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Abstract: Based on the wavelet frame theory, a novel wavelet network for function learning in multidimensional spaces is
proposed to avoid the * curse of dimensionality’ . The main feature of the proposed wavelet network is to multiply the reconstruc-
tion of each dimension in the output layer instead of adding them as usual. Thus a multidimensional wavelet frame will be gener-
ated automatically for approximation, and function learning can be realized through online or off-line adjustment of correspond-
ing weight coefficients. Design methods for one-dimensional wavelet networks can also be generalized straightforwardly to multi-

well .

dimensional cases by using the tensor product structure. In the experiments, the multidimensional wavelet network performs
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1 Introduction

The wavelet transform, as a tool for signal analysis,

was first proposed by J. Morlet in [1]. It soon emerged
as a means of representing a function in a manner which
readily reveals properties of the function in localized re-
gions of the joint time-frequency space. Spatio-spectral
properties of the wavelet transform provide a useful theo-
retical framework to investigate the structure of net-
works'?), Thus the reconstruction of a function can be
realized through linear combination of members of a pre-
selected wavelet base or frame and weight coefficients of
the combination can also be learned through computa-
tional architectures similar to neural networks. The idea
of using wavelets in networks was first proposed by
Q. Zhang and A. Benveniste!* and Y. C. Pati and P.

S. Krishnaprasad*!. A systematic synthesis procedure

Received date:2001 — 05 - 11; Revised dete:2002 - 01 - 28.

for structural design of wavelet networks was also pre-
sented in their papers. However, those papersts:S! fo-
cused on one-dimensional wavelet networks. The reason
for it is that the implementation of wavelet networks of
higher dimensions is of prohibitive cost if the same
structure as in one-dimensional cases is used. For exam-
ple, when single-scaling wavelets are used in separable
form, as many as 2" - 1 mother wavelets are required,
where n is the dimension of the wavelets!”). Further-
more, it is hard to determine the lattice and number of
dilation or translation parameters of multidimensional
wavelet functions to suffice for generating a frame of
L,(R"). Finally, the number of weight coefficients
needed to adjust will increase sharply as to higher di-
mensions and thus the processes of leaming will be too
slow for practical applications. The problem incurred in
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multidimensional cases is also referred to as ‘ curse of di-
mensionality’ .

In this paper we propose a novel multidimensional
wavelet network structure for function leaming on the
basis of the wavelet frame theorym. The main idea of
the proposed wavelet network is to multiply the recon-
struction of each dimension in the output layer instead of
adding them as uswal. Thus a multidimensional wavelet
frame can be generated automatically for approaching
functions of interest. Design methods for one-dimen-
sional wavelet networks are then generalized straightfor-

wardly to multidimensional cases by using the tensor

product structure. Leaming algorithms for the multidi-
mensional wavelet network and experimental results are
given also.

2 Structural design

We will discuss systematic synthesis procedures for
wavelet networks in this section. First, we briefly re-
view the design methods for one-dimensional wavelet
networks as analyzed in [3,4]. Then we generalize
them to multidimensional cases by using the tensor prod-
uct structure.

2.1 One-dimensional case

At first, Theorem 2.1 provides elementary insight for
systematic design methods of one-dimensional wavelet
networks . Its proof can be found in [9].

Theorem 1 Give a function f € L*(R), which is
mainly concentrated in [ - 7, 7] in time and whose
Fourier transform f is concentrated mostly between the
frequencies {2, and {2, namely, the signal f is essential-
ly concentrated in the set[- 7, T] x ([ - 2, - 20] U
[£20,92,]). Suppose that integral dilations and transla-
tions of the mother wavelet ¢(x)

Pm(x) = ag™?p(ag™x - nbo) (1)
constitute a frame, with frame bounds A, B, and dual
frame (@,.,) ~. Assume that

Lo(y) 1< CLy 1F(1 4 y2)~(a®2  (3)
where C,8 > 0,a > 1, and that, for some ¥ > 1/2

fdx(1 + 297 1 p(x) 12 < . (3)

Fix T > 0,0 < 0 < £2,. Then, for any ¢ > 0, there
exists a finite subset B.( T,0,,2;) of Z* such that, for
all f € L2(R),

lF- X

(m.n)GB‘(T.Dl.ﬂz)
(B/)VA (1=Qp)f || + | (1=Pa +Pa f Il +e 1 £ 11,
(4)
where (27f )(2) = yi-r.i1(£)f(£),(Paf ) (w) =
x[_,,,,,](w)f'(w) , and y; denotes the indicator function
of the interval /.

The theorem above demonstrates that any square inte-
gral function can be spanned by finite wavelet functions.
Furthenmore, it turned out to be essentially right that on-
ly those phase space lattice points, which were lying
within the area [ - T,T] x ([ - 2,, - 2¢] U [ 2o,
02,]), would suffice to approximately reconstruct f. So

(Pma) ™ {pms ) I <

in practice, assuming that the time center and the fre-
quency center of the selected mother wavelet ¢ (x ) are O
and 1, respectively, then the set B, includes all pairs of
(m,n) for which Qg < ag™ < 2, and | afnbyl< T
if time-frequency focus areas of one dimensional func-
tions can be estimated conveniently through the time-fre-
quency analysis of observed data. Thus we can pre-de-
termine the number and the concrete values of wavelet
functions needed for approximating f, namely, the nodes
or activation functions of wavelet networks can be deter-
mined definitely. On the other hand, the weight coeffi-
cients of the reconstruction can be learned through the
computing structure shown in Fig. 1. Efficient algo-
rithms of gradient-descent type can be adopted for leamn-
ing because of the linearity of the networks.

Fig.1 One-dimensional wavelet networks

2.2 Multidimensional case

The synthesis methods in 2.1 encountered great chal-
lenge when applied directly to approximation of multdi-
mensional functions. No matter what type of multdi-
mensional wavelets is used, the number of multidimen-
sional wavelet functions as well as the number of weight
cocfficients will increase sharply as to higher dimensions
if the same structure in one-dimensional wavelet net-
works is used. Furthermore, because the estimation of
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spectral concentration of signals in high dimensions is
computationally expensive, it becomes rather difficult to
select the concrete lattice of those functions to cover the
time-frequency domains of multidimensional functions of
interest. There exist some cases that it is impossible or
difficult to estimate the spectral concentration of signals,
thus it is hard or unsuitable to pre-determine the dilation
and translation parameters of wavelet functions acting as
nodes of networks under such circumstances. Then dila-
tion and translation parameters of multidimensional
wavelet functions can be designed to be adjustable for

determining their optimal values through another type of

wavelet networks structure!®! by error back-propagation
type algorithm. But this will incorporate much more ad-
ditional parameters to be leamed and exacerbate the
‘curse of dimensionality’ . In order to provide more in-
sight into the novel multidimensional wavelet network
structure proposed below, a lemmal®! is described in the
following .

Lemmal Let% € L*(R"). Fora € R,a > 1,5
= (by,**»b,) € R*and b; > 0,i = 1,***, n, define
the dilation and translation matrices D; and T as D; =
diag( @i, - ah), wherej = (G, ", ju )T € 2", and T
= diag(b;,**",b,), consider the family of translated
and dilated functions of the form

1
V(a,b) =19 ,(x) =detD?W(D;x-Tk):j .k € Z'},

(5)
if
m(¥,a)a essinf D) | ¥(D_jw 1> >0, (6)
la,€[1,a]
£ j€z"
m(¥,a)a esssup >, | (D jwl*< =, (7)
lw. |€[1.a]
g jez
and
sup[(l + 7]'r7])n(1+e)fzﬁ(77)] =C < » (8)
2€R"
for some ¢ > O, where
B(7) A

p 21 ¥(Dw) i1 (D jwsn) I

| G[lSl']l
w .al].i=1,,n
' ) €z

(9)

Then there exists by > O such that b, € (0, by),i = 1,
=+, n, the family defined above constitutes a frame for
L*(R"); i.e., Jtwo constants A > Oand B < ®,
such that \/ £ € L*(R") the following inequalities hold

Alflts 2(FaN1P< BIFI2 (10)

In practice, we are interested in a methodology that
allows us to construct the multidimensional wavelet func-
tions leading to frames, i.e., to find a mother wavelet
function that satisfies, together with its dilation and
translation parameters, sufficient conditions outlined in
the above lemma. In the following, we discuss a tensor
product construction of multiscaling wavelet frames.

Let ¥(x) be a tensor product of 1 — D wavelet func-
tions, i.e.,

V(X)) = () ¥, (x,), (11)
then
V(w) = T (w) ¥ (w,). (12)
¥(x;),i = 1,",n, must satisfy the admissibility
condition
5 2
I ‘F‘Ea;l) II dew; (13)

under mild conditions of decay, this is satisfied if we
choose ¥;( x;) such that

(14)

If these 1 — D functions can constitute frames, they
must satisfy the first two conditions outlined in Lemma 1.
These conditions are known to be necessary conditions as

[ wiaax = 0.

well in 1 — D). The assumption made on mild decay
conditions ensures that the second and third conditions
are satisfied, and hence all conditions of Lemma 1 when
reduced to 1 — D are satisfied.

In the multidimensional case, by using the inequalities
in 1 - D above, and the fact that the infimum and
supremum can now be taken over by the sum in each di-

mension, we have

m(¥,a) =
|m|eﬁss]i-nfn {EI‘P’l(a‘j:wlIz"'EI@‘n(a'jnwnlzf >0,
i yval,iz=l,,n jl jn
(15)
M(¥,a) =
T (ANE {Enpl(a"-'wl|2"'E|‘j’n(a'j"wn|2f <.
i valii=lcn jl 7

(16)
The third condition is to verify the convergence of the
multi-indexed series!®’

> [BCnT'k)B(- 2nT-'k)]%.

1 k| 0

(17)
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We have the following inequality
SB2aT ' k)B(- 22T k)] <

tht0

(lte) (+¢)
ST+C@rbi k)T 2 25 (1+2rbi BT 2 <
kl k

D0 1 2mbithy 1704 30 1 2wk, 1700
k

k" .

(18)

Since each sum over k; converges, i = 1,***, n, the
sum involving 3 converges. Moreover, as b; >~ 0,i =
1,-*-,n, this sum tends to 0. Hence all conditions of
Lemma 1 are satisfied. Therefore the tensor product of
the reconstruction of each dimension leads to valid
wavelet frames of multidimensional spaces. Having this
in mind, we propose the novel multidimensional wavelet
network as illustrated in Fig. 2. Its.construction lies in
two steps: first, similar structures to Fig.1 are designed
for every input using the same method in 2.1, namely,
dilation and translation parameters of (m,n) are pre-se-
lected to cover the whole spatio-spectral domain of each
dimension when the spectral concentration for each di-
mension can be estimated without much difficulty. Oth-
erwise, dilation and translation parameters of each di-
mension should be designed to be adjustable by using the
structure proposed by Q. Zhang. Second, the recon-
structions of each dimension are multiplied in the output
layer to generate frames for multidimensional spaces au-
tomatically according to Lemma 1. Assume that there
are N; pre-sclected wavelet functions for the ith input,
where i = 1,-+*, d, the novel structure will generate as

d
many as H N; multidimensional wavelet functions to

i=1

cover the whole input space autonomously through such

Fig.2 Multidimensional wavelet networks

d
a tensor product. Weight coefficients as little as Z N;

i=1

d
need to be adjusted instead of || N; as usual. Thus the

i=1

number of parameters needed to adjust is greatly de-
creased and the process of leaming will be accelerated so
as to avoid the ‘curse of dimensionality’ .
3 Learning algorithms

In this section the leaming is based on a sample of
random input/output pairs { X, F(X)}|, where X is the
input vector and f( X) is the function to be approximat-
ed. For the sake of brevity, we assume that dilation and
translation parameters of each dimension can be pre-de-
termined and only weight coefficients in Fig.2 need to
be leamned. The assumption will not lose generality be-
cause algorithms discussed below can be extended direct-
ly to the cases where dilation and translation parameters
need to be adjustable for optimal values through error
backpropagation. We develop an online leaming algo-
rithm of gradient type, which is similar to the backpro-
pogation algorithm for usual peural networks. An off-
line leaming algorithm of nonlinear LSE type is also dis-
cussed. More precisely, in the sequel we are given a se-
quence of random pairs { X, Yg = f(X,)1, where X, ,
Y are the input and desired output vectors, respective-
ly. In this paper, we limit our research to single output
case, namely, Y is abbreviated to scalar yg. All the
results about single output cases can be generalized to
multi-output cases straightforwardly .

Based on Fig. 2, multidimensional wavelet network
approximant is expressed as follows

fx) = 11 20 2onghlza, (19

where ¢, (x4) = 27" 2p(ag™ x4 — nbo), X = [,
-+, xp]T is the input vector and D is the dimension, m,
n &€ Z.
3.1 Gradient algorithm

Collect all the parameters w;; in a vector W and write
yn to refer to the output of the network defined by (19).

The gradient algorithm is to minimize the following ob-
jective function

E(W) = 5 Ellya- wPl. (0

We prefer to implement an online stochastic gradient
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algorithm to recursively minimize the criterion (20) us-
ing input/output observations. This algorithm modifies
the parameter vector W after each measurerment (X, y4)
in the opposite direction of the gradient of the function

21)

The partial derivative of the function (21) with re-

e(W) = %[M - ym )2

gards to w,, is

de . d
= §D:r|n(xl) H
d=1.dyp

i
90),",,

n

E Ew;‘nngp;‘nn(xd)o
(22)
where i = 1,'-, D. Thus the iterative gradient-descent
procedure is
: . 3
Wi (k +1) = @by, (k) - 955
dw

mn

, (23)

where 7 is the leamning coefficient.
3.2 Nonlinear LSE algorithm

The error criterion that is generally used in the off-line
training of networks is the minimization of a sum of
square error functions'!”! . For the network (19) and af-
ter the presentation of S pairs of input and desired output
patterns, this function is

S

Es(W) = Z[n; - ym 2

We define F(W,) = [A(W), £, (W) ]T, where
Vfl(Wk)T

(24)

LWL = yas - ywn A = , and k is the

vA(W)T
iterative step. One of the Marquardt-Levenberg algo-
rithms for the optimization problem is as follows:

1) Set the original value of Wi,a > 0,8 > 1, ap-
proved error e > 0, compute Eg(W,),a; = ask = 1;

2) Seta: = a/f3, compute F(W,),A;;

3) Solve the equation (A} Ay +al)d, = —ALF(W,),
and get W,,, = W, + d;;

4) Compute F(W,,,), if F(W,,,) < F(W,), then
go to 6), orelse to 5);

5) K || AlF(W,) | < e, then stop the iteration and
get the solution W = W, ; or else, seta: = Sz and go
to 3);

6) I || A,F(W,) || < e, then stop the iteration and get
the solution W = W, ; or else, set k:= k+1 and go to 2).
4 Experimental results

The multdimensional wavelet network described in

Section 2.2 is tested in function learning, which is also
compared with the MLP and Q. Zhang’s wavelet net-
work. Experiments have been performed for learning a
two and three-dimensional function through an online
and off-line algorithm, respectively.

First, we select a two-dimensional and square integral
function in our off-line leaming, in particular, to ap-
sm(4x1 ) Y1 -

x1

proximate the function f(X) = (1 -

M) over the limited time domain [ = [ =2,0) U

%2
(0,2] x [ -2,0) U (0,2]. Obviously, the frequency
domain of the function is [ - 4,4] x [ —3,3] according
to its two-dimensional Fourier analysis. Thus we can de-
termine the dilation and translation parameters for each
dimension in advance by using the method described in
Section 2.1, thatis, for x; and x,, we get the same pa-
rameters, i.e., m € {-7,---,2} and n € {floor
(=2m*1)-.- ceil(2™*1)} for each value of m, where
floor and ceil mean to integrate toward — o and + o,
respectively. Now the computing structure of corre-
sponding multidimensional wavelet network in Fig.2 has
totally 104 weight coefficients to be learmed. We select
961 pairs of (X, y,) over [ for the off-line learning of
the function using the algorithm described in 3.2. Fig.3
illustrates the original form of f( X) over [ and its result-
ing approximation.

For the sake of comparability, another example is list-
ed through a similar three-dimensional function and
structure, which is f(X) = [1 - sin(4x;)/%,][1 -
sin(3%5) /%2 ][1 - sin(2x3) /%3] over the limited time
domain ¢ = [-2,0) U (0,2] x [-2,0) U (0,2] x
[-2,0) U (0,2]. The dilation and translation parame-
ters of 1 — D wavelet functions in the network are pre-
determined by using the method discussed above.
Table 1 shows the approximation results obtained by
three types of networks using online gradient-typed algo-
rithms with the same learning coefficient 7 = 0.01. The
networks are learned with 29791 random measurement
points over § and the results are tested on the last 4000
points to compute square errors . Although we can only
get a nonlinear-LSE-typed solution for the approxima-
tion, its resulting approximation is superior to the pro-
posed wavelet network and MILP without rotation matri-
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ces. That is because the product structure of our wavelet
network generates as many as 52 x 52 x 35 (i.e.,
94640) 3 — D wavelet functions for approximation in-
stead of 160 such 3 - D wavelet functions generated by
dilating and translating the mother wavelet function
o(X) = x1x2x3e'("f+’:”§)n in Q. Zhang’s wavelet
network .

§409]

-2-2
(a) Original function

-2-2
(b) Approximation result

Fig. 3 Approximation of the function
Fon=q- 28 G

5 Conclusions
In this paper, a product-structured wavelet network

for function learning in multidimensional spaces has been

)over /

proposed. The novel structure is inspired by the principle
of tensor product wavelet frames and is designed to avoid
the ‘curse of dimensionality’ . The basic idea is to mul-
tiply the reconstruction of each dimension in the output
layer instead of adding them as usual. The dilation and
translation parameters of each dimension can also be de-
signed to be adjustable through error backpropagation
when the spatio-spectral domain of each input is hard to

determine in advance. The multidimensional wavelet
network proposed can greatly decrease the number of
weight coefficients to be learned and shun the expensive
work of selecting the lattice of multidimensional wavelet
functions. The efficacy of such wavelet networks in
multidimensional function leaming is demonstrated
through theoretical analysis and experimental results. As
to the multidimensional wavelet network proposed, its
essence is to transfer the linear optimization problem of
an enormous number of parameters to the nonlinear opti-
mization problem of a small number of parameters.
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