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Abstract：Quasi—Monte Carlo random search is useful in nondifferentiable optimization．By borrowing the ideas of popu_ 

lation fxom genetic algorithms．we introduce all adaptive random search in quasi—Monte Ca=rlo method(AQMC)for global opti· 

mization．The adaptive search technique enables local search to head for local extrema quickly．The low discrepancy of quasi_ 

random sequence ensures that the function field be searched evenly and various local extrema including global extremum be 

found． 
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自适应拟蒙特卡罗多极值优化方法 
雷桂 嫒 

(浙江大学数学系 ·杭州，310028) 

摘要：拟蒙特卡罗搜索方法能用来有效地解决不可微优化问题．借用遗传算法中种群的概念，介绍了一种解全 

局优化的拟蒙特卡罗自适应搜索算法．由于应用了自适应搜索技术，局部搜索能够快速找到局部极值．同时，拟随 

机序列的低偏差性保证了函数定义域能够被均匀地搜索，为找到多个局部极值包括全局极值提供了保证． 

关键词：全局优化；不可微函数；拟蒙特卡罗方法；自适应搜索技术 ；子群体 

1 Introduction (x，x )be the dispersion of the quasi—random sequence 

In nondifferentiable optimization the Monte Carlo Xl，⋯，XN in E．Define d(y，z)=
．

1TIax I 一 刁 I for 
J≤ J《 

method of random search can be used to approximate the 

global optimum of a function(see Chap．7 in[1])． 

Taking advantage of the low discrepancy of the quasi— 

random sequences，Niederreiter[2l introduced the quasi
—  

Monte Carlo random search．1he method  is described as 

follows： 

Problem Letfbe a bounded continuous funcrion 

defined on the bounded subset E of (s≥ 1)．The 

correct value M of the supremum of f over E to be 

found． 

Let Xl，⋯ ， ，v be  quasi—random numbers in E ，then： 

m ( ) (1) 
J≤ n《 ，V 

is taken as an approximation for M ． 

Theorem 1 Denote d，v= dN(E)= sup min d 
∈E 1《n≤N 

Y = (Yl，⋯， )，Z = ( 1，⋯，Zs)∈ R ． (t)= 

。 I f(x)一f(Y)I，t≥0 is the modulus of conri． 
t 

rarity off．We have M —m，v≤ (dN)． 

Proof fis a bounded continuous funcrion defined on 

E，then there should be  one point x in E which saris— 

fiesf(x )= M．Choose x such that d(x ， )= 

min d(x ，x )．We have 

O≤M一 ≤f(x )— )≤ (d( ， ))≤ (d )． 

Because dN is of an order ofmagnitude 0(N )and 

f is a bounded continuous function，the method de— 

scribed abo ve is convergent．However，the mte of con— 

vergence is in general very slow．In order to speed up 

the convergence mte，Niederreiter an d Peart【 J developed 
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the quasi—random search by using “localiT~tion of 

search”(LQME)．In 1990，Wang and FangL intro— 

duced a sequential number-theoretic method for opti— 

mization(SNTO)． 

But the effectiveness of LQMC and SNTO methods 

demand that N be  sufficiently large to satisfy N > ￡～ ， 

where 0 < ￡ < 1／2 is the search step size in local 

search．In addition，if the function has many local max— 

ima，in particular，the local nlaximum is much close to 

M．LQMC and SNTO methods could be led into a 
“

wrong track”， that is to say，the global maximum  

could not be found． 

In this paper，we introduce an adaptive qu asi—Monte 

Carlo method for global optimum (AQMC)．AQMC has 

many advantages compared th LQMC and SNTO． 

Firstly，N is rather small when s is large．Second ly， 

adaptive search techniqu e enables local search to head for 

local extrema quickly．The last but not least important 

advanmge is that AQMC method is able to find various 

local extrema including global extrclnuln．The algorithm 

is described in Section 2．Ntm~rical experiments will be 

given in Section 3． 

2 AQMC algorithm 

Assume厂be de ed on rectangular region E = 

【a，b]，a，b∈ ．Borrowing ideas ofpopulation from 

gen etic algorithmsL ，we take the initial segment xl， 

⋯

，
x ∈ E of infinite qu asi—random sequence[ lo]as 

the fwst po pulation，each po int is an individua1．Calcu— 

late fitness for each individua1． Select one individual 

(selection probability is proportion to fitness PO)，i．e．， 

the kth individual and pe rform a~aptive local search． 

Th e local search po ints co rrespo nding to the kth individ— 

ual are called the sub-population of the kth individua1． 

Let-／ ax denote the maximal function value of all indi— 

viduals of sub—po pulation of kth individua1．W hen the 

search size￡认converges to zero，加 ax̂ can be taken as 

an approximation for one local maxilnUln and／．maD【= 

1≤

m

I

a

《

x fmaxk that fo the global maxinlUlTl·New poP— 

ulation wi th N individuals will be  generated after all in— 

dividuals of the previous po pulation having clambe red to 

neighboring local maxima．The initial segments for arbi- 

tray N ofinf'mite quasi—random sequences distribute in E 

uniformly and the new po ints generated from the rest of 

the quasi—random sequence 卸 iI1 the gap s in the previ— 

ously generated distribution in E，which ensures that the 

function field can be  searched  evenly and the global 

maximum  can be found． 

The AQMC algorithm can be described as follows： 

1)Step 0 i= 1． 

2)Step 1 a)Generate the ith segment Xl，⋯， of 

sequence as the N individuals of the po pulation，set xq 

= ，，￡ =eo(O<￡0<1／2)，J=1，⋯，Ⅳ． 

b)Calculatefmaxy，Pq． 

3)Step 2 

If(stop criterion satisfied)：Program ends 

Else ：Select one individual according to Pq and 

perform adaptive local search(LAQMC)． 

4)Step 3 

lf(￡ 一 0 for 1≤J≤ Ⅳ)：Go to step 4 

Else：Calculate p and go to Step 2 

5)Step 4 i= i+1，go to Step 1． 

Th e stop criterion may be  set according to various sit— 

uations．For example，iffmax has not been improved af- 

ter several generatio~ ，we stop running the program ． 

W e can also set the total generation num be r in adVance． 

Moreover，there are many applicaliolls that are to find 

optimal parameters，that is to say，the global extremum 

is known． and then we can co ntrol the error be tween 

／．maD【and the global extremum  M． 

Now we foc us on the adaptive local search method  

(LAQMC)．For the selected individual X／h，we map the 

first Nipo ints of the segm ent Xl，⋯ ．xN to the neighbo r- 

hood of by gc：E C． 

{ ≤ = c2×Ⅳ×maD【 cl ≤Ⅳ’(2)o 【
< Cl≤ 1，o < 2≤ 1， 

gc( )=c+~／k(2x一(a+b))，x∈E， (3) 

where【 J denotes the greatest integer< ．c is initial— 

ized to be x／k，iff(gc( >f(c)，then c is set to be 

gc( )， = 1，⋯， ．As showed in flow chart(Fig． 

1)，￡i+1．̂，the next search step size of kth individual， 

will be adjusted according to this search result．If func— 

tion value bigger than X／k)is found，then￡ ． 

d(c， )，and will be replaced by c．Otherwise， 

we have￡l+1
． 
= c3 x~／h，where 0 < c3< ￡0，we sug- 

gest that c3 ￡8． 

It is evident that the adaptive local search is heading 

for local maxilnUlTl po ints quickly because the search di— 
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recfion and search step size C／k are adjusted according to 

the previous search result．In addition，Ni is proportion 

to ．So the adaptive local search of AQMC algorithm 

does not cost much time． 

3 Numerical experiments 

We have carried out numerical experiments on some 

classical functions to compare the search result ofAQMC 
with that of LQMC and SNTO．Sobol’sequences[11' ] 

were used in the experiments．Some examples are given 

as follows，in which A is taken from [13]and厂2 from 

[14]． 

Example 1 

A( ，Y，。，u)= 

一

( 一 ) 一(y一 ) 一(z一 12) 
一 (u一 ) ， 

( ，Y，。，u)∈ I ． 

We have known that the global maximum ofA is 0． 
Table 3．5 in W ang an d Fang‘13J shows that the SNTO 

method will find the global maximum  after calculating 

more than 2000 function values(the elTor of size 0 

(10。))．However，the same precision is attained only 

after calculating less than  4O0 function values for 

LAQMC method ．Table 1 shows the result of LAQMC 

method ．All symbols in the tables have been explained  

Fig．1 Flow chaa of local search of AQMC(LAQMC) in Secti0n 2
． 

Table 1 The results of LAQMC methods forA(c1=0．5，C2=1．0，C3=0．015625) 

The AQMC method is superior to LQMC method not 

only in the local search ability but also in the global 

search ability．For some multiple-extrema functions， 

LQMC method may be led into“wrong track”，while 

AQMC method is able to find the various local extrema 

including the global exffemum ． 

Exam ple 2 

厂2( )=一∑ sin( )，一500≤ ≤500． 
= l 

The global minimum  of厂2 is reached at = 

420．9687，i= 1，⋯ ，11,．Th e loc al mi nima are reached 

at (H(0．5+k)) ，k= 0，2，4，6 and 一 

(u(o．5+k)) ，k=1，3，5．Points =420．9687， 
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i=1，⋯，n，i≠J， =一302．5232 reach the sec— 

ond mininluln， they are far away from the global 

mininluln point． It has likely been led into “wrong 

track”through general search methods． Let n = 2， 

tOMC method stayed at the second mininlunl，while the 

AQMC method found the global mininluln point 1= 

420．9690988064， 2 = 420．96909888064 after calculat— 

ing 1328 function values(the ell'Or of size O(10 ))． 

The second nlin~ a and some other local minin'la close 

to the global mininluln have also been found by the 

AQMC method ． 

Th e computational results show the following： 

1)AQMC is a global optimization method while 

tOMC and SNTO may lead into“wrong track”． 

2)The local search of AQMC is about 5 times faster 

than tOMC and SNTO． 

3)The population size of AQMC is rather less than 

the sample size of LQMC and SNTO． 

4)AQMC method is able to find various local ex— 

trem a． 

4 Conclusion 

As showed  in Theorem 1 and the numerical experi— 

ments，adaptive quasi-Monte Carlo search method  is a 

global search method ．In particular，the adaptive tech— 

nique in local search speeds up the search hugely．It is 

worth pointing out that the AQMC is able to fred various 

local extrema，it is very useful in many appfications of 

optimization．W e suggest that the adaptive loc al search 

of AQMC be used for localization of search combined 

with GA(genetic algorithms)．It can be safely expected 

that the hybrid algorithms will be promising． 
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