Vol.19 No.3
June 2002

= H e 5 LA
CONTROL THEORY AND APPLICATIONS

BI9EEIW
2002 £ 6 A

Article ID: 1000 - 8152(2002)03 - 0423 - 05

Bounded Convergence of Forgetting Factor Least Square
Algorithm for Time-Varying Systems *
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Abstract: Based on stochastic process theory, the bounded convergence of forgetting factor least square algorithm ( FFLS
for short) is studied and the upper bound of the parameter tracking error is given. The analyses indicate that: i) for time-invari-
ant deterministic systems, the estimates given by the FFLS algorithm converge to their true values at exponential rate; i) for
time-invariant stochastic systems, the FFLS algorithm can give a bounded mean square parameter estimation error; iii) for time-
varying stochastic systems, the FFLS algorithm may track the time-varying parameters and its parameter tracking error is bound-

ed (that is, the parameter tracking error is small when the parameter change rate is small) .
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1 Problem formulation
Consider the following time-varying system
y(1) = oT(£)6(t - 1) + v(2), (1)
where y(¢) is the output of the system, (t) € R" is
the time-varying parameter vector of the system to be i-
dentified, ¢(t) € R" is the regressive information vec-
tor consisting of the observations up to time (¢t - 1) ,
and {»(t)} is a stochastic noise sequence with zero
mean, the superscript T denotes a matrix transpose.

f1,2]

The forgetting factor least square algorithm is an im-
portant method to identify the parameters of time-varying
systems, and it has good tracking performance. Its con-
vergence has been attracted much attention!! ~®). How-
ever, most references only studied the limit behavior of
the estimation error’®~"). Based on stochastic process
theory, the convergence of the FFLS algorithm is studied

and the upper bound of the parameter tracking error is
given in this paper.

The objective of this paper is, by means of the FFLS
algorithm, to obtain the real-time estimation of the time-
varying parameter vector 6(t) by utilizing the observa-
tions (y(i), (i), i < t) up to and including time ¢,
and the upper bound of the parameter estimation error is
found out, which results in quite good tracking perfor-
mance in the simulation examples.

The least square algorithm with the forgetting factor
for identifying the time-varying parameter vector of
model (1) can be described as
6(0)=00-1D+P()e()y(1)-p"()B(1-1)],

(2)
PHe) =P (t-D+o(t)g" (1), 0<A <1, P(O) =P, >0,
(3)
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where (¢) denotes the estimates of (), is the for-
getting factor, #(0) is a random variable with
E[87(0)8(0)] < My < = ,8(0) and { »(z)} are inde-
pendent.
2 Bounded convergence of the FFLS al-
gorithm

Lemma 1 For system (1) and algorithms (2),
(3), assume that the following strong persistent excita-
tion condition holds

N
Al) alg#.z;go(t+ i)o"(t+ i) < fl,a.s., for

any 1t >0,0< a <B < », Nz n, then the covari-
ance matrix P(t) satisfies
AN-L a
1-2 1-2A
P < P21 wipst - 2B

al + A'[P5! - 1] <

Proof See Ref.[6], we have
PU(t) = APt - 1) + 0(2)0"(2) <
I_IX,B_AI + AL P! - l—]!‘%l],

NP~ '(z) = Ni}af-f¢(i)¢T(i) + MA'P71(0) =

AN—l t

- A -
T—TNQI + NA'Pg! =

AN-1 a
1 -2 I—Al]'

This completes the proof of Lemma 1. As t — «©, we
have

Nal + NA'[ Pg' -

N-1
IA_ AaI < limP (1) < 1—}\_/‘%1, O0< A<l
For convenience, let Pj! satisfy
_a_ -1 _ _NB_
_AlsPo <750
then
N-1
1"_ 1ol < P(1) < l—’!%l, 0<A<l (4)
Theorem 1 For system (1) and algorithms (2),

(3), assume that Condition A1) holds, {v(z)} is an
independent random variable sequence with zero mean
and mean square bounded, i.e.
A2)
E[+*(1)] = o3(¢) g 0k < =,
E[v(£)v(i)] = 0, ¢ 2 i,
Ele(t - i)v(e)] =0, i = 0.

The parameter changing rate w(t) 4o 6(¢) - (¢ - 1)
is bounded, {w(z)} and {v(¢)} are independent, i.e.
A3)
Ellw(e) %] = 6%(2) s b < =,
Elw()w™(i)] =0, ¢ 5 i,
Elw(z)v(i)] = 0,
then as ¢ — «, the estimation error given by the FFLS
algorithm is uniformly bounded, i.e.
E[I18(e) - 6(2) I’] <
3a"2A2("N+1)(l—A)2 “ P5l ” 2M0 +
%%) sttxpE[v2(t)]+
IN?B?
a2A2(N‘l)(l _
where the norm of the matrix X is defined by || X |} > =
tr[ XXT], tr[ X] denotes the trace of the matrix X .
Proof Define the parameter tracking error as
6(r) = 8(x) - 6(s).
Using relations (1) ~ (3), we get
6(t) =
0(e) - [6(c~1) +w(2)] =
[1-P(£)p(2)"(£)10(e-1) + P(t)p(£)v(2) -w(2) =
AP()P (s - 1)8(s - 1) + P(1)o(2)v(z) - w(t) =

KP()PTL)B(0) + PL6) YA ip(i)u(i) -

Tyt supEL L w(0) 121 2 7Ca0),

P(t)ZA“iP"(i)w(i) A

7i1(2) + 72(I)+73(t), (5)
where
71(2) = A'P(2) P5'8(0),

72(6) = P() D Xp(Do(i) = P(0)Hu,

72(6) == P()) 24P (D) (D),

HY = [7'(1), 14 20(2), (2 - 1),0(2)1,
v = (70D, 20(2), e v(e - 1),0() T,
pava.
P (1) in (3) may be expressed as
PY(¢) = HH, + APt
Since
0 <E[ [l vi(e) II?] =
AYE[ | P(2)P5'6(0) I|2] <
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A2t§1 _A 22
a2;(2(N-l)

Il Pt l206C0) 1% <

- 2 P32 M, (6)

Since vT and H, are statistically independent, we have!®!
< E[ [ 72(2) I1%] =

E[ | P(¢)HM, | 2] =E{ee[ P(e) Hww HP(2) ]} <

Elu[ P(¢) HIHP(¢) 0% = el ELHP () H] 10} <

2
(Ia;;\\!-)laﬂ = H‘SN '})63, for large ¢,

(7)

a-2A2(t-N+l)(1

tr{E[P(¢)H™H, ]}

0<E[ll7a(e)11?] =
EL| P(z)Za‘-iP-‘(i)w(i) 2] <

QSABEL ] D P (u(i) 17] =

UABEL ) 3 3o () PO P ()],

Using 22" Qy < 27Qx + yTQy,(Q =
0 <E[ [l 7:(2) II%] <
LA 3 3 B wT() P (i) 4

i=1 j=1

0), we have

WGP (Hw()12 <

1 = '\ 28-i-j M _
U3 S ML,
N'fPol (127 _ N*@ 2
a2A2(N-l) (1 _ A)2 = a2A2(N-l)(1 _ A)2 we
(8)

Taking the nom || - || ? of both sides of (5) gives
E[18C:) - 6(e) 11%] =
EL I 71(e) + 72(2) + 73(0) 1] <
3{EL || 1(e) 1] + EL Il 72(2) I12] + EL Il 75 (2D 11201

(9)

Substituting (6 ~ 8) into (9) will lead to the conclusion
of Theorem 1. This proves the assertion of Theorem 1.

Theorem 2 For time invariant deterministic systems

y(e) = ¢7(e)8,

Condition Al) holds, then for {#(t)} given by the
FFLS algorithm, as t — o, E[ | 8(¢) - 6 [|2] =0
exponentially fast.

Proof Since v(¢) = O0and w(t) =0, from (9) it is
easy to obtain

ELI6C) 1] = ELIl 7 () 1?] <

a-z'\z(:-Nn)(l_A)z I PGI I 2Moé fl('\’t)’
E[[8(:)-61%]=00l*)—>0,0<2a <1
This proves Theorem 2.
Theorem 3 For time invariant stochastic systems
y(2) = @7(£)6 + v(2),
Assumptions Al) ~ A3) hold, then {§(¢)} given by the
FFLS algorithm, as ¢t — =, satisfies
E[10(:)-017%] <
2a72220-M+D (1 _ 02 || P5l || 2M, +

M;A) 2 _fz(r\,t).

a/\N-l Gy A
Proof Since w(t) = 0, from (9) we have
E[18(:)-612%]=

E[ Il 71(e) + 72(e) %] <

HEL N 7(e) 121 + EC I 72Ce) 1214, (10)
Substituting (6) and (7) into (10) will lead to the con-
clusion of Theorem 3. This completes the proof of Theo-
rem 3.

Theorem 4 For time-varying systems
y(t) = ¢"(2)6(e),

Assumptions Al) ~ A3) hold, then {8(¢)} given by the
FFLS algorithm, as ¢t — o, satisfies

E[16C:) -0(e)11?] <

2a'2,\2("~+”(1 _ A)z I P5l I 2M0 +

2AN? R
a2A2(N—l)(1

A)26 f:’z(A t)

Proof Since v(t) = 0, from (9) we have
E[ 1 8(e) - 6(e) 11?] =
E[ | 71(¢) + 73(e) 1] <
HEL I 71 () 12+ ELN va(e) 122 (1)
Substituting (6) and (8) into (11) will lead to the con-
clusion of Theorem 4. This completes the proof of Theo-
rem 4.

Theorem 5 For system (1) and algorithms (2),
(3), assume that the conditions of Theorem 1 hoid,
then for the variable forgetting factor0 < A, < A, <
Amax < 1, we have

E[[18¢:) - 6() 11%] <
322220 (1 - A2 N Pt I 2 Mo +

- A 2
oy

Proof To be omitted.

Theorems 1 ~ 5 may be used to compute the upper

max)
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bounds of the estimation errors given by the FFLS algo-
rithm.
3 Simulation studies

Example 1 Consider the following time-invariant
system
A(2)y(e) = B(2)u(e) + v(t),
A(z) = 1+ a1z 4 az72 = 1 - 1.2z7! + 0.52272,
B(z) = blz'l + b2::'2 =1.2z7' - 0.52272,
6T = [-1.2,0.52, 1.2, - 0.52],
SDT(L) =[- y(e-1), - y(t—2),u(t—1),u(t—2)],
where {u(¢)} is taken as a zero mean and unit variance
random variable sequence, and {v(¢)} as a white noise
sequence with zero mean and variance o3 = 0.2°. The
FFLS algorithm is applied to estimate the parameters of
this system. The results of simulation are shown in
Table 1, Table 2 and in Fig.1, where the noise-signal
ratio of the system is &,, = 23.49% , the forgetting fac-
toris A = 0.95.

Table 1 The parameter estimates of Example 1

t a a, b, b, )
100 -1.1732 0.5090 1.2169 -0.4620 3.623%
300 -1.3074 0.5864 1.2182 -0.5837 7.711%
500 -1.1865 0.5023 1.2046 -—0.4847 2.268%
1000 —-1.1649 0.5225 1.1582 -0.4902 3.366%
2000 —1.1438 0.4849 1.1924 -0.4652 4.6710%

mue 4 2000 0.5200

values 1.2000 -0.5200

Table 2 The estimation error and its
upper bound of Example 1

t oo 2 f2(&,1)
100 0.004489363  0.325792432
300 0.020337632  0.340827316
500  0.001760129  0.312141001
1000 0.003876060  0.296362013
2000 0.007459215  0.286299318

Example 2
system

y(£) + ar()y(s = 1) + ay(t)y(t -2) =

bi(e)ule = 1) + by(e)ule —2) + v(2),

a,(t) = —=1.20+0.01sin(0.01¢), a,(t) =0.52,

b,(t)=1.20, 5,(¢)=1.2+0.001 v ¢ + 100,

Simulation conditions are the same as those of Exam-

Consider the following time-varying

ple 1, A = 0.75. The estimation error and its upper

bound are shown in Table 3 and in Fig.2.
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Fig. | The estimation error and upper bound of Example |

Table 3 The estimation error and its
upper bound of Example 2

t 6¢e) 12 AR,
100  0.014390509 0.726138771
300 0.023099916  0.562118948
500 0.016471678  0.581226349
1000 0.019195369  0.556566477

2000 0.010161544 0.561459243
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Fig. 2 The estimation error and upper bound of Example 2

From Tables 1 ~ 3 and Figs. 1,2, the estimation error
is less than its upper bound, the conclusions are correct.
4 Conclusions

From the convergence analyses the following conclu-
sions are reached; i) for time-invariant deterministic sys-
tems, PEE given by the FFLS algorithm converges to
zero at an exponential rate, but PEE given by the RLS
algorithm converges to zero at the rate of (1/¢); ii) for
the time-invariant stochastic systems, the FFLS algo-
rithm gives a bounded mean square PEE, but PEE given
by the RLS algorithm converges to zero under the mean
square sense, and its convergence rate is of (1/¢) ; iii)
for the time-varying stochastic systems, the mean square
PEE given by the FFLS algorithm is bounded, but the
mean square PEE given by the RLS algorithm is un-


http://www.cqvip.com

No.3 Bounded Convergence of Forgetting Factor Least Square Algorithm for Time-Varying Systems 427

bounded, so the RLS algorithm has no performance to
track the time-varying parameters.
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