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Abstract: Quasi-Monte Carlo random search is useful in nondifferentiable optimization. By borrowing the ideas of popu-
lation from genetic algorithms, we introduce an adaptive random search in quasi-Monte Carlo method( AQMC) for global opti-
mization. The adaptive search technique enables local search to head for local extrema quickly. The low discrepancy of quasi-
random sequence ensures that the function field be searched evenly and various local extrema including global extremum be

" found.
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1 Introduction

In nondifferentiable optimization the Monte Carlo
method of random search can be used to approximate the
global optimum of a function (see Chap. 7 in [1]).
Taking advantage of the low discrepancy of the quasi-
random sequences, Niederreiter'! introduced the quasi-
Monte Carlo random search. The method is described as
follows:

Problem Let f be a bounded continuous function
defined on the bounded subset E of R*(s = 1). The
correct value M of the supremum of f over E to be

found.
Let x4, *+, xy be quasi-random numbers in £ , then:
my = max f(x,) (1
lsng N

is taken as an approximation for M.
Denote dy = dy(E) = sup mind
E€E

lgng

Theorem 1

(x,x,) be the dispersion of the quasi-random sequence

Xy, Xy in E. Define d(y,z) = max I y; - 3 | for

I<jss
y = (n,e 5) € RLw() =
Sué;:s I f(x) - f(y)1,t = 0is the modulus of conti-

24
d(ry)<t

nuity of f. We have M — my < w(dy).

Proof fis a bounded continuous function defined on
E, then there should be one point x * in E which satis-
fies f(x*) = M. Choose x; such that d(x " ,x;) =

mind{x™ ,x,). We have

lgng

O< M—my< f(x" )=f(x;) < w(d(x” ,x,)) < w(dy).
Because dy is of an order of magnitude O( N~"*) and

fis a bounded continuous function, the method de-

scribed above is convergent. However, the rate of con-

¥ ),z = (zg,

vergence is in general very slow. In order to speed up
the convergence rate, Niederreiter and Peart!3! developed
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the quasi-random search by using “ localization of
search” (LQMC). In 1990, Wang and Fangl*! intro-
duced a sequential number-theoretic method for opti-
mization( SNTO) .

But the effectiveness of LQMC and SNTO methods
demand that N be sufficiently large to satisfy NV > ¢7°,
where 0 < & < 1/2 is the search step size in local
search, In addition, if the function has many local max-
ima, in particular, the local maximum is much close to
M, LQMC and SNTO methods could be led into a
“wrong track”, that is to say, the giobal maximum
could not be found.

In this paper, we introduce an adaptive quasi-Monte
Carlo method for global optimum (AQMC) . AQMC has
many advantages compared with LQMC and SNTO.
Firstly, N is rather small when s is large. Secondly,
adaptive search technique enables local search to head for
local extrema quickly. The last but not least important
advantage is that AQMC method is able to find various
local extrema including global extremum. The algorithm
is described in Section 2. Numerical experiments will be
given in Section 3.

2 AQMC algorithm

Assume f be defined on rectangular region £ =
[a,b],a,b € R*. Borrowing ideas of population from
genetic algorithms[sl, we take the initial segment x,
-+, xy € E of infinite quasi-random sequence(®~'%) as
the first population, each point is an individual. Calcu-
late fitness for each individual. Select one individual
(selection probability is proportion to fitmess p; ), i.e.,
the kth individual and perform adaptive local search.
The local search points corresponding to the kth individ-
ual are called the sub-population of the kth individual.
Let fmax; denote the maximal function value of all indi-
viduals of sub-population of kth individual. When the
search size € converges to zero, fmax; can be taken as
an approximation for one local maximum and fmax =

 max Sfmax, as that for the global maximum. New pop-
skg

ulation with N individuals will be generated after all in-
dividuals of the previous population having clambered to
neighboring local maxima. The initial scgments for arbi-
trary NV of infinite quasi-random sequences distribute in E
uniformly and the new points generated from the rest of

the quasi-random sequence fill in the gaps in the previ-
ously generated distribution in £, which ensures that the
function field can be searched evenly and the global
maximum can be found.

The AQMC algorithm can be described as follows:

1) Step0 i = 1.

2) Step1 a) Generate the ith segment xy,-**, xy of
sequence as the /¥ individuals of the population, set x;;
= xj,65 = 0(0 < €0 < 1/2),j = 1,-*, N.

b) Calculate fmax;, p;.

3) Step 2

If(stop criterion satisfied) : Program ends
Else: Select one individual x; according to p; and
perform adaptive local search (LAQMC) .
4) Step 3
If( e >0forl < j < N): Go to step 4
Else: Calculate p; and go to Step 2

5) Step4 i =1i+1,gotoStepl.

The stop criterion may be set according to various sit-
uations. For example, if fmax has not been improved af-
ter several generations, we stop running the program.
‘We can also set the total generation number in advance.
Moreover, there are many applications that are to find
optimal parameters, that is to say, the global extremum
is known, and then we can control the error between
fmax and the global extremum M.

Now we focus on the adaptive local search method
(LAQMC) . For the selected individual x; , we map the
first V; points of the segment x|, -*-, xy to the neighbor-
hood of x; by g¢: E — C.

1< N, = [c; x N xmaxieg,cl] < N,
{O<clsl,0<czsl, (2)
gc(x) = c+e4(2x-(a+b)), x € E, 3)

where [ x ] denotes the greatest integer < «x. ¢ is initial-
ized to be x4, if f(gc(x;)) > f(c), then c is set to be
gc(%;),j = 1,*-,N;. As showed in flow chart(Fig.
1), €;41,%, the next search step size of kth individual,
will be adjusted according to this search result. If func-
tion value bigger than f(x;) is found, then ¢;,, , =
d(c,x3), and x; will be replaced by ¢ .
we have g,,1,x = ¢3 x €3, where 0 < ¢3 < g¢, We sug-

Otherwise,

gest that ¢3 = €3.
It is evident that the adaptive local search is heading

for local maximum points quickly because the search di-
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Fig. 1 Flow chart of local search of AQMC(LAQMC)

rection and search step size €, are adjusted according to
the previous search result. In addition, N; is proportion
to €. So the adaptive local search of AQMC algorithm
does not cost much time.
3 Numerical experiments

We have carried out numerical experiments on some
classical functions to compare the search result of AQMC
with that of LQMC and SNTO. Sobol’ sequences''!"'!
were used in the experiments. Some examples are given
as follows, in which f; is taken from [ 13] and f, from
[14].

Example 1
fl(xyyyzru)::
3 12 8
—(ac—ﬁ)2 (y - )—(2— 3)2—(u—3—72,

(x,y,2z,u) € I,

We have known that the global maximum of f; is 0.
Table 3.5 in Wang and Fang!'*! shows that the SNTO
method will find the global maximum after calculating
more than 2000 function values (the error of size O
(1077)). However, the same precision is attained only
after calculating less than 400 function values for
LAQMC method. Table 1 shows the result of LAQMC
method. All symbols in the tables have been explained
in Section 2.

Table 1 The results of LAQMC methods for f1(¢; = 0.5, ¢; = 1.0,¢3 = 0.015625)

N, fmax x ¥ z u

64 -0.0634333120  0.3281250000 0. 6718750000 0.4531250000 0. 1093750000
32 -0.0110488345  0.3125000000 0.4687500000 0.5937500000 0.2812500000
32 -0.0110488345  0.3125000000 0.4687500000 0.5937500000 0.2812500000
32 —-0.0068469013  0.3077392578 0.4687500000 0.5778808594 0.2653808594
32 -0.0000484404  0.2779846191 0.4627990723 0.5243225098 0.2197570801
32 -0.0000484404  0.2779846191 0.4627990723 0.5243225098 0.2197570801
32 -0.0000050746 0.2747418284 0.4620668292 0.5225442052 0.21651428%4
32 -0.0000021081 0.2729177587 0.4610534571 0.5227468796 0.2171223126
32 -0.0000001323  0.2728607565 0.4615664767 0.5215498338 0.2164952887
320

The AQMC method is superior to LQMC method not

only in the local search ability but also in the global
search ability. For some multiple-extrema functions,
LQMC method may be led into “wrong track”, while
AQMC method is able to find the various local extrema
including the global extremum.

Example 2

i=1

The global minimum of f; is reached at x;
420.9687,i = 1,
at x, ~(I1(0.5 + k))*, &k
(I€0.5 + k))*, k =

folx) = - Exisin(«/ b 1), - 500 < x < 500.

,n. The local minima are reached
= 0,2,4,6 and Xy =~ —
1,3,5. Points x; = 420.9687,
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i =1, ,n,i5j, 2 =—302.5232 reach the sec-
ond minimum, they are far away from the global
minimum point. It has likely been led into “wrong
track” through general search methods. Let n = 2,
LQMC method stayed at the second minimum, while the
AQMC method found the global minimum point x; =
420.9690988064 , x, = 420.96909888064 after calculat-
ing 1328 function values (the error of size 0(1077)).
The second minima and some other local minima close
to the global minimum have also been found by the
AQMC method .

The computational results show the following:

1) AQMC is a global optimization method while
LQMC and SNTO may lead into “wrong track” .

2) The local search of AQMC is about 5 times faster
than LOMC and SNTO.

3) The population size of AQMC is rather less than
the sample size of LQMC and SNTO.

4) AQMC method is able to find various local ex-
trema.
4 Conclusion

As showed in Theorem | and the numerical experi-
ments, adaptive quasi-Monte Carlo search method is a
global search method. In particular, the adaptive tech-
nique in local search speeds up the search hugely. It is
worth pointing out that the AQMC is able to find various
local extrema, it is very useful in many applications of
optimization. We suggest that the adaptive local search
of AQMC be used for localization of search combined
with GA(genetic algorithms) . It can be safely expected
that the hybrid algorithms will be promising .
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