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Abstract: Linearization and stability of all solutions of the generalized one-dimensional delay discrete logistic system x,

- X, + Z (i, ¥, = 0 are investigated. Some sufficient conditions for the stability of this equation are derived.
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1 Introduction

In recent years, there have been a lot of studies on the
dynamical properties such as chaos and synchronization
as well as other asymptotic behavior of the one-dimen-
sional logistic system
(1.1)

Xp4t = ,ux,,(l - %)

and its continuous counterpart

de _ ()1 - 2(2)) - 11,

d =%
where 4 € R. Some results obtained in [ 1 ~ 6] are col-
lected in the book of Gyori and Ladas'!! .
In this paper, we consider the generalized one-dimen-
sional delay logistic system
Xp4sl — Un¥p + Z#i,nxzi—ai = 0! (E)
1=1
where y; ., ¢, , are positive real parameters, «; are real

numbers, o; are nonnegative integers, ¢t = 1,2,*'*, and

u is a positive integer, i,j € Ny = {0,1,2,+1.

Whenay = 1, ¢, = ptopt1,n = - pt,u = 1,0, =0,
system (E) becomes (1.1). Let

6 =max{o; | 1 < i< u} and Ny = {0,1,2,--}.
Our aim in this paper is to establish some linearization
results as well as some stability criteria for all the solu-
tions of system (E).

Moreover, we need some concepts and notation.
First, for a given function ¢ (i) defined on 2 = {- o,
—o+1,, —1},it is easy to construct a unique solu-
tion of system (E) by induction a sequence {x;}, which
equals ¢( i) on 2 and satisfies Eq. (E) for:i = 0,1,2,
--+. Indeed, we can write Eq. (E) in the form

oot == s, ¢
and then use it to successively calculate

X1yX25%X3,""".
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Such a sequence is unique and is said to be a solution of
Eq. (E) subject to the initial condition
x = ¢(i), i € Q2.

Definition 1 A solution { z,} of (1.1) is said to be
eventually positive (negative) if x, > 0 ( < 0) for all
large enough n; it is said to be oscillatory if it is neither
eventually positive nor eventually negative.

Definition2 Eq. (E) is said to be 7-exponentially
stable if, forany A > Oand w > 1, | x5 | < 7, such
that

| 2%, l<s w | 2ol e, n € Q.

It is clear that Eq. (E) can be regarded as a discrete

analog of the functional differential equation

(1) = ()1 -x(t-0)) -1. (E)
Therefore, qualitative properties of Eq. (E) may pro-
vide useful information for this delay differential equa-
tion.
2 Linearization results of equation (E)

For s € Np such that
s > n, forall n € N,

(2.1)

let

_ 1 u . s-n
C, =#3+] %, + (EE/‘iﬂrxn‘-ui) +
i=1

[-( i/‘i,n + )] -2,

£=1

(2.2)

The following result can be established based on (2.2) :

Theoerm 1 Assume that (2.1) holds and that { %, |

is an eventually positive solution of Eq. (E) with 0 <
#inopn < 1. Then,

i) C, is a monotone decreasing sequence in n , that

is,
Cn+l = Cn' (23)
ii) C, is eventually positive, and C, < x,.
iti) Eq. (E) reduces to the linear inequality
Coi - G, <- Hrn¥n-g-
Proof i) From (2.2), we obtain
1 u “ u
Cn+l = xn+l+7 E#i,nxn‘—ul._( Z#i,n"'#n)xn—u -2,
i=1 i=1 ’
(2.4)
C.o=px, +1+1-2= px,. (2.5)

Since x, > 0, we have
Cn+1 - Cn =

% Z] ,ui,nxﬁ'-cr‘. + X541 —,u,,x,,—( Lf_:l Hin + ,un)xn-cr _2$

Z#i,nx‘rzli-ui+xn+l-#rrxn_( 2#i,n+#ﬂ)xn—ﬂ' -2 =

i=1 i=1
—Zlﬂi,rrx‘rz;i-ui_ E#i,rrx‘;i—u‘_( z—;,ui,n"'/‘n)xn-u_z =

- YFin-o <0,
that is, C,y) - Cy <= M¥n_o < 0.

ii) From (2.5), we immediately know that C, is
eventually positive. Note also that 0 < p, < 1. So we
have

Co = pnlin < %n. (2.6)

iii) Using the above C,,; and C,, we get the follow-
ing linear inequality:

Crv1 = Gy + po%ns < 0. (2.7)
The proof is thus completed.
3 Stability of equation (E)

Theorem 2 Suppose that g, , < fi0sH42 < Ho»

i =1,2,,uand

po + 2o pmip?l < L (3.1)
i=1

Kmax {1 ¢_,411,*", | ¢ |} < 7, then the solution
{x,1=, of Eq. (E), determined by x; = ¢;,06 + l < i
< 0, satisfies
| %, | < Ye **, n € Q,
where A is some positive number.
Proof Assume thate; =0,i =1,2,--,u, and let A
be a positive number such that

e‘(,uo + Zp;,o)”’i']) < 1. (3.2)
First, note that Eq. (E) can be reduced to
Xn4l = Hn Xy — z/‘i,nx;’;‘-ui (33)
i=1
and that max { | ¢_,,1 |, | ¢p | < 7. Next, note that

u
(2 Ie‘se‘(,uo [ I+E,u,-,o | x"_f,,l, |)g
1=1

YCA(,UQ + Z,Ui,o)’a"])< Y.

i=1
Thus, | %, | < Ye™t.

Assume, by induction, that

nA

lx, le"™ <Y, n=1,2,",m.

Then,

| %myq | e(m+1)a <
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u
e"e"'*( | Hm-1Xm-1 |+ ' Zﬂi,m—lxz:‘—l—ui )S
i=

u
eAe(m"l)A(#m_l | oy [+ Z#i,m-l I Tn-1-o, la‘) =

i=1

e(m- 1A

eA(‘um—l l Xm-1 I+

Z#i,m-l I e(m—l)lxm—l-u‘. [ Zpoi-q, 141 <
i=1

ve (o + 2o pmio?% ) < 7,
i=1

as required. The proof is thus completed.
Example Consider the equation

1 2
Xpel — e2 " nxn + 82(84 N n)xn—-l +
e -c-s@ )
ez e2+n e en(e4+n) xn—Z—'O! HEQ,
(3.4)
where = 1 =
Hn = e2 N n’[ul.n e2(e4 + n)!/uZ.n =
e s -
le?+n e e'(ef+n) o = Loy = 2,
a = 2,a3 =1, sincey,,<'13,,u| n<_1'6’#2n<i4’
—~— e y — e ' \e
and
2 1 5 1
E#o,ﬂ"i" *Ho= ST G+ g < 1

(3.5)

holds for0 < ¥ < (1~ = — ). Thus, Theorem 2
€ €

asserts that if max {1 ¢_,0 [,y 1 o I} < 7 < €5,

then the solution {x,} of (3.4), determined by x; =
&, -0+ 1 < i <0, will also satisfy ]i_{nx,,:O.In

fact, x, = -1,; is one such solution of (3.4).
[+

The following stability result follows from Theorem 2.

Theorem 3 Assume that one of the following two
conditiions is satisfied:

i) There exists a positive constant aq such that

e = agforn = o3 (3.6)
i) Z#i = o, (3.7)

Then, every positive solution of Eq. (E) tends to zero
asn—> ®,
Proof It suffices to show that every eventually posi-
tive solution { x,} of Eq. (E) tends to zero as n — .
By Theorem 1, {C,} is eventually decreasing and
positive. Hence,

limC, = 7 € R, (3.8)
where R* = [0, % ). Also by Theorem 1, it is easy to

see that
(3.9)

Taking n sufficiently large, and summing both sides of

Cn+l - Cn = MpXpg-

(3.9) from n;, — %, we get

limi(cm - Ci) =- Z#ix,;_,. (3.10)

A—r@ S
E=n, i=n,

Applying (3.8), we have

71— Co <= 20 pbic- (3.11)

i=nl

Now, if (3.6) holds, then (3.11) implies that
Z/’lixi—u < .
i=nl

Since x;_, is a positive solution of Eq. (E), for
i = ny, by (3.11), we have

Yim 2, = 0.
The proof is completed when (3.7) holds.

Next we assume that (3.7) indeed holds. It follows
from (3.11) that

]inm_.infx,, = 0.
Also by (2.5), C, = p,x,, and in view of (3.8), 7
= 0.

We now claim that {x,} is a bounded sequence. Oth-
erwise, there would exist a subsequence {z, | of {z,!
such that

x, =max{x,,_u I n <

=
r

n, + o0 forr = 1,2,---} and limx, = <.

n—~ @

By this, (2.5), and (3.7), we have
C,1r = X, > @ asr > @,

which contradicts # = 0, leading to the claimed result.

Let 2 = lim supx, and let {x,,‘} be a subsequence of
{x,} such that 'l_i.rﬂ x, = A . Then, for sufficiently small
e > 0 and sufficiently large s, it follows from (2.5) that

C". = Hp%n .

Taking a limit as s — o and using the fact that 5 = 0,
we obtain 0 = A sl_i.rﬂ,u,,‘. Since € > O is arbitrary, we
conclude that A = 0. The proof is thus completed.
4 Conclusion

In this paper, we have investigated the linearization
and stability of all solutions of the generalized one-di-
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mensional delay discrete logistic system x,,; — #, %, +

E i nX5 . = 0, and obtain some sufficient conditions
i=1 !

for this equation to be stable.

References

[1] Kelley W G and Peterson A C. Difference Equations: an Introduction
with Applications [M]. New York: Academic Press, 1991

[2] Gyori I and Ladas G. Oscillation Theory of Delay Difference Equa-
tions with Applications [M]. Oxford : Clarendon Press, 1991

[3] Zhou Z and Zhang Q Q. Global attractivity of a nonautonomous Lo-
gistic difference equation with delay [J]. Computers with Applica-
tions, 1999,38(9) :57 - 64

[4] Kocic VL J and Ladas G. Global attractivity in nonlinear delay dif-
ference equations [J]. Proc. of American Mathematical Society,
1995,115:1083 - 1088

[5] Zhang B G and Liu S T. On the oscillation of two partial difference

equations [J]. J. of Mathematical Analysis and Applications, 1997,
206:480 - 492

(6] Ladas G, Philos Ch G and Sficas Y G. Sharp conditions for the os-
cillation for delay difference equations [J]. J. of Applied mathemat-
ics, 1989,2(3):101 - 112

A XA A

XY EREETK¥M A 242 . Americal Mathematical Soci-
ety £ 5, American Mathematical Reviews #Fit A . T EFIR F R L &
MESTBHERT R SEN, PHER e, Rt RS A
R, 2= EIR I, 43 B A AE , 25 (6] R 4 [F] 25 B o fn 3L e s
Frek, 2 AR R B R R 4 6 B

BEX® 1948 &£ 4 1@+, # 2, IEEE Fellow. {T: IEEE Transactions
on Circuits and Systems % %8 % 7 (1993 ~ 1995; 1999 ~ 2001 ) 1 {¥2 &I 2
WS A)% 8% A . BL4T IEEE Circuits and Systems Society Magazine
FUHTHEHEREBARBZASEML FTEHRFALRARFELNE
BAREEMEL, FERRERH, 28 RHXHR IR

WEH AT 2002 455 1 HHE 108 .

(EREBBMLYZET 20024 5 A 20 HEEZ HEEH TRE).
JFEXA B SCh R A R FEH e 3,3 96 1.
YR IR IR R IE b hk (MR 4R \E-mail ¥RAE .

WGE T REHE TR BB A EEA.

SRR SR SRS SRR SRR Sase

(A ah B HAL) % 457

(5

(5


http://www.cqvip.com

