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Abstract: In the sense of L. nomn, robust stabilization and tracking control problems are first defined for uncertain non-
linear systems. Using the technique of feedback linearization and Lyapunov approach, the robust controllers corresponding to the
robust control problems are designed. Finally, a simulation result shows the correctness of the design.
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1 Introduction

In recent years, the control problems of nonlinear sys- .

tems have received much attention. Robust control of
nonlinear systems is one of the main topics in the
areal!~4]

In the sense of L,-gain, the nonlinear H.. control the-
ory is founded based on the Hamilton-Jaccobi inequali-
ties. By differential game and dissipative theory, the
H. control problem of nonlinear systems can be trans-
formed equivalently into the solvability problem of the
Hamilton-Jaccobi inequalities or nonlinear matrix in-
equalities, and the robust controllers can also be con-
structed via the solution of inequalities.

In the past two decades, an important achievement in
the research on nonlinear control systems is the founda-

tion and development of the differential geometrical

method'®’. Through feedback linearization, nonlinear
systems are transformed into the equivalent forms of lin-
ear systems. Based on the state-feedback linearization

and I/O linearization, the robust control problems of a
class of nonlinear systems are studied in the frame of .
analysis and synthesis'®”) . Based on the Lyapunov theo-
ry, the robust stabilization and robust tracking of nonlin-
ear systems with parameter uncertainty, satisfying the
mismatched and matched conditions, are discussed in the
literature!®°), But they all did not involve the general
external disturbance because the necessary assumptions to
the results are too rigorous for general disturbance.

This paper deals with the robust control problems of a
class of nonlinear systems with L-bounded distur-
bance. In this paper, considering the fact that a suffi-
ciently small deviation from the ideal control objective is
often admissible, the robust stabilization and robust
tracking problems are respectively defined in the sense of
L, -nom.

2 Problem formulation and preliminaries

2.1 Problem formulation
Consider a single-input single-output (SISO) affine
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nonlinear system
2= flx) + g(a)(w+ u), (1a)
y = h(x), (1b)
where x € R” is the state, v € Ris the input, w € R
is the disturbance, y € R is the output. f(x) and g(x)
are the known smooth functions with corresponding di-

mensions. The disturbance w exists in the input channel,
and is supposed to satisfy the following assumption:

Al) The disturbance w is L . -nom-bounded,i.e.

Twle<, (2)
where [ is a known positive value, and || || . stands
for L -nom.

The robust stabilization problem is addressed as fol-
lows.

Definition 1 Given a scalar ¥ > 0, the robust sta-
bilization problem of the nonlinear system (1) is to de-
sign a robust control law 4 such that:

a) When there is no disturbance w, the nonlinear sys-
tern is asymptotically stable at the expected equilibrium
point xq;

b) When there exists the disturbance w, the nonlinear
system asymptotically converges to the set

fx 1 lx-=xlle <7l

Moreover, the robust tracking problem is addressed
below .

Definition 2 Given a scalar ¥ > 0 and a reference
input yz(t), the robust tracking problem of the nonlin-
ear system (1) is to design a robust control law u such
that ;

a’') When there is no disturbance w, the output y of
the nonlinear system converges asymptotically to the pre-
scribed output y;(t) as time tends to infinity;

b’) When there exists the disturbance satisfying the
L., norm condition (2), the difference between the out-
put y of the nonlinear system and the reference input
yr(t) converges to the set

fel llellw <l
In order to solve the above problems, an appropriate
penalty output to reflect the influence of disturbance is
necessary . ‘Customarily, z is used to denote it. The defi-
nition of L . ~performance is introduced as follows.

Definition 3 Consider the nonlinear system (1).

For a given positive number 7, let

J=snl.1”p”:||w. (3)
Then the nonlinear system has L, -performance if J < 7
for all w satisfying the assumption Al) .
2.2 Exact linearization
Consider the nominal system of the nonlinear system
(1) , which is described by
£ = flx) + g{x)u, (4a)
y = h(x). (4b)
The state space exact linearization problem of the nonlin-
ear system (4a) and (4b) is: given a point x¢, find a
neighborhood U of xy, a feedback
v =alx) + Blx)v (5)
is defined on U, and a transformation £ = $(x) is also
defined on U, such that in the coordinates & = ¢(x) the
corresponding closed loop system
i = flx) + g(x)a(x) + g(x)B(x)v  (6)

is of the form

& = A£ + By, (7a)
y = C¢, (7b)
which is linear and controllable, i.e. .
I (x) _
[ 5 (%) + g(x)a(x)]x=¢_l(s) = A¢,

)

(2 (ypn)]

=9
[h(x) )y = CE

for some suitable matrix A & R"**" and vector B € "

satisfying the condition

rank[ B AB

Lemma 1[5]

problem of the nonlinear system (4a) can be solved if

An_lB] =n.

The state space exact linearization

and only if there exists a smooth function A () such that
the system
fx) + g(x)u,
y = A(x)

has relative degree n, i.e.

a) LLfA(x) = 0 for all x in a neighborhood U of xg
and all0 < &£ < n - 1;

b) LL7'A (%) 0.
Where LfA (x) denotes the Lie derivative of A (x) along

Lemma 205!

problem of the nonlinear system (4a) can be solved near

x

The state-space exact linearization

a point , 1.e. there exists an “output” A (x) function for

which the systemn has relative degree n at xg, if and only
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if the following conditions are satisfied:

a) The matrix [g(xp) adrg(xo) - adfg(xp)
ad'}‘lg(xo)] has rank n;
b) The distribution D = span[g(x) adsg(x)

ad¥ 'g(x)] is involutive near x,.
Lemma 305

degree n at the point xp, then there exists a coordinate

If nonlinear system (4) has relative

transformation
¢ = ¢(x)
such that the system can be transformed into the form:
& =&, i=1,,n-1, (8a)
€, = a(8) + b(&u, (8b)
y = &1, (8¢)
where
h(x)
th(x)
$(x) = . , (9a)
L’}‘lh(x)
a(€) = L}h(x), (9b)
b(&) = LLy 'h(x). (9¢)
Let
u L [ m(x)+ 0] (10)

T L h(x)
Then the closed-loop system becomes a linear control-
lable system of the form (7), where the matrices A, B

and C are
0 1 0 0 0
0 0 0 0 0
A= ‘|, B= , CT=
0 0 1 0 0
0 0 0 -« 0 1 0

(11)
Besides the assumptions Al ), the following assumption
is supposed to hold throughout the paper:
A2) || 6(&) |l < k, where k is a positive constant.
3 Main results
3.1 Robust stabilization
According to [5], there exists the following lemma.
Lemma 4%} If there exists a matrix K such that the
following inequality
P(A + BK) + (A+ BK)'TP <0 (12)
holds, where P is a positive defined matrix, then the
controller

v = K¢ (13)
stabilizes the system (7). Moreover, the corresponding
controller

u = alx) + BCx)K$(x) (14)
stabilizes the nominal system (4) of the nonlinear system
(1).

Taking the disturbance w into account, in the coordi-
nates ¢ = $(x), the closed-loop nonlinear system (1)
with controller (14) can be exactly linearized as

& = (A+BK)¢ + Buw', (15a)
y = C¢&, (15b)
where w’ = 5(&)w. Then the following expression
holds:
hw | < &L
Construct a dynamic model of the form
8 = (A + BK)4, (16a)
y = (4, (16b)
and let the initial state 6 = $#(xy), then it is obviously
found that
x = $71(6)
is equal to the state x of the nonlinear system (1) in the
ideal case without disturbance w. Choose
z=x-¢$716) (17)
as the penalty output for the robust stabilization problem
because it effectively reflects the deviation of the state x
from the ideal case, resulting from the disturbance w.

Based on the Lyapunov theory, the following proposi-
tion can be obtained .

Proposition 1  Given positive number ¥ > 0, for
the nonlinear system (1) satisfying the assumptions Al)
and A2), suppose the inverse map ¢~!( &) of the coor-
dination transform € = ¢(x) satisfies the Lipschizs con-
dition

A3) N8 x)-¢"()ll <Ll x-y|. Then
the controller

BTPe - T
y o _kl—_—” BT P’ B™Pe 2 0and || el =0,
0, otherwise
(18)
1
A2
§=—"71"7,e=9(x)-6,

LA2,
such that the systems (1a), (16a) and (17) have the
L o, -performance.
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In order to prove Proposition 1, we introduce a prop-
erty of the Euclid norm || « | .

Lemma 5 Suppose the vector x € R", y € R" and
the angle between the vector x and y is 6. Then
~lallllyl < ay=lallllyllcoso =l llyll.

(19)

Definition 414!  Given a set

O = {¢(t,x,w) | Yw € W,t € R,
where W is the admissible disturbance set. @ is invariant
for the system (1) if for all w € W and x € O,¢
(t,z,w) € @.

Based on Lemma 5, Proposition 1 can be proved as
follows.

Proof of Propesition 1 Obviously, to prove the
Proposition 1 is equivalent to proving that, with the con-
trol law u, the set

fzl lzll « < 7!
is an invariant set for all w, e and £.
By using Lemma 5, we have
lzlle <llzll < LII¢(x) -6l =

11 1, 1ok
L— A% llell < L—(e"Pe)2.
Ar%lin AZin

So the sufficient condition that the set {z | || z || » < 7}
is an invariant set is that, with the controller (18),
eTPe < L7220 ;.7°
holds for all w, e and &.
Now consider the time derivative of the quadratic
function V(e) = e"Pe, i.e.
V(e) =¢"[P(A + BK) + (A + BK)"PJe +
2¢"PB(w' + u,).
By (12), there is
e"[P(A + BK) + (A + BK)"Ple < O.
From Lemma 5, it can be obtained that
e"PBw' < |l e"PBIl lw Il = |l ¢"PB Il &L
Taking the form of the controller (18) into account, we
can conclude that for all e satisfying || e || = &,
kl ”BT—lpeneTPBBTPe <
-kl e"PR| <oO.
Then, for all e satisfying || e || = &,
V(e) <O. (20)
Because e"Pe < AZ, Il ell?, the edge points of

e"PBu, < -

{el e"Pe < L™A 7}, 1. e. the points satisfying

e"Pe = L™2A_,,7*, are included in the set

ENI—-—

A in
fel llell 5 -2y,
LA2,

According to (20), for all e in the set
:

fel lell = 28y,
LAZ,
there is V(e) < 0. This means that at the edge points of
{e | e"Pe << L %A mn7?!, the value of V(e) = e'Pe
will decrease. Thus, for the closed-loop system (1la),
(16a) and (17) with the controller (18), eTPe <
L7223 n7? always holds. Then the set {z | [l z [l &« <

7! is an invariant set for the closed-loop system. There-
fore, the proposition is proved.

Based on Lemma 3 and Proposition 1, the following
conclusion can be drawn.

Theorem 1 For the nonlinear system (1) and a
given value ¥ > O, if the system satisfies the assump-
tions Al), A2) and A3), the robust stabilization prob-
lem of the definition 1 can be solved by the controller

U = uy+ uy = a(x) + ,B(x)[K¢(x) + u2:|,

(21)
where
6 = (A + BK)4, (22a)
BT Pe T
-kl ———, B'P 0 w =0,
Uz = ” BT Pe || e Oand ” ¢ ” =
0, otherwise.

(22b)
x denotes the state of certain nonlinear system (1), and
6(0) = #(=p),

Heo

Am
o = 1‘}',e=¢‘(x)—6.

L A2
Proof Cormresponding to the definition, the proof is
divided into two parts:

a) The first is to consider the case of w = 0. By the
lemma, the part a’) of Definition 2 is obvious;

b) The second is to consider the case of w =« 0 and
satisfies the assumption Al). According to the above
lemmas, & asymptotically converges to the origin, which
implies that $~' (&) converges to the origin. By Proposi-
tion 1, x is always kept in the set {x | ||  — ¢71(&) ||
< Al, whose center is $~'(£). So the part b’) of Defi-
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nition 2 holds.

Then Theorem 1 is proved.
3.2 Robust tracking

Given a reference input yg(¢), for the I/O linearized
system (7) of the nominal system (4), introduce the
trajectory error 7(¢) as the difference between the real

output and the reference output yg(t), i.e.

7}1(t) & - )’R(t)
(1 & - “’(;)
7(t) = 7}2:)= Zy_ .
77"(;) En - )’gz"-l)(t)
then the system (7) becomes
b = Ay + Bv, (23a)
So here is the result.
Lemma 61°!  For a given reference input yg(t), it
assumes::

a) There exists the ( n — 1)-th order time derivative of .

yr(t);

b) The output y(¢) has relative degree n in R".
Then, the tracking problem can be solved by the con-
troller

u = ;(‘g(- a(&) + ™ - Ky),  (24)

where K = [ko kl te
equation

k,_1 ] satisfies that all roots of the

S 4 k" Vb ks + kg=0  (25)
lie in the left-half complex plane, and a(&) and 5(&)
are taken as in Lemma 3.
Through /O linearization, the nonlinear systemn with
the controller (24) has the following form:
€= A6+ BLy + K(&-Lyry® y® -~ y§ 21014 Buw,

(26a)
y = C¢, (26b)
where w' = b(&)w. Then the following expression
holds: V
I w | <&
where £(0) = [h(xg) ANV (xp) - AP (x)], and

A, B, C are taken as in (11).
Construct a dynamic model as follows:

6 = 49+ BLyk + K(O-Lyey® s - yi"ID],
(27a)
Yn = Ce’ (27b)

where 8(0) = [h(xg) AV (x) - BV (x)], and
A,B, C are taken as in (11). Clearly, because of the
feedback equivalence, the dynamic behavior of model
(27) is equivalent to the dynamic behavior of the nomi-
nal system, i.e. the ideal case without disturbance w.
So the error between the practical output of the system
and the output of the artificial nominal system, can be
represented by the dynamic model
= (A + BK)e + Buw', (28)

where e(0) = 0. Choose z = e as the penalty output.

Proposition 2 Given a positive number ¥ > 0, the
controller

. —kl”—l;TT—};T. BPe < 0and lell w =8,
0, otherwise.
(29)
where
1
§ = Ay
AZax
guarantees the system
= (A + BK)e + Bw' + Bu,, (30a)
z = e, (30b)

where e(0) = 0, satisfies the L. -performance || z ||
< 7. Here K is taken as in Lemma 6.

Proof The proof is similar to the proof of Proposi-
tion 1, and therefore is omitted here.

Here is the results.

Theorem 2 For a given value ¥ > 0 and a reference
input yg(¢), if the assumptions in Lemma 6 are satis-
fied, then the robust tracking problem can be solved by
the controller )

U =u +u; =

(= Lir(x) + ¥ - Ky + up), (31)

1
Ly 'R (%)

where

(1y (2},

{’7 = &= Lyryiy® - 45017,

&= [h(x) AV (x) - h("")(x)]
0 =A0+BLy§ +K(6-Lyr o y® - y& P11,
(32a)
=&- (32b)
{ I ”;TT’;& 7 BTPe#0and llello >0,
otherwise.

(32¢)
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8(0) = [h(xe) AV (xp) - h" P (x0) ],

A dax
x denotes the state of uncertain nonlinear system (1), K
is taken as in Proposition 2.
Proof The proof is simple and is omitted.
4 Example
Consider the uncertain nonlinear system (1) with the

form

x5 exp(x)
f(x) = | 21+ 25 + 55|, g2(x) = | exp(x2) |.
" X — Xy 0
(33)
Suppose that the initial state is [1 2 3 ]and the distur-
bance is
w = sin(t). (34)
The control objective is to stabilize the system at the ori-
gin [0 0 0].

For the nominal system (4) of the system (1), Let
the coordinate transformation be

x3
E=¢(x) =| 2 -2 |. (35)
- x; - %y
It is easy to get by calculation
L =0.5, (36)
a(x) = - 21 — x5 — 223, 6(x) = - 2exp(xy).

(37)
Then the system (4) is linearized as the system (7).
For the system (7), a stabilizing controller is
v=[~1 -3 _3}¢ (38)
and the positive defined matrix
83.1578 60.5567 17.9623
P = ’:60.5567 136.366 31.4600} (39)
17.9623 31.4600 23.8069
satisfies the inequality (12).
By Theorem 1, suppose the permissible L. -perfor-
mance is 0.1, then a robust stabilizing controller is

0 1 0
Nt

-1 -3 -3
u(x):ﬁ{—a(x)+[—1 -3 23]¢(x)} +ua(a),
(41)

where
uz( x) =

2exp(2) [17.9623 31.4600 23.8069 ][ #(x) 6]
~2exp{2) 17,9623 31. 4600 23.8069) (B (x) 61 1] °

1
A2
if 1 8(x) -0l =7 =2%x0.3%x0.1=0.06

L A%
and [17.9623 31.4600 23.8069] [#(x) - 6]] »
0, otherwise u;(2) = 0.
The simulation shows that the stabilizing controller of
nominal system is unable to stabilize the uncertain sys-

tem in Fig.1, and Fig.2 shows that the robust controller
(41), designed by Theorem 1, is valid. It verifies the
correctness of Theorem 1. Theorem 2 can also be proved

by simulation in a similar way.

39y xy:solid line
PR R x,:dotted line
A3}

J .
144

X3 dashed-dotted line

state x

0 5 10 15 20

time/s
Fig. 1 The state trajectory of uncertain system with the

stabilizing controller for nominal system

5
43 x
SV
31~ \
24 AN
= 11 .
R AN ~
@~ 11K Xy :solid fine
-2 1 x,:dotted line
-3 1 X3 :dashed-dotted line
-4
-5 v v T 5
0 5 10 15 20
time/s

Fig. 2 The state trajectory of uncertain system with the
designed robust controller

5 Conclusions

In practice, due to the influence of the uncertain fac-
tors such as disturbance, a small deviation to the ideal
state is often permissible. Correspondingly, in the stabi-
lization problem, the state is often permitted to swing in
a small neighborhood of the expected equilibrium point.
Similarly, in the tracking problem, a small tracking er-
ror is permitted. Based on these views, the robust stabi-
lization problem and robust tracking problem are defined
respectively in the framework of L. nom.
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On the basis of the technique of exact linearization,
this paper has discussed the robust control of a class of
SISO affine nonlinear systems with L -bounded distur-

bances, and corresponding robust controllers have been

obtained. In the final part of the paper, a simulation has
been carried by MATLAB and SIMLINK, which illus-
trates the correctness of the results. Clearly, the results
in the paper can further be generalized to the case of MI-
MO nonlinear systems, and the cases with more uncer-
tainties, but further research is needed.
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