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Abstract: Neyman-Person criterion in hypothesis testing is a method based on the probability rate for problems like classi-
fication, detection, and pattern recognition. Solutions through neural network to those problems would be very desirable. How-
ever, the traditional least square learning algorithms, like backpropagation, provide no guarantee for success. This paper intends
to improve a kind of non-least-square learning algorithm, decide the criterion of the probability distribution and give a better al-
gorithm based on the absolute error. Aside from theoretical argument, the proposed algorithm is examined on a simulated prob-
lem and compared with other algorithms. The simulative result proves that the new algorithm has fewer errors and is more suit-

able for the Neyman-Person criterion.
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1 Introduction

Hypothesis testing plays an important role in object
detection, which is based on the statistic theory and has
a lot of criterions, such as Bayes criterion, Neyman-
Person criterion, min-max criterion and so on. These
rules are widely used in radar signal detection, multi-
sensor NDT ( non-destructive testing) data fusion and
medical diagnosis. Many research works have been car-
ried out to realize these criterions and methods. Solu-
tions through neural network to those problems would be
more popular.

BP algorithm is a widely used algorithm for feed-for-
ward neural network!!). It is a least square leaming al-
gorithm and has some demerits' >3] such as slow learning
speed, less stabilization of the learning and memory,
and so on. In some cases its operation result is likely to
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only get the local minimal point. Therefore it provides
no guarantee for success to realize those criterions in hy-
pothesis testing. Barnard!*) gave an example to illustrate
that BP algorithm can not be used to realize the Bayes
rule. In this paper, we improve one non-least-square
learning algorithm to realize Neyman-Person criterion
used in data fusion, decide the principle of the probabili-
ty distribution and give a better algorithm based on the
absolute error.
2 New neural network realization algo-
rithm for N-P criterion

Neyman-Person criterion is very important in data fu-
sion. Its object is to maximize the detection probability
subject to a given false alarm probability. We will make
some definitions before the following detailed discus-
sion. H; and H, represent two hypotheses. S represents
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the detection probability ( p;), which is the probability
of deciding H; when H, is active. a represents the false
alarm rate ( p;) , which is the probability of deciding H,
when H, is active.

As for the neural network is shown in Fig.1, there
are N neurons in the input layer, whose input is x;, re-
sponse function is T(x;), threshold is 6;, and output is
u;. There is one neuron F in the ouput layer, whose re-
sponse function is Tr(x;) ,threshold is 65, and output is
ur. The weights between the input neurons and the out-

put neuron are w;, and

1
I(x) = 77 = (D)

N
TF{(ui)} = Ewiui, w; > Ofori = 1,2,"',N.

=1

(2)
ol W,
X Wy u
2 . 7 N
LQDWN/\/
Fig. 1 Neural network structure

In the input layer, the input x; can be considered as
the ith sensor’s output. The output of the input neuron
can be calculated as follows

1, T(x) = 6;,
nT {o, T(%) < 6.

In the output layer, neuron F is the fusion center.

(3)

There must be a decision ‘randomizing constant’ r,

thus we have

N
1, iwaiui > 61;',

=1
urp =

N
1 with probability r, ifZ wu; = Op,
oy

0, otherwise,
(4)
where r € [0,1].

For the neural network shown in Fig.1, the new algo-
rithm is to assign the given Py into the different stages in
the data fusion according to some principles that the in-
put layer realizes the g(a) and the output layer realizes
g (a). Then the samples {y;} | are input to get the
trained parameters {6,605, 6y, w1, w2, , wy, OF,
r}. In the layer-by-layer (LBL) algorithm{®!, both the

input layer and the output layer realize the false alarm
probability a . However, because of the uncertainty and
inadequacy of the input samples, the problem becomes
very complex. So the LBL algorithm has big error and
need more training data. In the new algorithm, we de-
note g’ (a) = a. If the data input to the input neurons
have the same distribution, we have
g(a) = Co(l - ), (s)
where0 < Co < 2. N < k,then N, = N. fN = k,
then V; = 1. If the data transferred to the input neurons
have different distributions, we have
g'(a) = wa, (6)
where g'(a) is the false alarm probability realized by the
neuron i.w' is the parameter defined according to the
distribution and 0 < w' < 2.
2.1 Determination of the thresholds of the in-
put neurons
Under the following assumptions:
1) The input data x; is independent.
2) For the function f(x,1), 3 ko, k1(0 < ko < K
< ®),
ko(l - 0)* < Elf(x, DI - 68) < k(1 - 6)%.
(7)
3) For parameter l:var{f(x,I)} < ¢ < » and

{c,| satisfies:

Ecnzwandz&,sw, (8)
n=1 n=1

Blum'®! certified that
bt = b= el f(2a, )], 0= 1,2,3, (9)
must converge to § with probability one.
For the neural network shown in Fig.1, we give a re-
cursion formula:

Onit = On+ cilu(ys,0h - g(a)],  (10)
where y% is the data deriving from Hy. 6} is the random
value of the neuron i.c, = c/n, where ¢ is a positive
integer. According to formula (10), the first layer will
realize false alarm probability when 6, is converged. If
the sensor’ s data have the same distribution, the training
samples {y;} /" are input into one neuron, and get the
value of ¢ adapted to all input neurons. If the sensor’s
data have different distributions, the training samples

{ y} f jK=N1 are input into each neuron, and get the threshold
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value §;.
2.2 Determination of the weights

Let P;(uy,uz, ", uy) be the multivariate probability
distribution function of u;, us,-*", uy under hypothesis
H,,i = 0,1. Define g(a) = a,g(B) = b, we have
P (ui,up,yuy)
PO(ulvUZv'“!uN) -

Zlogu—(l‘%,
(11)

Tp{(ui)} = log
Pi(u)
Zlogpl( 3=

i.e.:
el ()} = D wa = Dlom o e
(12

Absorbing the constant ) | log[ (1 - 5;)/(1 - a;)], we
have

b (1
w; = log ((1—(11); (13)
2.3 Determination of the threshold of the out-

put neuron
In the training process, {y;}X"| are inputs to the neu-
ral network and the parameters §,,6,, ", 0y, w; do not
change. According to formula (10), we have
Thel = Tn — c,:{up(ﬁp,r,,) - g’(a)},

gp(n + 1) = 81;‘" - [r"+l], forn = 1,2,...,K]V,

Thel = Thnel — [’n+1];

(14)
where [ r,.; ] represents the integer part. @, is a random
value. ¢, = c’/n,c’ is a positive integer. In the sec-
a. Then we can determinate {9,
,wy,0p,rt.

ond layer, g'(a) =
82,"',8[\],101,102,"'
3 Simulations and comparisons

In this section, the effect of the new algorithm on an
actual hypothesis testing problem is simulated. The algo-
rithms compared are Bayes optimization rule and LBL
algorithm. In order to give a distinct result, we present
a simple problem. Assume Hj, H; subject to the Gaus-
sian distribution, and

fo = N(O,1), fi = N(1,1). (15)

For the Bayes optimization problem realized by BP al-
gorithm, we assume that P(H,) = P(H,). The Bayes
optimization fusion mule is shown as follows

> Ludog ™ + (1 - wlog 5] > log £
il 4 (1 - )l 1
iz1 Hioe Py M08 Py € p,’

(16)

where P,, = P(u; = O/Hl),Pfl_ = P(u; = 1/Hyp).
For the new algorithm, note that ¢, = 1, so we have
gla) = (1 -7 )a, (17)

where a = 0.1, N, = 8. The simulation results are

shown in Fig.2 and Fig.3.

Q 88 U7

Detection Probability
OO

O =N WR LN Goolo—

New LBL Bayes
False Alarm Problem; = Detection Problem; g Error Problem

Fig. 2 Comparison of three algorithms
Figure 2 shows the result that when 1500 training
samples are given, the new algorithm has bigger detec-
tion probability than LBL algorithm and the false alarm
probability gained by the new algorithm is nearer to a.

25000
20000

:

10000

Training Times/Times
wh

0

New LBL
Fig. 3 Comparison result of two algorithms

Figure 3 shows the result when the false alarm proba-
bility is given. In order to realize the same false alarm
probability, the speed of the new algorithm is faster than
LBL algorithm
4 Conclusions

This paper presents a nmew non-least-squares neural
network realization algorithm for the Neyman-Person cri-
terion. The distribution principle of the false alarm prob-
ability is also discussed in this new algorithm. The sim-
ulation results illustrate that this new algorithm is more
suitable to realize Neyman-Person criterion and provides
a useful tool for multi-sensor data fusion based on the
neural network.
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