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Abstract: The first flip bifurcation point of Buck-Boost converter has been studied in detail by using fixed point and sta-
bility theory. 3-D parameter space of stable region is given. Furthermore, the hardware of 20kHz current-mode controlled Buck-
Boost converter has been built and the experiment results verify the theoretical analysis which has been presented in our other pa-

pers.
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1 Introduction

The switched-mode DC-DC converters that have been
widely used in many industrial products may be thought
of as nonlinear and time-varying systems. Hence, DC-
DC converters exhibit a wide range of bifurcation and
chaos behavior under some conditions. In the first part
of the paper, i.e. modeling and simulation, we have
derived an iterative map for the Buck-Boost converter
under current-mode control. The bifurcation and chaos
phenomena have been deeply studied under variation of a
range of circuit parameters, such as input voltage, refer-
ence current, load resistance, inductor and capacitor.
And, the simulation results including the strange attrac-
tors, bifurcation diagrams and waveforms have been pre-
sented in detail. In this paper, the experimental evidence
is provided to verify the predicted phenomena. At the

same time, the onset of the first flip bifurcation point
can be exactly located by using fixed point and stability
theory, and 3-D parameter space of stable region is also
presented.

This paper 1s organized as follows. In Section 2, the
fundamental theories about fixed point and stability theo-
ry are presented. In Section 3, with the help of fixed
point and stability theories, the onset of the first period-
doubling bifurcation point is rigorously located. In Sec-
tion 4, the boundary equations and 3-D parameter space
are discussed. In Section 5, we present the experimental
system of the 20kHz current-mode controlled Buck-Boost
converter. The experimental results are shown in detail .
A conclusion is given in Section 6.

2 Fundamental theories
In this section, we present the fundamental theories of
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fixed point and stability theory.

Definition 2.1
R* — R"; x > G(x), there may be some special points
x, that satisfy the equation x, = G(x,). Such a point is
called a fixed point of the mapping.

Definition 2.2 Similarly, for n-dimensional map-
ping G, there may be a special vector x, that satisfies the
= G(x,). Such a vector is called a fixed
point of the n-dimensional mapping.

For one-dimensional mapping G :

equation x,

The fixed points have a very great influence on the’

behavior of the system. In particular, stable behavior is
cornected with an attracting fixed point, which by asso-
ciation is called a stable fixed point. This is a member of
the class of attractors, which also includes limit cycles
and the strange attractors of chaos. The stability of the
fixed points of the mapping determines the local stability
of the continuous-time system. An attracting fixed point
of the mapping corresponds to a stable periodic steady
state of the continuous-time system.

Definition 2.3 A flip (or period-doubling) bifur-
cation occurs when one of the eigenvalues of the Jacobian
matrix of the mapping at the fixed point equals to—1.

Stability Theorym A fixed point of a one-dimen-

sional mapping is stable if and only if the gradient of the

mapping at the fixed point lies between — 1 and 1,1.e.if

(39,

Similarly, a fixed point of an n-dimensional mapping is
stable if and only if its characteristic multipliers all lie
within the unit circle in the complex plane.
3 Numerical analysis of the first flip bi-
furcation point

From the simulation results, we know that when the
bifurcation parameter is varied, Buck-Boost converter
bifurcates to period-2 from period-1, bifurcates to peri-
od-4 from period-2, and then goes to chaos via period-
doubling route. Therefore, the analysis of first flip bi-

<1

furcation point is particularly important. In this section, -

the onset of the first period-doubling bifurcation point is

rigorously located. The boundary equations and 3-D pa-

rameter in Buck-Boost converter space are discussed with

the help of the numerical analysis.

3.1 The discrete model of Buck-Boost converter
The discrete model has been derived in the first part of

the paper. In our simulation study, the parameters of the

Buck-Boost converter satisfy the following relationship
because of the condition of practical circuit for maintain-
ing continuous inductor conduction mode and low output

ripple.
2
1-4EC 0, that is: R >+ /L W

Therefore the iterative mapping can be written as fol-

lows
ine1 = e*n[cicos(Be.) + cpsin(Be)) ],
vne1 =~ Le®[(cra+c,B)cos(Br) +  (2)
(cpa + ¢ B)sin(fBe))],
where
| 1 4ch L :
«=-3rc’ P=3RreN - =g U= i),
, L . Ll L .
t,=T-t,= T—'E—(I,ef—z,,) = T———E—f+i * .,
¢ = Iref,
H
) :_—,}9—(% tv, e R 4 et a) =
L. .L :
- % % v, e RC EUain Ly a).

In order to simplify the calculation, a substitution of
1 LTIy
kl_RC E sky = ,k3_ T - z is made.

Hence ¢, , ¢, , c; can be rewritten as:
= kZ(Iref" in)7 tr: = k3 + k2 * in:
¢y = — %(% cvp et U)o a).

The iterative mapping of the Buck-Boost converter can
be rewritten as follows.

lpy1 =

ea(k3+k2-in)[1mfcos(‘3(k3 4+ khy v ig)) +

__‘_é_(% ‘v, -e_kl(lld'_in)+1mf . a)sin(ﬂ(k3+k2'in))]’

Uns1 =
a(k+k21)E__ ‘y, - e k(] i cos(,B(k3+k2 . in))+
(*‘i L ‘v, -e_"l'(l-u"in)+a—iﬁ—2-1mf)sin(ﬁ(k3+k2- i)
(‘g L B
(3)
A matrix is usually used to represent the mapping:
[iﬂ+1] _ fl(iuavuaﬁp) (4)
Upn 41 - fZ(iu’vnaﬁp) ’

where ¢ is the bifurcation parameter. It can be the input
voltage E, reference current /.., resistor R, capacitor C
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and inductor L.
3.2 Calculation of the fixed point

For an n-dimensional system, a fixed point is a vec-
tor x* that satisfies the equation x* = F(x"). There-
fore, for a discrete model, a fixed point is the solution
that satisfies the equation x,,; = =x, when the steady
state is reached. For the Buck-Boost converter, the fixed
point z, is the solution of the following difference equa-
tions:
’e“("3+"z'i»)[1,efcos(ﬁ(k3 + kv

1l cv vkl )] 4

in)) +

-5
It » a)sin(B(ks+kyi,))]-i, =0,
1 Leatksthyi,) [%'v,, s et Ui cos(Blks+ kg - i) +
\%ﬁ-Imf)sin(ﬁ(k3+k2-i,.))]—v,, -0,
(5)

Obviously, equations in (5) are transcendental ones
and the analytical solution cannot be obtained, so they
can only be solved by numerical method, such as New-
ton-Raphson method. Here, the ‘fsolve’ in MATLAB
is used to solve the transcendental equations.

3.3 Derivation of Jacobian Matrix

If the mapping of the Buck-Boost converter is written
as (4), the Jacobian Matrix of the mapping at the fixed
point x, is expressed in the following.

3fi 9
J(x) = | 2 0 )
Xe = ’
fr 39
ain avn ek
a a a
where, each item in the matrix, i.e. ﬁ, i, ﬁ,
20, dv,’ Ji,
fr -
3y, CA be derived by (3) and (4).
a ok .
8—{: = —e“("3+"z"..){f-v,,-e"‘l'(’rd"n)cos(ﬂ(k3+k2'i,,))+ |
[ﬁ% sy, e kUi
2
“—%—-‘f  ky + Iog)sin(B(ks + ky = i)}, (7)
a . .
Q—{l - _ﬁ_lL'ea(kJ*kz"n)-e'kl'(’rd"n)sin(ﬁ( ks+kyeiy)),
(8)
a oy 2k k .
a—? = L-eflkitk, ‘n){[——gg# ‘v, ek U y-i) +

n

kz * (a2 + ﬁz) . Imf]cos(ﬁ(h + kz * lu)) +

[kz'(az—ﬁ2)+k1a.v
BL "

M;_z"'_ﬁz) * Iglsin(BCks + Ky = in)) 1,
(9)

a ) )
afz _ Lea(k3+k2-zn)[.% cem Ui v cos( B s+ kot in) )+

. e"‘l'(l.d‘ i) +

Lo kUai) + gin(B(ks + ky -

AL i»))].  (10)

3.4 Eigenvalues of Jacobian Matrix

It is well known that the eigenvalues of Jacabian Ma-
trix provides a useful method to evaluate the dynamics of
the systems. The eigenvalues can be obtained by solving
the following polynomial equations.

det(a7 - J(x.)] = 0, (11)
where J(x,) is the Jacobian Matrix which was found
previously. Here, we will mainly study the variation of
the eigenvalues as input voltage E and reference current
I ¢ are varied. If one of the eigenvalues equals to - 1,
the corresponding bifurcation value is the first period-
doubling bifurcation point when the bifurcation parameter
is changed .

Firstly, the loci of the eigenvalues are examined as the
input voltage E is changed. The set of circuit parameters
used is the same as in the simulation, i.e. I =4A,
R=20Q,L=0.5mH, C =4¢F, T = 50us(f = 20kHz) .
The calculation result is listed in Table 1 and the loci of
characteristic multipliers are illustrated in Fig.1

Table 1 The characteristic multipliers with £ as a bifur-
cation parameter (Pl refers to period-one)

E/V :j‘:d p(:} l:]/tv Eigenvalues: A;,A; Remarks

45  2.0288, 38.2242 -0.9663, 0.3579 Stable P1
44.5 2.0407, 38.1792 -0.9748, 0.3578 Stable P1

44  2.0527, 38.1330 -0.9835, 0.3577 Stable P1
43.9 2.0552, 38,1236 -0.9835, 0.3577 Stable P1
43.8 2.0576, 38.1141 -0.9870, 0.3577 Stable P1
43.7 2.0600, 38.1046 -0.9888, 0.3576 Stable P1
43.6 2.0625, 38.0950 -0.9906, 0.3576 Stable P1
43.5 2.0649, 38.0854 -0.9924, 0.3576 Stable P1
43.4 2.0673, 38.0757 -0.9942, 0.3576 Stable P1
43.3 2.0698, 38.0660 -0.9960, 0.3576 Stable P1
43.2 2.0722, 38.0562 -0.9978, 0.3575 Stable P1
43.1 2.0747, 38.0464 -0.9996, 0.3575 Stable P1
43.09 2.0750, 38.0454 -0.9998, 0.3575 Stable P1

Penod-

43.08 2.0752, 38.0444 -1.0000, 0.3575
doubling
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Fig.1 Loci of eigenvalues with E as the
bifurcation parameter

For large input voltage E ( greater than 43.08V),
both of the eigenvalues are located within unit circle in

Im(1)

the complex plane. As E decreases, one of the eigenval-
ues goes toward — 1. When £ =43.08V, one of the
eigenvalues equals to — 1, which implies the occurrence
of period-doubling bifurcation. It agrees with the simu-
lation result in the first part of the paper.

Secondly, the eigenvalues are used to predict the on-
set of flip bifurcation if reference current /. is changed.
Here the set of circuit parameters is also the same as in
the simulation, i.e. £ =12V, R =20Q, L =0.5mH,
C=4F,T=50ps (f=20kHz). Here, the detailed cal-
culation result and the loci of characteristic multipliers
are omitted.

It is found that at I = 1.1142A, one of the eigen-
values is equal to — 1, which implies the occurrence of
period-doubling bifurcation. It agrees with the simula-
tion result as shown in the first part of the paper.

4 Boundary equations and 3-D parameter
space

In a power converter, the most probably variable pa-
rameters are input voltage E, reference current and load
resistor R. The other parameters, such as inductor L,

capacitor C and switching frequency f, are generally

fixed at the designed state. Because some parameters are
fixed while the others are changeable, the different com-
binations of circuit values lead to bifurcation and chaos.
Therefore, it is particular important to study when the
first period-doubling bifurcation occurs under £, I,.; and
R parameter space.

Based on the previous analysis, it is clear that the so-
lution of the fixed point cannot be expressed as an ana-
lytical form since the fixed point of the Buck-Boost con-
verter is a set of transcendental equations. Therefore the

eigenvalues of Jacobian Matrix of the mapping at the
fixed point cannot be expressed as a formula, either.
The only way to study the first period-doubling bifurca-
tion is the numerical method.

The following study about the parameter space is
about the input voltage E as the bifurcation parameter.
Other fixed circuit parameters are listed as follows. L =
0.5mH, C =44F, f=20kHz.

4.1 Boundary equations at different loads

When R =202, 30(2,40Q) and the reference current is
varied in step. The first period-doubling bifurcation
point can be calculated via the method stated in Section
3. Hence a series of first flip bifurcation points can be
obtained under different reference currents /.. The cal-
culation result is listed in Table 2.

Table 2 The first flip bifurcation point

with various loads R

Reference E/V for first bifurcation point

current [/ A R=200 R=300 R=400Q
1 10.77 13.513 15.822
2 21.54 27.024 31.644
3 32.31 40,539 47 466
4 43.08 54.05 63.289
5 53.85 67.56 79.11
6 64.62 81.07 94.93
Boundary condi-
E>10.771 E>13.51151 E>15.82171
tion for stable
100
90 R=400Q2
80
> 70
2 60
E]
g 50
5 40
(=9
£ 30 ]
20 From period-2 to Chaos

0115 2 253 354 45 5 556

Reference current /A
Fig. 2 The parameter space with various loads

Based on the calculation results in Table 2, the
boundary conditions can be obtained through least square
method (IMS) as shown in Fig. 2. The Buck-Boost
converter works in the stable region if input voltage E
and reference current I, satisfy the following boundary
equation (12) when R =20Q).

E > 10.7714 (12)
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Contrarily, the Buck-Boost converter will go to chaos
via period-doubling route if input voltage E and refer-
ence current I, satisfy the following equation (13) .

E < 10.771 (13)

Similarly, other boundary equations under different
loads can be obtained. Here, we do not repeat the spe-
cific procedure.

4.2 3-D Parameter space

Plotting the first flip bifurcation points into a 3-dimen-
sional space, a 3-D parameter space can be obtained in
Fig.3.

100 -7

[nput voltage/V

0 20

Fig.3 3-D parameter space of Buck- Boost converter

Reference current/A Resistance/()

The surface means the boundary condition. It consists
of the first flip bifurcation points under different parame-
ters. Above the surface, the converter is in stable state.
Under the surface, the system will go to period-2, peri-
od-4, etc, then enter chaos via period-doubling route.

Therefore if enough bouﬁdary equations are obtained

in advance, with the help of the parameter space the
power electronics engineers can place the normal operat-
ing point far away from the boundary region to maintain
a desirable behavior. It is particularly meaningful to
power supply design.
5 Experimental system and experimental
results
Experimental system of the 20kHz Buck-
Boost converter
In order to verify the theoretical and simulation results

5.1

in the first part of the paper, the experimental circuit of
20kHz current-mode controlled Buck-Boost converter is
built and shown in Fig.4. In order to make the circuit
close to ideal state, we choose a tantalum type capacitor
C which is with low equivalent series resistance. To
avoid high frequency effect, the switching frequency is
chosen at 20kHz, which is the lowest frequency in prac-
tical power converter, though stated as the highest one in
several paperst! "% . Here, a power MOSFET and a fast
recovery diode are used. The winding resistance of in-
ductor L is about 0.5(), which is the greatest deviation
from the theoretical model because this value is assumed
to be zero in our theoretical analysis. The small resistor
that is connected to the positive port of LM339 works as
a current sensor of inductor L. It is used to detect the

peak current of L, so we can keep it in this position.

BYV95C
l
+15V +5V !
T ha o
7 14— ]8 [_6_ ? 16
12V~50V 2 7 oll 2
J 10 61 LMmsss |3 31
5
| MC14027
——  00luF] r:;o.on 3 4 5 -

Reset K
8

1KQ 10KQ 50KQ

Irf 820

Fig. 4 The experimental circuit of the 20kHz Buck-Boost converter

5.2 Experiment results

Our experiment is divided into three parts. They are
about I;, E, and R as bifurcation parameters respec-
tively. The following are the experimental results.

It can be seen that the experimental results have firmly
verified the theoretical analysis and simulation results in
the first part of the paper. Consequently, the model de-
veloped in the former paper is correct.
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Fig. 5 Period-1 waveforms and phase trajectory of Buck-Boost converter with /rer =1A
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Fig. 9 Phase trajectory of Buck-Boost converter with E as bifurcation parameter
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i/A i/A

(a) R=2Q,period-1 (b) R=3.8 Q, period-2
6 Conclusion

It is well known that the topologies of DC-DC con-
verters are changed due to the switching operation. This
results in a nonlinear time-varying system. Hence, DC-
DC converters exhibit a wide range of bifurcation and
chaos behavior under some conditions. In this paper, the
expertmental evidence is provided to verify the predicted
phenomena. At the same time, the onset of the first flip
bifurcation point can be exactly located by using fixed
point and stability theories. 3-D parameter space of sta-
ble region is also presented.

Based on the iterative map of Buck-Boost converter,
the fixed point and Jacobian Matrix J(x,) of the map-
ping at the fixed point is obtained. With the help of the
loci of eigenvalues of Jacobian Matrix, the first bifurca-
tion point of Buck-Boost converter is investigated in de-
tail. The theoretical analysis agrees with the numerical
simulation .

The research about the domains of bifurcation and
chaos in the parameter space is particularly important be-
cause the power electronics engineers must choose the
parameter values in order to obtain the desired behavior.
Moreover, the engineers will consciously avoid the bi-
furcation and chaos domains if they thoroughly under-
stand when the nonlinear phenomena occur. In this pa-
per, based on the numerical analysis, the parameter
space and boundary condition of stable region in Buck-
Boost converter are obtained.

Moreover, the hardware of the 20kHz current-mode
controlled Buck-Boost converter has been built. The ex-
perimental results have been presented to verify bifurca-
tion and chaos phenomena, which have been analyzed

10 Jl .

(d) R=12Q, chaos

Fig. 10 Phase trajectory of Buck-Boost converter with R as bifurcation parameter

(c) R=6 Q, period-4

and studied in detail in the first part of the paper. It is
stated that there is a great agreement between the theoret-
ical study and experimental results.
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