = f(«*(k)) + v*(k), thus
x(k+1)-x"(k+1) =
fx(E)) = f(x™ (E)) + a(E)(x(k) - x*(k)) =
DLy + o(E) (a(k) = 2" (k)), (10)
where [ Df].*(4) is Jacobian matrix. Let A(k) =
[Df1,.* ) + o(k), for arbitrary errors, thus

x(k+1) —x*(k+1)
x(k) - 2" (k)

Therefore, the sufficient conditions for (k) contract-

= A(k). (1

ing around the reference trajectory x * (k) could be ob-
tained as follows
max | eigl ACk)} 1 < 1. (12)
In practice, it is not difficult to obtain suitable o (k)
to satisfy Eq. (12)0%.
4 Stabilize the trajectory to the target
Suppose all the manifolds are unstable near the target
(a fixed point), i.e. it is the hyper-chaotic case we are
particularly interested in. Redefine the following canoni-
cal discrete-time dynamics
x(k +1) = f(a(k),u(k), k), (13)
where x(k) = [2;(k), -, x,(k)]" € R" is the state,
ulk) = [u k), ,u,(k)]TE€ R"is the small control
vector, fis a vector-valued function of x (k) and u(k),
the equilibrium x’ is the origin. Note that other cases
can be converted into the canonical form of Eq.(13) by
suitable coordinate transformation. Let J be the Jacobian
matrix of the map with u = O evaluated at the fixed

point, i.e.,
J = (j—f) (14)

The eigenvalues of the Jacobian matrix J in Eq. (14)
are all with modulus greater than unity for the case we
study in this paper. And denote the fixed point by x’ and
define the following matrix

M = (%)“0. (15)

Hence, for u — 0, we can get
x(k+1) -« = J(x(k) - «'). (16)
To stabilize the unstable orbit, we propose to require
x(k+1) = ox(k), (17}
where § is a constant and — 1 < § < 1. This means that
the orbit is forced to contract to the fixed point. On the
other hand, from the definition of matrix M, we have
the following result, for u — 0,
% = Mu + o(u?). (18)
When matrices (J - ) and M are both invertible, e-
liminate «* and x(k + 1) in Egs.(16), (17) and (18)
to yield
u=MJ-DNJ-Dx(k), (19)
where [ is the N x N identity matrix.
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Finally, without loss of generality, for the case de-
scribed in Eq. (1), i.e. the control target is the fixed
point, the control vector can be re-described as follows

u=M"'"(J-D'J-8D[x(k) - =]
(20)
5 Numerical simulations

The above combined method is applied to control the
following two typical systems: hyper-chaotic dynarmics
and chaotic dynamics, which show that the method has
an effective application to both the hyper-chaotic dynam-
ics and the chaotic dynamics.

5.1 Hyper-chaotic example

Consider the following discrete-time hyper-chaotic
system presented in Yang s paper”
f:lﬁ2 - l:o‘lz,f(xpxz) = [1—2(x%+x%)2, —4x1x2JT-

The target is the fixed point at ' = (1/2,0). Thus
the controlled system is described as follows

Flay,m,u) = [1-2(x3+23) v uy, ~4xi20+uy]".

For convenience to gain the optimal control sequence,
we add control only to x;, i.e. u, = O while directing
the arbitrarily initial trajectory in the hyper-chaotic at-
tractor towards the neighbourhood of the target. Suppose
the uniformly distributed random noise level £ be given
by 0.01, and the control have a constraint given by - 3

With given initial condition x(0) = (0.4,0.4)" and
B = 0.03, for an additional feedback correction to deal
with noise we can set 2 = [ - 0.02,0.02) and get the

< u < 3, where 3 is a small constant.

optimal control sequence and the corresponding state se-

(21) quence shown in Table 1.
Table 1 The optimal control sequence and the state sequence in system (22)

Step 1 2 3 4 5 6 7 8 9 10 11
1y -0.02 0.02 -0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 -0.02
2 0.34 -0.0304 -0.5370 0.4208 0.5625 0.0943 -0.4805 0.3473 -0.0003 -0.4836 0.5123
2 -0.64 0.8704 0.1058 0.2274 -0.3827 0.8610 -0.3247 -0.6241 0.8671 0.0010 0.0020

After the system trajectory enter the neighbourhood of
x', we can achieve the stabilization of the trajectory to x*
by adjusting control input according to Eq. (20). If u,
)

0
)andM:
0o -2

= Uy = O, then J = (

173 0 Lo
( . Thus the small perturbation input can be

0 173
calculated as u; = (2 + &)(x ~ z) and uy = (2 +

5)(x, - x5). In this case, Fig.1(a) shows the numeri-
cal simulation of control performance when setting § =
0.75.

As another illustration with initial condition x{0) =
(0.6,0.2)"and 8 = 0.05, for an additional feedback
correction to deal with noise we can set 2 = 0.04 and
get the optimal control sequence and the corresponding
state sequence shown in Table 2.

Table 2 The optimal control sequence and the state sequence in system (22)

Step 1 2 3 4 6 7 8 9 10
uy -0.4 0.4 -0.04 -0.04 -0.04 -0.04 0.4 -0.04 -0.04 -0.4
x 0.1600 0.5280 0.2137 0.0268 0.3435 0.7170 -0.0015 0.8505 -0.4865 0.4865
X -0.4800 0.3072 -0.6488  0.5546 -0.0594 0.0816 -0.2340 -0.0014 0.0048 0.0092
0.6 1
0.4
0.2 i [
B 0 0.3\ ~
" -02 =
-04 0
-06
-0.8 - 05

0 10 20 30 40 S50 60 70 80
t

(a) x(0)=(0.4.0.4)T,~0.03<u €0.03

0 10 20 30 40
!

(b) x(0)=(0.6.0.2)T,-0.05€1u<0.05

50 60 70 80

Fig. 1 The state of x; in the controlled hyper-chaotic dynamics by the combined control method


http://www.cqvip.com

No.3 Controlling Hyper-Chaotic and Chaotic Dynarnics in Noisy Environment 339

In this case, Fig.1(b) shows the numerical simula-
tion of control performance when setting & = 0.75 like
the first case.

Obviously, the trajectory can be quickly stabilized to
the desired target and revolves around the target robustly
in steady state. Under similar conditions assumed
above, if the initial trajectory has not been pre-directed
to the neighbourhood of the target and only using the
simple controller presented by Yang, the trajectory will
quickly wander out of the attractor to infinity. Compara-
tively speaking, the controller Yang designed is effective
only in sufficiently small neighbourhood of the target and
its control set is not bounded. However, the combined
controller in this paper is effective for controlling hyper-
chaos under arbitrary initial conditions.

5.2 Chaotic example

Another chaotic example, Hénon map, is followed to

show that the combined method presented in this paper is

also effective for controlling chaotic dynamics. Consider
the following Hénon map
f: R? — IR?, flx,x,) = [1+x2—1.4(x1)2,0.3x1]T.
(23)
The target is the fixed point at x' = [0.6314,
0.1894]T. Therefore the controlled system is described
as follows
Flxxp,u)=[14+42,-1.4(x) +1,0. 32 + uy "
(24)
Like the first hyper-chaos example, for convenience
to gain the optimal control sequence, we also add con-
trol only to x;, i.e. u; = O while directing the arbitrari-
ly initial trajectory in the chaotic attractor to the neigh-
bourhood of the target. With initial condition x(0) =
(0.6,0.2]Tand B = 0.02, for an additional feedback
correction to deal with noise we can set 2 = [ - 0.01,
0.01] and get the optimal control sequence and the cor-
responding state sequence shown in Table 3.

Table 3 The optimal control sequence and the state sequence in system (24)

Step 1 2 3 4 6 7 8 9 10
uy 0.01 0.01 -0.01 ~-0.01 ~-0.01 ~-0.01 ~-0.01 ~-0.01 -0.01 0.01
x 0.7060 0.4922 0.8626 0.0958 1.2359  -1.1198 -0.3948 0.4358 0.6056 0.6273
% 0.1800 0.2118 0.1477 0.2588 0.0287 0.3708 -0.3359 -0.1184 0.1308 0.1817

After the system trajectory entering the neighbourhood
of 2!, we can also achieve the stabilization of the trajec-
tory to x' by adjusting control input according to
Eq.(20). When u; = u, = 0, it is easy to see that J =

-1.768 1 0.441 0.441
7 - |

) . Therefore
0.3 0 0.132 1.132

1.5

1y

0.5

T 0
-0.5
_ll
-1.5'

0 20 40 60 80 100
t

(a) x(0)=(0.6,0.2)T .- 0.02< ¢{<0.02

the small perturbation input should be given by u; =
(1.648 + 0.9198)(x; — ) — 0.919(x, — x5) and u,
= —0.300(x, - z{) + 1.0008(x, — x5). Set & =
0.9, Fig.2 shows the numerical simulation results of the
above two illustrations respectively while the uniformly
distributed random noise level § is provided differently.

1.5

1

0.5 T
; 0
-05

-1 ]
-1.5

0 20 40 60 80 100

t
(b) x(0)=(0.6,0.2)T.-0.05<¢<0.05

Fig. 2 The state of x, in the controlled Hénon map by using the combined control method

6 Conclusions

A combined method is presented in this paper to con-
trol discrete-time hyper-chaotic dynamics as well as
chaotic dynamics quickly. The numerical simulations of
controlling two typical chaotic dynamical systems, one is

chaotic and the other hyper-chaotic, demonstrate that the
combined method presented in the paper is so general
and effective that the controlled systems perform strong
robustness. In fact, under the condition of limited con-

(Continued on page 334)
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