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Genetic Annealing Algorithm and Its Convergence Analysis
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Abstract: Aiming at low convergence speed of simulated annealing algorithm and group degeneration in genetic algo-
rithm, we present a genetic annealing algorithm that combines the above two ones and also prove its convergence. Simulation
results illustrate that genetic annealing algorithm not only overcomes the low convergence speed in simulated annealing algorithm
but also solves the group degeneration problem in genetic algorithm. This algorithm can be used to solve the problem with un-

certain and variant objective function as well as general combined optimization problem.
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1 Introduction

Simulated annealing algorithm and genetic algorithm
are two general approximate algorithms to solve large-
scale combined optimization problem. Theoretically, it
can be proved that simulated annealing algorithm con-
verges to the global optimal solution with the probability
of 1113, However, it can be seen from simulation results
that its convergence speed is relatively low.

Genetic algorithm!2~3) stems from the analogy of bio-
logical evolution process. Using group optimization
strategy , it constructs a group out of a set of solutions in
solution space and produces a new group out of another
set of the solutions by selection, hybridization and muta-
tion. In the group evolution process the solutions of the
group are continuously optimized . Using Ellips selec-
tion operator, the algorithm will find its global optimal
solution with the probability of 113, Simulation results
show that although at the beginning genetic algorithm is
able to find a suboptimal solution quickly, along with
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the progression of the algorithm, the reducing difference
among individuals in the group, causes group degenera-
tion and low searching efficiency, and it takes a long
time to get the optimal solution. Mutation probability
can be increased to avoid group degeneration, but on the
other hand the increase of mutation probability will ag-
gravate the blindness of searching and also decrease the
efficiency of the algorithm such that the results are not
satisfying even if some adaptive strategies are applied.

In some literature improved methods of selecting oper-
ator are formulated to lower group degeneration speed
such as:

a) Ordering selection;

b) Boltzman tournament selection'*! .

The common objective of these methods is to reduce
the selection probability of individuals with high degree
of adaptability and to increase that of individuals with
low degree of adaptability so as to maintain the diversity
of the group.
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Furthermore some other methods are used to solve
group degeneration problem, which are as follows:

a) Substitute new individuals for those with low de-
gree of adaptability in the group;

b) Substitute new individual for either of two pollen
suppliers;

c) Substitute new individual for the most similar
(minimum Hamming distance) one in the group.

Ref. [5] compares the strategies and proves that the
third one gets the best results. From simulation results
we can see that although the algorithrh can greatly slow
the degeneration process of the group, it cannot funda-
mentally avoid the group degeneration. However, if we
select two pollen suppliers in the group to produce two
new individuals through hybridization and then substitute
them for the two pollen suppliers, the sum of Hamming
distance among all the individuals in the group during
the evolution process is a constant and the diversity of
the group can remain unchanged all along. Thus group
degeneration can be radically avoided .

On the basis of the above ideas, we present a novel
idea known as genetic annealing algorithm, which com-
bines genetic algorithm with simulated annealing algo-
rithm. In this paper genetic annealing algorithm and its
convergence analysis are first stated and then the validity
of this algorithm is verified through simulation exam-
ples.

2 Genetic annealing algorithm and con-
vergence analysis
2.1 General description of the algorithm

Genetic annealing algorithm presented in this paper

needs binary codes of solution space, of which the pro-
cess is similar to the general genetic algorithm. Suppose
coding is finished, solution space S = {0,1}%, objective
function f: {0,1}% — R, ({0,1}%, f) thus constituting
an example of combined optimization problem. The ob-
jective of this algorithm is to solve

max{f(s) | s € {0,1}4}.

In the algorithm group optimization strategy is ap-
plied, that is, sequence (S,, S,,°**, Sy) composed of N
L -bit binary strings constructs a group Z with the size of
N. In the sequence the nth string is also referred to as
the nth individual in the group where four basic opera-
tors are included as follows:

a) Selection operator: Given positive stochastic vector
P. = (p1,p2,~*»pn) , known as selection probability
vector.

Stochastically select an individual S; in the group Z =
(84,83, Sy) and the selection probability is

P(s; = 5,) = pp» n = 1,2,-,N.  (2.1)

Then select with no restoration another individual S; in
the group Z = (S;, Ss,**, Sy) and the selection proba-
bility is:

P»
p(s,- = s, 1 8) = 1-p’

lsn<N,nx1,

0, n = 1i.
(2.2)
b) Hybridization operator: Consider S; and S; as
pollen suppliers and then through Hybridization operator
produce two new individuals g; and g;. Let

si = (bubpby), s = (bubp b)),

8i = (bitbiz-~bu), 8 = (bj{b,é"'bjlf)-
Stochastically select a hybridization control string S,

=(C, G C.) in terms of uniform distribution
in the space {0,1}% and let:
by,c; =0, by, =0,
by= T b= T 1,2, L
bj[,C[:O, bu,C[:O,

(2.3)

The implication of the above operation is that: if
some bit of hybridization control string S is 1, the cor-
responding bits in S; and S; will exchange; if it is O, the
corresponding bits will remain unchanged.

¢) Mutation operator: negate every bit of g; and g; ac-
cording to mutation probability P,,(0 < P, < 1) and we
have m; and m;.

d) Replacement operator: substitute new individuals
m; and m; for the present ones S; and S; and the replace-
ment probability is:

1, Af > 0,

A
exp(t—k[) , A =<0,
Af = Pi[f(mi) —f(Si)] + Pj[f(mj) —f(Sj)],
(2.5)
where p; and p; are components of P_,. The pseudo pascal

Az’(tk) = l (24)

language of genetic annealing algorithm can be described
as:
Algorithm 2.1 Select initial group Z = Zj;
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Determine selection probability vector P, ;
k: = 0;
repeat
Determine the control parameter i ;
Selection operator;
Hybridization operator;
Mutation operator;
Replacement operator;
kE: = K+ 1
until terminating condition is satisfied;
end
2.2 Convergence analysis of the algorithm
Ref. [1] proves the convergence theorem of the fol-
lowing simulated annealing algorithm, that is, when
production probability and control parameters satisfy cer-
tain conditions, the simulated annealing algorithm that
describes limited nonhomogeneous Markov chain con-
verges to the global optimal solution cluster. Thus,. let
group Z = {5,,85,,+, 5¢) € {0,1}**". Define func-

tion F as

F(Z) = 23pf(sa), (2.6)

where definition of S, and P, are the same as Eq.(2.1).
F(Z) represents weighted mean of objective function
value of NV individuals in group Z. According to Egs.
(2.5) and (2.6) we have
Af =pi[f(mi) —f(si)] + pj[f(mj) —f(S,')] =
F(Z') - F(Z). (2.7)
Substitute Eq. (2.7) into (2.4) and we have
F(Z') > F(Z),

1,
Az (1) = {exp( FZ t; Flz ) , F(Z') < F(Z).
(2.8)
We construct {(0,1)¥ %, F} as an example of com-
bined optimization problem. If the collection of all the
probable new groups Z’ produced by the present group Z
through selection, hybridization and mutation are defined
as N(Z), neighborhood of N, we then define a corre-
sponding neighborhood structure N in the set (0,1) ",
Consider the group Z as a stochastic variable and
we can estabilish a model for the genetic annealing
Algorithm 2.1 with Markov chain, whose transition
probability is:

Vol. 19
GrzAzz (i), Z' + Z,
P (k) = [1 _ 2 Px(k), Z' = Z,
xe@. 0¥ xxz
Vz,7 € {0,117V, (2.9)

where Azz (t,) is defined based on Eq. (2.8), G,z de-
notes probability of Z' produced by Z, known as pro-
duction probability. If the probability of the new indi-
viduals that are selected in all individuals in the neigh-
borhood of the group Z are equal, the definition of Gz
is as follows:
R
Crp = {V NCZ) 1"
0, A ¢ N(Z).
Compare the transition probability of simulated annealing
algorithm (refer to Ref. [1]) with that of genetic an-
nealing algorithm (Eq. (2.9)) and we can find that
substantially genetic annealing algerithm is a special
form of simulated annealing algorithm. According to the
convergency theorem of simulated annealing algorithm,

Z € N2), (2.10)

the convergence of genetic annealing algorithm is ana-
lyzed as follows:

Theorem 2.1 Consider ({0,1}%, f) as an example
of combined optimization problem. And we suppose N is
the neighborhood region in {0, 1}* defined by Algorithm
2.1 and define the corresponding transition probability
based on Eq.(2.9) . If control parameter sequence | ¢ |
meets:

d+r)-A ,
t"zln(k+k0)’k_0’l’ ’

where kg is a constant larger than 2.

A= max {}| F(Z')-F(Z)I},
ze o) ¥
ZeEMNZ)
r = min { max {dgli,
zeoal™Yw  repn i

where dzz is the minimum transformation number trans-
formed from Z to Z’ according to the neighborhood rela-
tionship.
Unin =1Z € 10,1V | F(Z) < F(Z'),
VYZ € N(2Z)I.
Thus the Markov corresponding to genetic annealing al-
gorithm converges to vector ¢ * , whose component is:
1
gt = { IS l’
0, Z ¢ Ugy,s

Z € Ups

where


http://www.cqvip.com

No.3 Genetic Annealing Algorithm and Its Convergence Analysis 379

Ue = {Zo € 10,115V | F(Zo) = F(Z),
v Z € {0,1} 2N}, (2.11)

Proof Prove the theorem in the following three
steps:
a) First prove:

vZ,Z' € 0,1}V, 3d € z*,
370,21, ,Z4 € 10,1} 1%V,

Zo=2, 2y =12,

such that GZ:.ZM >0, k=0,1,--,d - 1.

Let Z be the present group, select S and S;(j 5 1) as
pollen suppliers and let hybridization string equal 0, then
new individuals g, = S,,g; = S; are produced through
hybridization operators. Maintain the same bits of g, and
S{ by using mutation operator and negate the contrary
bits to get m,. Maintain every bit of g; unchanged and
then m; = §1, m; = S;. Substitute m,, m; for S, S; and
then we have the new group Z; = {S{,S,,"", Sy).

Consider Z, as the present group. Produce the new
group Z, = {S{,54,53,"*Sx), based on the similar
method. By analogy we may have Z; 24"+, until Zy =
{181,83,,8v) = Z'.

Let Zog = Z,d = N, construct group series { Zg, Z1,
-+, Z4}, and from Egs. (2.1), (2.2) we have:
_p 1
I - Pk+1 2L
Ptln(kn)(l _ Pm)ZL—H(k+1) > 0,
k=0,1,-,d-1,

Gz,,z,"l = Pk+1

where j =« k + 1,P, is mutation probability, and.

H(k + 1) is the Hamming distance between S;,, and
Sk
b) Then prove
VZ,Z' €1{0,1}5N, Gz = Gyz.

Let Z = (S,,S5,",8x), 2 = (S{,S84,-,SH).
Consider Z as the present group, sclect S; and S; in Z as
pollen suppliers and let hybridization control string S, =
C. New individuals g; and g; are produced through muta-
tion operator and m;, m; are obtained by negating some
bits of g;, g; (or maintain all unchanged) through muta-
tion operator. Suppose new group Z’ can be produced
when substituting m;, m; for S;, ;.

Now suppose Z’ to be the present group. Select S;

and S; as pollen suppliers (i, as above). Still maintain

hybridization control string S, = C. Produce new indi-
viduals g} and g} through hybridization operator. Based

on mutation operator, according to the position of nega-
tiving g; and g;, negative g and g} of the corresponding
bits and we may get m{ = S;,m; = §;. Substitute m;,
m; for S{, S} and then the group Z is produced. There-

fore we have

Gzz = Gzz»
similarly

Gzz < Gzz s
so we have

Gz = Gpy.

c) Finally prove that: in the group Z,, € U,,, there
must exist the optimal individual S, € {0,1}%, that is
f(Se) = f(s), Vs € 10,1}F,

Using disproof: Suppose Zg, = (S1,5,,7*,Sn) €
Ugpus Ugp based on Eq. (2.11). Then

) = f(s), ¥s €10,1}%, £ = 1,2, N,
Suppose

Is,3s € {0,1}5, f(s) < f(s).
Replace S; of Z, with §’ to form the group Z’ and from
the above equation we have

F(Z.) - F(Z') = p[f(s) - f(s")] <0,
50 F(Z,) < F(Z'),
and Zow ¢ Ugy-

It can be seen that this contradicts Z,, € Ugy. So the
assumption is false and we have

f(s) = f(s), ¥vs € 10,145, k = 1,2,---, N.

According to the convergence theorem of simulated
annealing algorithm, Theorem 2.1 is thus proved.

3 Simulation example
Problem Solve the maximum value of the function
Fx1, 20,23, 54) =
(x2-21) (23— 22) (24— 23) (1 -%4) (3.1)
in the interval [0,1]°.

Choose this model as the example in this paper be-
cause the above function has several maximum solutions .
First encode the solution space. Take 256 discrete spots
uniformly in [0,1] and make them correspondent to 8-
bit binary numbers 00-FF in proper order. Similarly, es-
tablish coding mapping C: (0,1]* — {0,1}®, and en-
code some discrete spots in definition area [0, 1] as 32-
bit binary string with every 8 bits correspondent to one
variable, then use genetic annealing algorithm to solve:

max{f{ C"'(s)] | s € 10,1}%}.

According to the algorithm of [1], enter superindi-
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vidual ., in the group. Sp.x is not concemed with any
operation of all sorts of operators and is only used to
record the optimal individuals of the current generation
and all previous generations. In the given algorithm the
size of the group N = 50, mutation probability P,, = 0.
001 and control parameter ¢ = 0.5 x 0.95 are given.
The simulation results are shown in both Table 1 and
Fig.1.

Table 1 Simulation results of genetic
annealing algorithm
generation & 0 9 18 35 S5 91 106
AC (Gsue)] 0.39 0.53 0.75 0.90 0.91 0.93 0.98
=1
g
kY
~
I T A o L) T k
0 30 60 90 120 150
(a)
50
Nz
L} L) T L] L} k
0 30 60 90 120 150
(b)
Fig. 1 Simulation results of genetic annealing algorithm

In Fig.1(a) horizontal axis denotes generation & and
vertical axis represents the objective function value the
superindividual § ¢ corresponds to the kth generation of
group. Table 1 is the numerical description of Fig. 1
(a). In Fig.1(b) horizontal axis denotes generation k
and vertical axis represents the mean Hamming distance
between individuals of the kth generation of group H :

Z_ ZH(S,',Sj)

I_i _ izlj=i+l

N(N-1)72
There is no clear boundary among generations because
genetic annealing algorithm produces two new individu-
als at a time to replace the two in the present group. For
the convenience of comparison with other algorithms,
every time increase k by N/2 (producing N new indi-
viduals) and we get the group known as the next genera-

tion of group. From the simulation results it can be seen
that high-quality solution is achieved in 150 generations
by this algorithm and the difference between group indi-

viduals can be maintained effectively. Besides, one im-
portant characteristic of this algorithm is that under the
condition of uncertain or variant objective function the
algorithm is still able to ensure high convergence speed
and keep the difference between group individuals. For
example, suppose the preceding 100 generations retain
the objective function (3.1) unchanged. After 100 gen-
erations the objective function changes into
f(xl,xg,x3,x4) = x% . x% . x% . x%.

The above simulation parameters are still used and

simulation results are shown in Fig.2 as follows.

039

f[c'l Smax)]

k

0 40 80 120 160 200
Fig. 2 Simulation results of variable objective function

4 Conclusions

The genetic annealing algorithm presented in this pa-
per organically combines genetic algorithm with simulat-
ed algorithm. Simulation results illustrate that the algo-
rithm preserves the characteristics of quick solution
search in the genetic algorithm and at the same time
solve its group degeneration problem. This algorithmn is
suitable for not only general combined optimization
problems but also the cases with uncertain and variant
objective functions.
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