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Abstract: This paper deals with the general linear quadratic optimal control (LQOC) problem for periodically time-vary-
ing (PTV) linear systems, i.e. the LQOC when the state equation is non-homogenous and the quadratic functional criterion
contains linear terms. A series of necessary and sufficient conditions for the solvability of the LQOC problem are given, the op-
timal control is constructed and the optimal criterion value is given.
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1 Introduction

In recent decades, periodically time-varying linear
system has absorbed many researchers’ attention. Some
basic problems, including linear quadratic optimal con-
trol'", optimal filtering(?! etc., have been studied. In
this paper, we deal with the general linear quadratic op-
timal control (LQOC) problem, i.e. the LQOC when
the state equation is non-homogenous and the quadratic
functional criterion contains linear terms. A series of
necessary and sufficient conditions for the solvability of
the LQOC problem are given, the optimal control is
constructed and the optimal criterion value is given. The
obtained results are the generalization of those in [1].
2 General linear quadratic optimal con-

trol for PTV linear systems
Consider the following PTV linear system

dx _ A(t)x + B(t)u + f(t), x(0) = a, t =0

de ~

(1)
and quadratic functional criterion
[J0a] = [T PG 200, ),

JF(t,x,u) = F(e,x,u) + Fi(t,x,u),

F,(t,x,u) =‘%(x' G(t)x+2x" g()u+u” I (t)u),

LF(t,x,u) = 2 k() + u*d(e),

(2)
where x € R*,u € R™ are the state and control vari-
ables, respectively; matrix functions A(t), B(t), G(t)
= G*(t),g(t),I’(t) = I'* (t) have appropriate di-
mensions and their entries are real periodic with period 7
, bounded and measurable functions; the vectors fun-
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ction f(¢),k(¢),d(¢) have appropriate dimensions and
are Lebesque square integrable, i.e. f(+) € L,[0,
©),k(*) € L,[0,0),d() € [,[0, ). The aster-
isk * denotes the conjugate transpose operator (in the-
real valued case, it stands for transposition) ; |+| is the
Euclidean norm; || ¢ || ; is the nomm of Lebesque square
integrable function-vector space L,[0, ® ). The LQOC
problem is to find (if exists) a control u(z) such that
the criterion J[ u] achieves its minimal value over the
set {x(2),u(t)} of the processes defined by (1) .

Definition 1 Matrix function A( +) is called to be
Hurwitz stable, if there exist numbers ¢ > Oande > O
such that for any solution x ( ¢) of the equation dx/d¢ =
A(2)x the inequality

| x(2) I c exp(-e(t - 5)) | x(s) |

holds for any ¢ = s. The pair (A(+), B(+)) is called to
be L,-stabilizable if for any vector a and any function
u(t) € L,[0, =) the solution x( ¢) to equation (1), in
which f(t) = 0, satisfies () € L,[0,% ). Some e-
quivalent definitions about stabilizability can be found in
[1,3).

Associated with the LQOC problem (1), (2) we can
derive the following canonical differential equation

7S = B, (3)
where
0 -1, Hy(e) Hy®(¢)
/= [zn o] H - [Hzl(o Han(1)
H(t) = H*(¢) = H(¢ + T).

I,is an n x n unit matrix, each partition H;(¢) is an
n x n matrix. By the well-known Floquet-Lyapunov
theorem'*!, (3) has a fundamental matrix Z(¢) =
F(t)e*, where F(t) = F(¢t + T),F(0) = L,,Kis
constant matrix (in general, F(¢),K may be complex
matrices) . The equation (3) is said to meet frequency
condition!!! if
det[ Z(T) - €“I5,] 20 (Yw € [0,27),1 = v/ - 1.
(4)
If the condition (4) holds, the matrix Z( T) has n-
eigenvalues inside and outside the open unit circle, re-
spectively. Let L, L) be the eigen-subspaces of
C?", corresponding respectively to the eigenvalues of
Z(T) inside and outside the open unmit circle. Thus,

¢ = L) @ L', Construct matrices S*, S~ such
that their columns compose the bases of L and L),

respectively. Forming matrix S = [S* S~ ], we have

e™ 0
205 = FWs(s7es) =[],

where F](t) = F(t)S, bOthN] anszamnx n Hur-
witz constant matrices. Hence, for every nonsingular
n x n matrix C, the columns z(z) = collx;(¢),

$:(e)] (i =1,2,--,n) of matrix
f;((‘t)) ==Fl(;>[e%0]=
pl(o[Ce'C “] _ [28:] (s)

compose n linearly independent solutions with property
| z(¢) | = 0ast—0. If the following condition

detX(t) 20 (V¢) (6)
is satisfied we say the equation (3) is nonoscillatory.
One can show that nonoscillatory condition (6) is well-
defined, i.e. it is independent of the choice of matrix
C. Now we consider the relation between (3) and the
following Riccati equation

‘fff (1, - R] H(t)[ ] (7)

Lemma 1 If (3) satisfies the frequency condition
(4) (thus, matrices X(¢), ¥(¢) can be defined as in
(5)) and nonoscillatory condition (6), the matrix R
= - ¥X~! = - P,P;i'is uniquely defined by H(¢) and
is the unique T-periodic symmetric matrix solution of
(7) such that Hy, — Hn R is a Hurwitz matrix. Inverse-
ly, if (7) admits a T-periodic symmetric matrix solution
R such that H,; ~ HxpR is Hurwitz, (3) satisfies the
conditions (4) and (6).

Proof Suppose (3) satisfies the frequency condition
(4) and nonoscillatory condition (6). Let X(¢), ¥(¢)
be defined as in (5). One can verify that R = — X!
is the solution with the above stated property. In fact,
multiplying the equation

J[é] = H[;f] (8)

left by [/, ¥X~'] and right by X~! we have that

wxX-'xx-' - wx' = [1, wx! H[

wx-! J
(9)
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One easily verifies the left side of the identity (9) as
-d(¥X 1)/dt. Let R= - WX~ !, we conclude from
(9) that (7) admits the solution R = — ¥X~'. The so-
lution is T-periodic and its symmetry can be inferred
from the property that Z* (1) JZ(¢t) =0 (see [4]) . Fi-
nally, from (8) we obtain that X = (Hy - HpR) X. It
has the fundamental solution X = P;e™. Thus, Hj -
HyR is a Hurwitz matrix. Conversely, if (7) admits a
solution R with the property stated above, the equation
X = (Hy - HpR) X has a solution of the form X (¢)
= P,(t)e™ in which P,(¢) is a T-periodic nonsingular
matrix and A, is a constant Hurwitz matrix. Let ¥ = -
RX. Thus, one easily verifies that the columns of
coll X W] are n linearly independent solutions of (3).
It indicates that (3) meets the conditions (4) and (6).
The proof is complete.

The following theorem gives a complete solution of
the LQOC problem described by (1),(2).

Theorem 1 Let the pair (A(+),B(-)) be L,-sta-
bilizable and I'(¢) = 71, > 0 (¥ ¢). Then the follow-
ing statements are equivalent to each other ( for the sake
of simply writing, time ¢ is often omitted) :

I ) For arbitrary initial states x(0) = a the LQOC
problem (1),(2) is solvable, i.e., there exists an opti-
mal control z(¢) (and in fact it is even unique) .

I[ ) The canonical equation (3) with the matrix H(¢)
defined as follows
-G+ glg” A" - gF“lB'] (10)
A- Brig* Br-'B*
satisfies the frequency condition (4) and nonoscillatory
condition (6) .

Il ) The Riccati differential equation (7) with the ma-
trix H(¢t) defined in (10) admits an absolutely continu-
ous matrix solution R(t) = R* (t) = R(t + T) such
that B = :A + Br® is a Hurwitz matrix function, where

r=~[RB+gll. (11)

IV) There is a quadratic form

V(it,x) = x"R(t)x + 25" (t)x + a(1).
Here R(t) is T-periodic, symmetric and absolutely con-
tinuous matrix function, both s(¢) and o(¢) are abso-
lutely continuous and Lebesque square integrable func-
tions over [0, « ) such that the identity

dv Y
de (1)+2F._II" (u -

H(t) =

rix - p) 12(Yt,x,u)
(12)

holds and B = : A + Br" is Hurwitz, where r(¢) is de-
fined as in (11) and p(¢) as follows
p=-T"[B"s+d] (13)
V) There exists a number § > O such that, for any
process (x,u) satisfying the relation x = A(t)x +
B(t)u,x(0) = O and being Lebesque square inte-
grable,i.e., (x(+),u(+)) € L,{0, =), the following
inequality holds

jo Fdt = ajo (L x 12 41w 1B)ds.

VI) There exists a number § > O such that, for any
Lebesque square integrable complex vector-value func-
tions x(¢),u(t) and any real number w satisfying con-
dition 0 < @ < 2w and relation

2 = A(t)x + B(t)u, x(T) = “x(0),
the following inequality holds

T T
JO Fdt = ajou x 1241w 1B)de.

VI ) There exists a quadratic form Vo(t,x) =
x* Ro(t)x with T-periodic, symmetric and absolutely
continuous function Ry(¢) and a real number 8 > O such
that the inequality

dv,
T *2F =00 x P41 ul?) (Ve,x,u)

dVp . L.
holds, where _d-t_o is the Lyapunov derivative along the

trajectory of the system £ = A(t)x + B(t)u. Or e-
quivalently, the following inequality admits a 7-period-
ic, symmetric and absolutely continuous function Ry(¢)
[R0+R0A+A'R0+G ROB+g] [I,, 0]

R*Ry+g" r 1% Iay
Suppose that one of the conditions I ) ~ VI) holds.
Then the matrix R(¢) in II) and IV) is defined unique-
ly and has the following formula R(:) =
- ¥(t)X (1), where X(t), ¥ (t) are given in (5)
for the equation (3) with coefficient matrix (10). The
optimal control is the state feedback

u(e) = r*()x(e) + p(2)

and the optimal criterion value is
min, J = é‘a'R(O)a +s5(0)a + 'é—a(O),

where r(t) is defined in (11) and p(¢) in (13). Func-
tions s(¢) and o(t) are absolutely continuous and
Lebesque square integrable on [0, ) and are defined as
follows
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B ~ . . 1] s
gﬁ:—B‘s-Rf—k—rd, Beds+ B, V) can be obtained from Theorem 2 in [1] since the
ds (14) non-homogenous LQOC problem (1), (2) and the ho-
%ﬁ = p‘ Ip - 25" f. mogeneous LQOC problem have the same solvability.
t
Finally, from [V ) we derive that
Proof I )=s1I). If Condition I ) holds, accord- Y )

ing to the well known Pontryagin’s maximum principle
one can conclude that the following equations

dt_(%) ’dz‘(%"(%=0

(15)
have solutions x(¢), ¢(t) € L,{0, ®) for any x(0) =
a, where #'is the Hamiltonian

it x,u,¢) =¢  (A(2)x + B(t)u +
Ae)) - Flt,x,u).
Noticing that I’(¢) = 71, > 0, by the third equation in
(15) we have that
u=IYB*'¢-g*x-4d).
Substituting it into the first and second equation of (15)
we derive
r0 -1, x]
L] 0 ”‘/’ =
- G+ gl lg”
A - BIlg
[ gl 'd -k
L Brld 4 A
Thus, the equation (16) has a solution x(¢), ¢(t) €
L,[0, « ) for arbitrary initial state x(0) = a. On the
other hand, (16) admits the solution stated above for ar-
bitrary x(0) = a if and only if the equation (3) with the
matrix H(¢) defined in (10) has solutions with the same
property for arbitrary x(0) = a. It indicates that if for
arbitrary initial states x(0) = a, the LQOC problem
(1), (2) is solvable, so is the homogeneous LQOC
problem (the case f = 0,k = 0,d = 0). Hence, by the
analogous line of deduction as in [1] (see Lemmas 1 ~
9 in[1]) one can verify I )= I ). The equivalence of
the conditions [I ) and Il ) has been stated in Lemma 1.
)= IV) is easily verified by defining quadratic form
asin [V), where R(¢) is the solution given in [I[ ) and
the functions s(t),s(¢) are defined in (14). The e-
quivalence between the conditions I[ ), [l ) and V) ~

vl WE

(16)

V(o) - V(0) +2J = J: | T2 (u - rx - p) |dt.

It indicates that the optimal control is u = r* x + p and

the optimal criterion value is min, J = % V(0).

3 Conclusion

This paper gives a very general solution for the linear
quadratic optimal control problem where the state equa-
tion is non-homogenous and the quadratic functional cri-
terion contains linear terms. A series of necessary and
sufficient conditions for the solvability of the problem
are given. These conditions are represented in terms of
Hamiltonian equation, Riccati matrix differential equa-
tion, the linear matrix differential inequality or the oth-
ers. The optimal control is constructed and the optimal
criterion value is given as well. The general result of
LQOC for time-invariant linear system is easily derived
from Theorem | and herein is omitted due to the limit of
the paper’s length.
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