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Abstract：Based oil the wavelet frame theory，a novel wa ve~t netwol'k forfunction learning in multidimensional spaces is 

propos~ to avoidthe‘curseofdimensionatity’．Themainfeamm oftheproposedwa veletnetworkisto multiplythe re~onstlMc— 

tion  ofeach din~nsion in the outputlayerinsteadof addingthem as usua1．Thus amultidimensional wavelet frame will be gener- 

ated autmmtieally for approximation．and fIⅡK：d0n learning can be realized through online or off-line adjustment of correspond- 

ing weight coefficients．Design methods for one-dimensional wavelet networks Call also be generalized straightforwardly to multi— 

dimensional cases by using the tensor product stl-tlCtllre．In the experiments，the multidimensional wavelet network performs 

wel1． 
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基于张量积结构的多维小波网络 

万 建 徐德民 贺昱曜 

(西北工业大学航海工程学院·西安，7l0072) 

摘要 ：针对多维函数逼近的‘维数灾 ’问题 ，依据小波框架理论提出了一种张量积结构小波网络 ，其主要特点是 

在网络输出层将各维输入的小波重构相乘 ，从而得到 自动覆盖函数输入空间的多维小波框架，最后通过权系数的 

在线或离线学习实现多维函数的小波逼近．理论分析和仿真结果证实了该结构设计方法应用于多维函数逼近时的 

有效性． 

关键词 ：小波框架 ；多维小波；张量积结构 ；函数逼近 

1 Introduction 

The wavelet transform，as a tool for signal analysis， 

was first prorxx~xl by J．Morlet in[1]．It soon emerged 

as a lneans of representing a function in a nlanner which 

readily reveals prDperties of the funcfon in localized re— 

gious of the joint time-frequency space．Spatio-spectral 

pmperfes of the wavelet transform provide a useful theo— 

retical framework to investigate the structure of net— 

works[2]
． Thus tl1e reC(H1s位lcd0n Of a 0n can be 

realized through linear combination of members of a pre— 

selected wavelet base or frame and weight coefficients of 

the combination can also be learned through computa- 

tional architectures similar to neural networks．The idea 

of using wavelets in netw orks was first proposed by 

Q．Zhang and A．Benveniste and Y．C．Pati and P． 

S．KrishnaprasadL 
． A systematic synthesis procedure 
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for structural design  of wavelet networks was also pre— 

sented in their papers．However，those papers[5．6]fo— 

cused on one—dimensional wavelet netw orks．Th e reason 

for it is that the implementation of wavelet netw orks of 

higher dimensions is of prohibitive cost if the same 

structure as in one—dimensional case~is used．Fbr exam— 

pie，when s．mgle—scaling wavelets are used in separable 

form ，as many as 2“一 1 mother wavelets are required， 

where几 is the dimensiOn Of the wavelets[71
． Fl】r山e卜 

mole，it is hard to determine the lattice and numbe r of 

dilation or Wanslation parameters of multidimensional 

wavelet functious to suffice for generating a flallle of 

2(R )．Finally，the number of weight coefficients 

needed to adjust will increase sharply as to higher di- 

mensions and thus the processes of learning will be  too 

slow for practical applications．Th e problem incurred in 
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multidimensional cases is also referred to as‘curse of di— 

mensionality’． 

In this paper we propose a novel multidimensional 

wavelet network structure for function leaming on the 

basis of the wavelet fTan3e theory[8I
． The main idea of 

the proposed wavelet network is to mul邱ly the recon— 

stmction of each dimension in the output layer instead of 

adding them as usua1．Thus a multidimensional wavelet 

flame can be generated automatically for approaching 

functions of interest．Design methods for one-dimen— 

sional wavelet networks ale then generalized straightfor— 

wardly to multidimensional cases by using the tensor 

product structure．1earning algorithms for the multidi— 

mensional wavelet network and experimental results ale 

given also ． 

2 Structural design 

We will discuss systematic synthesis procedures for 

wavelet networks in this section．First，we briefly re— 

view the design  methods for one-dimensional wavelet 

networks as analyzed in [3，4 J．Then we generalize 

them to multidimensional cases by using the tensor prod— 

uct structure． 

2．1 One．dimensional case 

At first，Th eorem 2．1 provides elementary insight for 

systematic design  methods of one-dimensional wavelet 

networks．Its proof can be found in[9]． 

Theorem 1 Give a functionf∈ L2(R)，which is 

mainly concentrated in 【一 ， J in time and whose 

Fourier transform f is concentrated mostly between the 

frequencies~20and力I，namely，the signalfis essential— 

ly concentrated in the set[一 ，T]x([一nl，一no]U 

[no，n1])．Suppose that integral dilations and transla- 

tions of the mother wavelet ( ) 

， ( )=a6 (Ⅱ —nbo) (1) 

constitute a flame，with f~ime boun ds A，B，an d dual 

f~ime( ) ．Assume that 

I (，，)I≤ C I Y l (1+y2)一( ， (2) 

where C， > 0，口 > 1，an d that，for some y > 1／2 

r 

I dx(1+x2) l ( )l <∞． (3) 

Fix T > O，0 < Oo< n1．Th en，for any e > 0，there 

exists a f'mite subset ( ，nl，n2)0f such that，for 

all，∈ ( )， 

厂一 ∑ (‰) ( ， ≤ 
‘m·n)∈ ‘rI l·02) 

(B／A) [11(I-Qr)fII+ll(，一尸n。+尸n +e llfl1]' 

(4) 

where(f2rf)(t)= [ r](￡) t)，(尸n厂) ( )： 

[-n,n]( ) )，and f denotes the indicator function 

of the interval I． 

Th e theorem above demonstrates that any square inte— 

gral function can be spanned by finite wavelet functions ． 

Fllrthennore ，it turned out to be  essentially right that on— 

ly those phase space lattice po ints，which were lying 

within the area[一 ，T]x([一nl，一no]U [no， 

nl J)，would suffice to approximately reconstructf．So 

in practice ，assuming that the time center an d the fre— 

quency center of the selected mother wavelet ( )ale 0 

and 1，respectively，then the set includes all pairs of 

(m，n)for which O0≤a6 ≤nl，and lⅡ孑nb0 l≤ T 

if time··frequency focus areas of one dimens ional func．． 

tions can be estimated conveniently through the time··fre·· 

quency analysis of observed data．Th us we can pre—de— 

termine the numbe r and the concrete values of wavelet 

functions neededfor approximatingf，namely，the nodes 

or activation functions of wavelet networks can be deter- 

mined definitely．On the other hand，the weight coeffi— 

cients of the reconstmction can be learned  through the 

computing structure shown in Fig． 1．Efficient algo— 

rithms of gradient-descent type can be  adopted for learn— 

ing because of the linearity of the netw orks． 

Fig．1 One—dimensional wavelet networks 

2．2 M ul廿dimensional~ase 

The synthesis methods in 2．1 encoun tered great chal— 

lenge when applied  directly to appmximafion of multidi— 

mensional functions ．No matter what type of multidi— 

mensional wavelets is used，the number of multidimen— 

sional wavelet functions as well as the num ber of weight 

coeffi cients will increase sharply as to higher dimensions 

if the same structure in one—dimensional wavelet net— 

worKs is used．Furtherlnore，because the estimation of 
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spectral concentration of signals in hi曲 dimensions is 

computationally expensive，it becomes rather difficult to 

select the concrete lattice of those functions to cover the 

time-frequency domains of multidimensional functions of 

interest．There exist some cases that it is impossible or 

difficult to estimate the spectral concentration of signals， 

thus it is hard or unsuitable to pre—determine the dilation 

and translation parameters of wavelet functions acting as 

nodes of networks under such circumstances．Then dila— 

tion and translation parameters of multidimensional 

wavelet functions can be designed to be adjustable for 

determining their optimal values through another type of 

wavelet netw orks structure[3]by error back-propagation 

type algofithrn．But this will incorpo rate much more ad — 

ditional parameters to be learned an d exacerbate the 

‘

curse of dimensionality’．In order to provide more in— 

sight into the novel multidimensional wavelet netw ork 

structure proposed be low．a lemma[8]is described in the 

following． 

LeaitaiiH I Let 1 ∈L2(R )．For a∈R，0>I，b 

= (bl，⋯，b )∈ and b >0，i=I，⋯，n，define 

the dilation and translation man'ices Dj and T as Dj= 

diag( t，⋯ )，wherej=( l，⋯， )T∈Z ，and T 

= diag(bl，⋯，b )，consider the family of translated 

and dilated functions of the form 

l 

(口，6)={ ．̂( )=detD]Xr~'(Dix—Tk)：j，k∈z }， 

(5) 

jf 

m( ，a)△ 

m( ，a)△ 

(D—j I >0， (6) 

(D—j I < ∞， (7) 

and 

sup [(1+ T ) ‘ 。) ／3( )] 
口∈墟JI 。 。 。 

f0r some e > 0．where 

卢(叩)垒 

印  ．．． 善。 (D_ioo)I．I ‘ ∈ ‘ 

All刘 ≤∑I( 1 2≤B ll f ll 2．(1o) 
．上 

In practice ，we are interested in a method ology that 

allows ns to construct the multidimensional wavelet func— 

tions leading to frames，i．e．，to fin d a mother wavelet 

function that satisfies ． together with its dilation and 

translation parameters，sufficient conditions outlined in 

the above lenmm．In the following，we discuss a tensor 

product co nstruction of multiscaling wavelet frd／nes ． 

Let ( )be a tensor product of 1一D wavelet func— 

tions，i．e．， 

( )= l( 1)⋯ (Xn)， (11) 

then 

( )= l( 1)⋯ ( )． (12) 

( )，i= 1，⋯，1／,，must satisfy the admissibility 

condition 

f <∞ ) J I f I 、一 
un der mild conditions of decay． this is satisfied if we 

choose’ ( )such that 

l ( f)d f=0． (14) 

If these 1一 D functions can co nstitute frames，they 

must satisfy the first two conditions outlined  in Le mma 1． 

Th ese co nditions are known to be  necessary conditions as 

well in 1一 D[ 
． Th e assumption made on mild decay 

conditions ensures that the second and third conditions 

are satisfied ，an d hence all conditions of Lemma 1 when 

reduced to 1一D are satisfied． 

In the multidimensional case．by using the inequalities 

in 1一 D above， and the fact that the infirnuin and 

supremum can now be  taken over by the sum in each di— 

mension，we have 

m( ，a)= 

= c￡<∞ (8) 
∈
离 。⋯， { 

11 

I ．、a-JlW112．．．

L 

I (口一 nI }>0， 

(15) 

(D—j + )I． 

．(9) 

Then there exists b0>0 such that bf∈(0，b0)，i=1， 
⋯

，1／,，the family defined abe ve co nstitutes a flame for 

( )；i．e．， two constants A >0 and B < ∞， 

such that Vf∈ L2(蕊 )the following inequalities hold 

M( ，a)= 

] ．⋯． 
(a-Jtw1 12．．．

L 

I (口 }<∞· 

(16) 

Th e third condition is to verify the co nvergen ce of the 

multi—indexed series[9] 

∑[／3(27c ～k)／3(一27c 一 后) 1 (17) 
上l-‘O 

∑ ∑ 

f D 叭 
S∈ ；∈ 罂 器 
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W e have the following inequality 

∑[fl(2nT一 )卢(一2nT )] ≤ 
I l O 

∑(1+(2nb~l )一 ⋯∑(1+(2~bi- )一 ≤ 
1 

∑ I 27c6 kl +e)⋯∑ I 27c6 k +“． 
． 

(18) 

Since each SUlTI over ki converges，i = 1，⋯ ，n，the 

sunl involving卢converges．Moreover，as bi 0，i= 

1，⋯ ，n，this sum tends to 0．Hence all conditions of 

I．emma 1 are satisfied．Therefore the tensor product of 

the reconstruction of each dimension leads to valid 

wavelet frames of multidimensional spaces．Having this 

in mind，we propose the novel multidimensional wavelet 

network as illustrated in Fig．2．Its．construction lies in 

tw o steps：first，similar structures to Fig．1 are designed 

for every input using the same method in 2．1，namely， 

dilation and translation parameters of(／7-／,，n)ale pre·se· 

lected to cover the whole spatio-spectral domain of each 

dimension when the spectral co ncentration for each di· 

mension Call be estimated without much difficulty．Oth— 

el'wise，dilation and translation parameters of each di· 

mension should be designed to be adjustable by using the 

structure proposed by Q．Zhang．Second，the recx)n— 

stmctions of each dimension ale multiplied in the output 

layer to generate flames for multidimensional spaces all— 

tomatically according to Lemma 1．Assume that there 

are Ni pre-selected wavelet functions for the f吐l input， 

where i= 1，⋯ ，d，the novel structure will generate as 

d 

many asⅡN multidimensional wavelet functions to 
i=1 

cover the whole input space autonomously through such 

Fig．2 Multidimensional wavelet networks 

a t~lsor product．W eight coefficients as little as 
I= 1 

d 

need to be adjusted instead of 1-[N as usua1．Thus the 
= 1 

number of parameters needed to adjust is greatly de· 

ereased and the process of learning wi ll be  accelerated so 

as to avoid the‘clLrse of dimensionality’． 

3 1．e．am ing algorithms 

In this section the learning is based on a sam ple of 

random input／output pairs{X，F(X)}，where X is the 

input vector andf(X)is the function to be appmximat— 

ed ．For the sake of brevity，we assuiile that dilation and 

translation parameters of each dimension Call be  pre··de。。 

termined and only weight coefficients in Fig．2 need to 

be learned ．Th e assumption will not lose generality be· 

cause algorithms discussed be low can be  extended  direct— 

ly to the cases where dilation and translation parameters 

need to be adjustable for optimal values through error 

backpmpagation．W e develop an  online leaming algo— 

rithm of gradient type，which is similar to the backpm。 

pogation algorithm for usual neural netw orks．An off- 

line leaming algorithm of nonlinear LSE type is also dis。 

cussed．More precisely，in the sequel we ale given a se。 

quence of random pairs{Xk， = Xk)}，where Xk， 

ale the input and desired output v~tors，respective。 

ly．In this paper，we limit our research to single output 

case，namely， is abbreviated to scalar m ． the 

results about single output cases Call be generalized to 

multi·output cases straightforwardly． 

Based on Fig．2，multidimensional wavelet netw ork 

appmximant is expressed as follows 

D 

fN(x)：1-I∑∑∞ d 3 ( )， (19) 
d=1 ，n 

Where ( d)=2-m／'2 (n d—n60)，X =[ l， 

⋯

， D]T is the input vector and D is the dimension，／71,， 

n∈ ． 

3．1 Gradient algorithm 

CoUect all the parameters wO．in a vector W an d write 

yN to refer to the output ofthe network defined by(19)． 

Th e gradien t algorithm is to minimize the following ob· 

jective function 

E( )= 1 E{[ 一”] }． (20) 

W e prefer to implemen t an online stochastic gradien t 
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algorithm to recursively minimize the criterion(20)us- 

ing input／output observations．This algorithm modifies 

the parameter vector W after each measurement( ， ) 

in the opposite direction of the gradient of the function 

e(W)= [Y 一Ynh] ． (21) 

The partial derivative of the function(21)with re— 

gards to is 

3w i 
n

=  n( 
： 。 

m

d 
m

d 

n( )， 

(22) 

where i= 1，⋯ ，D．Thus the itemtive gradient-descent 

procedure is 

n(Ij}+1)= n(Ij})一 最，(23) 
where叩is the learning coefficient． 

3．2 Nonlinear LSE algorithm 

Th e error criterion that is generally used in the off-line 

training of networks is the minimization of a SHIn of 

square error functions[ 。。
． For the network(19)and af- 

ter the presentation of S pairs of input and desired output 

pa~ems，this function is 

毋( )：∑[yd 一 ] ． (24) 

We defme F( )= ( )，⋯， ( )]T，where 

c ，=y 一yM，A=[ ● ： is me 
itemtive step．One of the Marquardt-Levenberg 

rithms for the optimization problem is as follows： 

Section 2．2 is tested in function learning，which is also 

compared with the MLP and Q．Zhang’s wavelet net- 

work．Experiments have been performed for learning a 

tw o and three-dimensional function through an online 

and off-line algorithm，respectively． 

First，we select a tw o-dimensional and square integral 

function in our off-line learning，in particular，to ap— 

p te me don／( )：(1一 )(1一 

)over n1e蜥 ted dom z：[一2，0)U 
x2 

(0，2]×[一2，0)t_J(0，2]．Obviously，the frequency 

domain of the function is[一4，4]×[一3，3]according 

to its two-dimensional Fo urier analysis．Thus we can de— 

termine the dilation an d translation parameters for each 

dimension in advan ce by using the method described in 

Section 2．1，that is，for Xl and x2，we get the salTle pa- 

rameters，i．e．，m ∈ {一7，⋯，2}and n∈ {floor 

(一2 )⋯，ceil(2 )}for each value of，礼，where 

floor and ceil mean to integrate toward 一 ∞ and + ∞ ． 

respectively． Now the computing structure of corre— 

spo nding multidimensional wavelet network in Fig．2 has 

totally 104 weight coefficients to be learned．We select 

961 pairs of(X，)，d)over l for me off-line leaming of 

the function using the algorithm described in 3．2．Fig．3 

illustrates the original form of X)over l and its result— 

ing approximation． 

Fo r the sake of comparability，another example is list— 

algo- ed through a similar three-dimensional function and 

1)Set the original value of 1，口 > 0， > 1，ap— 

proved error e>0，compute Es(WI)，o,1=口 k=1； 

2)Set口：=口／ ，compute F( )，Ak； 

3)Solve the equation(A][A +aI)d =一ATF(Wk)， 

and get +1= + dk； 

4)Compute F(Wk+1)，if F(Wk+1)<F(Wk)，then 

go to 6)，or else to 5)； 

5)If lI A F( )lI≤ e，then stop the iteration and 

get the solution W = 既 ；or else，set口：= and go 

to 3)； 

6)If lI A ( )lI≤e，then stop the iteration and get 

the solution W= ；or else，set k：=k+1 and go to 2)． 

4 Experimental results 

Th e multidimensional wavelet netw ork described in 

structure，which is f(X)=[1一sin(4x1)／x1][1一 

sin(3x2)Ix2][1一sin(2x3)Ix3]over the limited time 

domain =[一2，0)t_J(0，2]×[一2，0)t_J(0，2]× 

[一2，0)t_J(0，2]．The dilation and translation parame． 

ters of 1——D wavelet functions in the netw ork are pre- 

determined by using the method  discussed above． 

Table 1 shows the approximation results obtained by 

three types of networks using online gradient-typed algo- 

rithms wi th the sanqe learning coefficient = 0．01．The 

netw orks are learned with 29791 rando m measurement 

po ints over and the results are tested on the last 4000 

points to compute square errors ．Although we can only 

get a nonlinear-LSE-typed solution for the appmxima- 

tion，its resulting approximation is superior to the pm— 

po sed wavelet netw ork and MLP wi thout rotation matri． 
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ces．That is because the product structure of our wavelet 

network generates as many as 52×52×35(i．e．， 

94640)3一D wavelet functions for approximation in— 

stead of 160 such 3——D wavelet functions generated by 

dilating and translating the mother wavelet function 

(X)： 

netw ork． 

l 2 3e一( + 22+ ；)尼iIl Q
．
Zhang’s wavelet 

S 0 
＼  

一 5 

2 

堇。 

一 5 

2 

—

2—2 

(a) Original function 

2 

2 

—

2—2 

(b) Approximation result 

Fig．3 Approximation ofthe function 

)(1一 )over』 

5 Conclusions 

In this paper，a product—structured wavelet netw ork 

for function learning in multidimens ional spaces has been 

proposed。Th e novel structure is inspired by the principle 

of tensor product wavelet finales and is designed to avoid 

the ‘curse of dimensionality’
。 Th e basic idea is to mul— 

tiply the reconstmction of each dimension in the output 

layer instead of adding them as usual。Th e dilation an d 

translation parameters ofeach dimension can also be de— 

signed to be adjustable through error backpropagation 

when the spatio—spectral domain of each input is hard to 

determine in advance． le multidimensional wavelet 

netw ork proposed can greatly decrease the numbe r of 

wei曲t coefficients to be leamed and shun the expensive 

work of selecting the lattice of multidimens；ional wavelet 

functions ． le efficacy of such wavelet netw orks in 

multidimensional function learning is demonstrated 

through theoretical an alysis and expe rimental results． 

to the multidimensional wavelet network proposed，its 

essence is to transfer the linear optimization problem of 

an enormous num ber of parameters to the nonlinear opti— 

mization problem of a small num be r of parameters． 
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