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Abstract: This paper generalizes the quasi-infinite horizon nonlinear MPC scheme in a more useful form. Conditions for
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feedback linearization, implementation issues of the control scheme including the determination of larger terminal regions are dis-
cussed. Computation time for on-line optimization can be reduced significantly .
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1 Introduction

In the last decade, great advances in nonlinear model
predictive control (NMPC) have been achieved. Various
NMPC schemes have been developed and successfully
applied in indusl:ry[l~ 31 some of which address theoret-
ical problems such as nominal stability (see [2~4]). In
[5] and [6], a quasi-infinite horizon nonlinear model
predictive control (QIH-NMPC) scheme with guaranteed
stability and computational advantages is discussed,
where a quadratic objective functional is used. For many
practical applications, control performance may be spec-
ified in a much general form. This paper extends the re-
sults in [5] and [6] to more useful cases.
2 Formulation of the control scheme

Consider a class of systems described by the following
general nonlinear ODEs

2(t) = f(x(2),u(2)), x(0) = % (1)

subject to input and state constraints

u(zYe U, z(t) € X, t = 0. . ()

Some fundamental assumptions are stated as follows:

Al) £:R* xR™ D (x,u) > f(x,u) € R"is contin-
uous and satisfies £(0,0) = 0. In addition, it is locally
Lipschitz continuous in x.

A2) U c R™ is compact, X ¢ R" is connected and
the point (0,0) is contained in the interior of X x U.

A3) System (1) has a unique continuous solution for
any initial condition x(0) € X and any piecewise con-
tinuous input function u(+):[0,7,]—> U.

In the framework of QIH-NMPC!*+®), a finite horizon
objective functional in a general form is introduced

3 (2),u() =] " F(a(0), () + B2 (14 T5))

(3)
for the open-loop optimal control problem with initial
state x(¢) at time ¢, where E( x) is positive definite and
continuously differentiable in X and satisfies

* Foundation item: supported by National Natural Science Foundation of China (69804004), Foundation for University Key Teacher by the Ministry of Ed-
ucation and Natural Science Foundation of Heilongjiang Province .

Received date;2000 — 04 —21; Revised date:2001 — 08 — 28.


http://www.cqvip.com

350 CONTROL THEORY AND APPLICATIONS

Vol. 19

%f(ka(x))+ F(z,k(x)) <O. (4)

Moreover, it is assumed that

Ad4) F:R* x R™ 3 (x,u) > F(x,u) € Ris con-
tinuous, satisfies F(0,0) = Oand F(x,u) > Ofor(x,
u) = (0,0).

A5) u = k(x) is any state feedback law that locally
asymptotically stabilizes the nonlinear system (1) and
satisfies k(0) = O.

Thus, the constrained open-loop optimal control prob-
lem can be formulated as follows:

Problem 1 Find

r;}i.glf(x(t),ﬁ(')) (5)
with (3) subject to
z= f(&(r),u0(r)); 2(e32(e),1) = 2(1),

(6a)
a(r) € U, t € [t,t+ Tp), (6b)
i(ryx(e),t) € X, v € [t,t + Tpl, (6¢)
#(t + Tp3z(t),t) € Q, (6d)

where z( ;x(¢),t) represents the predicted trajectory
of (1) starting from the actual state x(¢) and driven by
a given open-loop input function % (¢) (it is replaced by
%(+) for simplicity) ; 2 is the so-called terminal region
defined by
Q: ={x€ X1 E(zx) <a,a >0,k(z)€E U}
(7)
Clearly, {2 has the following properties:
+ The point 0 &€ R”* is in the interior of {2, since
E(x) = 0and (0,0) is in the interior of X x U;
+ 0 is closed and connected due to E(x) is continu-
ous in X;
* From (4), Q is invariant for 2 = f(x,k(x)).
Remark 1
that if u = k(x) stabilizes locally asymptotically system

It follows from the converse theorem!”)

(1), there exists, then, a Lyapunov function E(x ) sat-
isfying (4). It is not very easy to solve the partial dif-
ferential inequality (4) to get a function E(x). If the
Jacobian linearization of (1) is stabilizable, one can
choose F(x,u) = [lzll% + lullk and E(x) =
Il x| %, where P is the positive definite solution to a
Lyapunov equation[S]. With Q¢ > 0, R > 0, functions F
and E satisfy (4) and the assumption A4). Thus, in
[5] a special case of this paper was discussed. In Sec-

tion 4, a function E(x) will be determined to satisfy
(4) with equality, using the feedback linearization tech-
nique. This leads to an NMPC with exactly infinite pre-
diction horizon.

Assume there is an optimal solution to Problem 1 de-
noted by z * (+3x(t),t,t + Tp):[t,t + Tp) = U.
The feedback control is defined according to the princi-
ple of MPC as follows:

w (r)i=a " (r32(t),t,t+Tp), v € [1,t+6),

(8)
the comresponding closed-loop system is
(1) = f(z(e),u™ (), 1 =0 (9)
with x = O being an equilibrium’®).
3 Nominal stability and conditions for an
optimal solution

Leto = t + Tp. Corresponding to an optimal solution
to Problem 1, the optimal value and open-loop state tra-
jectory are J* (x(¢),t,0): = J(x(e), " (+3x(e),¢t,
o)) and 2" (+;x(t),2,0), respectively. Such an ex-
plicit notation makes it possible for us to investigate the
dependence of J* on Tp and ¢ separately, and then to
show the asymptotic stability of the closed-loop system
(9).

Fix o, say op, the existence of an optimal solution
implies that z*(z5x(t),t,00) € X for any r €
(t,o0) and " (ag32(t),t,00) € Q. For any small
d > 0, Problem 1 with ¢ = o + & admits a feasible so-
lution:

" (r32(t),t,00), T € [t,09),
u(r) = { B
k(z(z)), t € [og,00+ &),
(10)
which generates a trajectory satisfying the state constraint
and the terminal constraint. The corresponding objective
value J (x(t),t,00 + &) meets
J(x(),t,00 + &) =
T (z(t),t,00) = E(z7(00)) + E(i(a0 + 8)) +
[ P(a (o), k(2 (). (1n)
%
By (4) and the optimality of J*, (11) becomes
J (x(t),t,00+ 8) < J*(x(t),t,0¢). (12)
Thus, the following result can be stated:

Lemmal Leto =t + 7,. Suppose that Problem 1

admits an optimal solution, then, the optimal value
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function J * (x(t),t,a) is non-increasing in o.

Proof The proof follows directly from (12).

Remark 2 Lemma 1 implies that for fixed x(t)
and ¢, the value function of Problem 1 is non-increasing
in the prediction horizon Tp.

For the period of [¢,¢ + &), apply the optimal solu-
tionz* (*3x(t),2,00): [t,00) = U of Problem 1 at
time ¢ to the nonlinear system (1) . For the nominal sys-
temn without disturbances, the part of the closed-loop tra-
jectory through x () is

x(r) = 2" (r;x(t),t,00), 7 € [2,t + 8.
(13)
Thus, a feasible solution to Problem 1 at time ¢ + & may
be chosen as
a(r) = a*(r;x(t),t,00), Tt € [t + 8,ap).
(14)
Note that if & * (+5x(t),t,a0):[1,00) = U is the op-
timal solution to Problem 1 at time ¢, then (14) is the
optimal solution at the time ¢ + &, by Bellman’ s Opti-
mality Principle. The optimal value corresponding to
(14) meets
J(x(t +8),t + 8,00) =

t+d
J (x(t),1,a0) -—L F(x(r),u*(r))dr.

(15)
By the optimality of J*, (15) becomes
J (x(t + 8),t + 8,09) <
J (x(t),t,ap) ~_["+3F(x(r),u*(r))dr.
(16)

Now we are able to state the following result:

Lemma 2 Ieto = t+ T,. Suppose that Problem 1
admits an optimal solution, then, the value function
J*(x(t),t,q) is non-increasing in ¢.

Proof Because of the positive definiteness of F,
(16) directly implies the result.

Back to Problem 1 with a fixed finite horizon Tp, the
stability property of the closed-loop system (9) is stated
as follows:

Theorem 1 Suppose that

a) Assumptions Al) ~ AS) are satisfied;

b) The open-loop optimal control problem described
by Problem 1 is feasible at time ¢ = O.

Then, for a sufficiently small sampling time & > O,

the equilibrium x = O of the closed-loop system (9) is
nominally asymptotically stable. Let D be the set of all
initial states for which the assumption b) is satisfied,
then, D is a region of attraction.

Proof For a sufficiently small § > 0, the assumption
b) implies the feasibility of the open-loop optimal con-
trol problem at each time ¢ = 015}, Define a scale func-
tion V(x): = J*(x,t,t + T,), it has the following
propertics[s]:

* V(0) = Oand V(x) > Oforx =« 0;

» ¥(x) is continuous at x = O.

Moreover, from (12) and (16), we conclude that a-
long the closed-loop trajectory

V(x(e) - V(1)) <= [ F(x(s),u® ())ds < 0

(17)
for all r = ¢. Thus, the equilibrium x = O of the system
(9) is stable, without having to use the continuous dif-
ferentiability assumption of V(x )3, Moreover, (17)
implies the existence of 11_1.12 V(x(t)). It follows then

from F(x,u) = O that F(x(¢),u”(t)) > 0 as
t > o, which leads to x(t) — O,u(t) = 0 as
t > o, Together with the stability result, we have
proven the asymptotic stability of x = 0. Using the same
method in [5], we can show that D is a region of attrac-
tion for the closed-loop system (9) .

In fact, it can be shown that the feasibility, not nec-
essarily the optimality, of the open-loop optimal control
problem is required for the guaranteed stability[2 28
However, to achieve optimal control performance, one
does need the optimality. In the following, we will dis-
cuss the existence of an optimal solution to Problem 1,
based on some results in [8].

First, we give the following definition of an admissi-
ble control input function u( ) to Problem 1.

Definition 1 A piecewise continuous input u( +)
defined on [,z + T,) is said to be admissible to Prob-
lem 1 if there exists a corresponding trajectory of (1)
such that

cu(o)EU,r€lt,t+ T,);

s x(rsx(e),0)€EX,clt, 0+ T, 1;

s x(t+ Tp3x(t), )€ Q5

* t>F(x(r;2(2),2),u(z)) is in L;[¢,2+ T, ].
The set of all admissible inputs is denoted by x. A tra-
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jectory corresponding to an admissible input is referred to
as an admissible trajectory. Clearly, the existence of a
nonempty x implies that Problem 1 is feasible. In addi-
tion, the existence of a non-empty u is related to the no-
tation of controllability. As a comparison to Definition 1,
we give the following definition of constrained controlla-
bility, according to {7].

Definition 2 The nonlinear system (1) is said to
be constrainedly controllable, if for any two points x
and x, in X, there exist a finite time 7 and an input
function u(+):[0, T] — U such that the corresponding
trajectory starting from x, satisfies x(t;%,,0) € X,t €
[0,T) and x(T;%,,0) = x,.

Next, for a fixed x € X, the values of F(x,u) and
f(x,u) forall u € u trace out a set in R"**!, defined by
HAx): = {(¥*9) 1 y° = F(x,u),y = f(x,u),u
€ U}. Thus, we have

Corallary 1 Suppose that

a) p is not empty;

b) Assumptions Al) ~ A4) are satisfied and U is convex;

c) for each fixed x € X, the set &« ) is convex,
then, Problem 1 admits an optimal solution.

Proof Assumption A3) implies that for all admissi-
ble inputs u(+): [t,z + T,] — U, the corresponding
trajectories are bounded on [¢,¢ + T,]. It follows that
all admissible trajectories lie in some compact set.
Moreover, {2 is closed, the proof follows then from the
satisfaction of the conditions in Theorem 5.1 in [8].

Remark 3 The convexity of U is true if, for exam-
ple, U: = {4 € R™ | Umin < U < Umae| - The assump-
tion (c) is strong and only sufficient. It is satisfied if
the nonlinear system being controlled is affine in & and
F(x,u) is a convex function of z on U.

4 Implementation on feedback lineariza-
tion

If the nonlinear system (1) is affine in «, i.e.,
flx,u) = a(x) + b(x)u, and exactly feedback lin-
earizable in X, then, with a well-defined coordinate
transformation and a nonlinear feedback!®’

z=®(x), u=-A(x)"g(x) + A(x) v,
(18)
the nonlinear system can be transformed into a linear
system in a controller normal form: 2 = Az + Bv, where
v is a new input; ®(x),A(x),g(x) and constant ma-

trices A and B have corresponding forms. Without con-
sidering constraints for the moment, we can find a linear
feedback such that Axy: = A + BK is asymptotically sta-
ble. Thus, the feedback
u = k(x) = - A(x) 'g(x) + A(x)'KP(x)
(19)
is asymptotically stabilizing for the nonlinear system
(1) . For any initial condition z(¢,) = z,, define an in-
finite horizon objective functional

J2Cu()s = [T 1+ oo 1ds

(20)
with Q > Oand R > 0. The objective value achieved by
v = Kzis JO (2, Kz(+)) = [l 2 | , where P is the u-
nique positive definite solution to the Lyapunov equation

ATP + PAx =- (Q + KTRK). (21)
Choose an F-function and an E-function in the original
coordinates as follows

F(z,u): = (=) 15+ [l g(x) + A(x)u %,

(22a)
E(x): = 1 &(2) I3, (22b)
that are equivalent to F(z,v) = [lzIl% + vl %,
E(z) = |lz|l% in the z-coordinates. Clearly,

F(x,u) is convex in u, that implies the satisfaction of
the condition ¢) in Corallary 1. Moreover, E(x) satis-
fies (4) with equality, which leads to an NMPC with
exactly infinite prediction horizon.

Remark 4 With the above objective functionat, the
desired control performance in the original coordinates
does not seem to be clear. However, if the affine non-
linear system (1) with given outputs y; = h;(x),i = 1,
2,'*-,m has relative degree {r,, -, r,| at the origin

and D, r; = n, we have the fact z = (y,,"*, y{17",
i=1

...’ym’...,y'("rm-l))T and v; = yg'i) Jio= 1,2, ,m.
Thus, the weighting matrices Q and R can be chosen to
meet the desired control performance in the sense of out-
put control. For example, consider a rigid robot system
with n-degrees of freedom. It is described by M(¢)q +
c(q,(}) = u, where ¢ and ¢ represent respectively the
position and the velocity of joints; M(gq) is the symmet-
ric and positive definite manipulator inertia matrix;
¢(q,¢) represents the Coriolis, centrifugal and gravita-
tional forces; and u denotes joint torques that can serve
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as control inputs. Letx; = q, %, =ﬁq and y = x,. De-
fine a coordinate transformation &(x) = x and a feed-
back linearization law u = M(x;)v + c(xy,%;), the
robot system is feedback linearizable. Moreover, the new
input is v+ = §. Thus, the objective functional defined by
(22) admits a clear physical explanation: the first term of
(22a) penalties the position and the velocity of joints,
while the second penalties the joint acceleration.

As to the constrained case, the following procedure
provides the largest possible terminal region {2 for feed-
back linearizable nonlinear systems :

Step 1 Use the standard feedback linearization tech-
nique to construct a coordinate transformation and a
feedback law,

Step 2 Solve a linear stabilization problem for the
feedback linearized system to get a stabilizing linear state
feedback gain K,

Step 3 Solve the Lyapunov equation (21) to get a
positive definite and symmetric P,

Step 4 Find the largest possible « € (0, %) in (7)
such that 2 ¢ X and k(x) € U, ¥z € N.

5 Example: a robot system

As a numerical example, consider a robot system con-
sisting of a robot arm and a cart!™®) | Its motion can be
ideally described by

(J+ mr?)p + 2mmrp = Ty, pmr — pmrg® = Ty,

(23)
where m is the mass of the cart; J is the joint moment of
inertia; ¢ and r are positions of the arm and of the cart,
respectively; T, and T, are the torque and the force ap-
plied to the arm and the cart, respectively. Constraints
are given in [10] as follows:

—20Nm < T; < 20Nm, - 10N < T, < 10N,
(24a)
(24b)
Other values for physical parameters are also taken

0 < ¢ < 270°.
there. Define a state vector and an input vector as x;: =

Q- P, %y = gb——qb,,x;: =r-r,,%4: = r—ryand u;:
= TIn-Ty,,uy: = T,—T,,, and choose a steady state of
the system with positions of ¢, = 135 and r, = 0.635m.
Thus, assumption A2) is satisfied and U is convex.

In the following, we compare the quasi-infinite hori-
zon nonlinear model predictive controllers based on the
feedback linearization ( controller A) and the Jacobian
linearization discussed in {6] (controller B). Choose

performance weighting matrices 0 and R as follows (u-
nits omitted )
1.0 0.0 0.0 0.0
0.0 0.5 0.0 0.0 0.1 0.0)
0.0 0.0 1.0 0.0 (0.0 0.1/
0.0 0.0 0.0 0.5

(25)
The Jacobian linearization of the robot system (in the x-
coordinates) at the steady state gives

0.0 0.0
0100 1
A=0000 B - J + mr? 0.0
000 1 | 00 o0.0]
0 000 0.0 p—in—

(26)

In order to give a fair comparison, the following feed-
back linearization law is chosen:

J+ m(xy + 1,)?

up = J+mi O + 2mxaxg(x3 + 1,),
(27a)
uy = vy — pmad(xy + 1,). (27b)

Thus, the feedback linearized system has the same dy-
namic and control matrices as in (26). Following the
procedure given in Section 4, we obtain a terminal
penalty matrix and a terminal region for controller A as
follows:

2.1960 3.1613 0.0 0.0

3.1613 4.7463 0.0 0.0

b

0.0 0.0 1.0642 0.3162
0.0 0.0 0.3162 0.3365

(28a)

Q={x€RI2"Px <3.0}, (28b)

where constraints in (24) determine mainly the size of
the terminal region. For controller B, the procedure giv-
en in [6] yields
44.9619 48.8059 0.0 0.0
48.8059 96.0076 0.0 0.0

b

0.0 0.0 2.0011 0.6200
0.0 0.0 0.6200 0.4978

(29a)

Q={xER | Px <21}, (29b)

where the nonlinearity of the robot model (23) directly
restricts the size of the terminal region. A comparison of
(28) to (29) indicates that controller A has a signifi-
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cantly larger terminal region. This implies that a shorter
horizon can be chosen to achieve the feasibility of the
optimization problem. As a consequence, controller A
needs significantly less on-line computation time than
controller B. This can be clearly seen in Table 1, where
elapsed CPU times for a total simulation time of 10 sec-
onds are listed. For both controllers A and B, the opti-
mization problems are solved in discrete time with a
sampling time of § =0.1s and the same numerical pa-
rameters ( optimality tolerance = 10™* and integration
step = 0. 005s, etc) . Moreover, finite horizons in con-
trollers A and B are chosen to be as short as possible
such that the corresponding constrained optimization
problems are feasible at time ¢ = 0. This results in T, =
1s for controller A and T, = 2s for controller B. Fig.1
shows time profiles of the closed-loop systems, where it
is clear that input and state constraints in (24) are re-
spected.
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Vol. 19
Table 1 Elapsed CPU time for controllers A and B
initial state elapsed CPU time/s
@(0) @(0) r(0) #(0) A B

Qo° 0.0 0.3 0.0 426.93 2593.94
270° 0.0 1.0 0.0 414.94 2514.97
240° 1.0 1.0 1.0 428.89 2728.63
23° -1.0 027 -1.0 405.55 2523.06

The use of the feedback linearization technique does
significantly reduce on-line computation time. A real-
time implementation of the controller A needs, however,
further efforts, due to the existence of state constraints
and the use of a continuous-time model for prediction.
In the case without state constraints, in order to let con-
troller A real time implementable, we may for example
choose a sampling time of § = 0.2s and an integration
step of 0.02s. With these numerical parameters, the e-
lapsed CPU time can be reduced to about 9s for a simu-
lation time of 10 seconds. The price is a small decrease
in control performance.

6 Conclusions

This paper generalizes the QIH-NMPC scheme in [5]
for a general objective functional, where a general local
stabilization controller is used to derive a terminal penal-
ty and an invariant terminal region. Closed-loop stability
is guaranteed and sufficient conditions for the existence
of an optimal solution to the constrained optimization
problem are discussed. Compared to other existing stable
NMPC approaches, the proposed one has computational
advantages. Especially, for feedback linearizable nonlin-
ear systems, the proposed method leads to an NMPC
with exactly infinite prediction horizon. The feedback
linearization technique is applied to determine a larger
tenminal region and thus the control to be determined on-
line is only of a short finite horizon. This reduces inten-
sively on-line computation time and may allow a real
time implementation even for fast systems.

It should be pointed out that handling state constraints
is computationally extremely expensive (see [6]).
Thus, effective methods to handle state constraints are
highly desired for real time NMPC.
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