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Abstract: Exponential stability of associative memory neural networks with delays, in which there are more equilibria

corresponding to different modes, is discussed by employing the inequality techniques and the properties of nonnegative matri-

ces. Some estimation results about the exponential attraction domain and the exponential convergent rate of equilibrium and suffi-

cient conditions for associative memory neural networks with delays to be exponentially stable are obtained. These results can be

used not only for evaluation of error-correction capability of associative memory neural networks with delays, but also for the

synthesis of such networks.
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1 Introduction

Hopfield neural networks has attracted the attention of
the scientists, due to their promising potential for the
tasks of classification, associative memory and parallel
computation, etc., and various results were reported
(see [1 ~4]). However, in hardware implementation,
time delays occur due to finite switching speeds of the
amplifiers and can affect the stability of a network by
creating oscillatory and unstable characteristics. It is im-
portant to investigate the dynamics of Hopfield neural
networks with delays(see [5]). Some paperst®~® dis-
cussed the stability of Hopficld neural networks with de-
lays and established some sufficient conditions for global
stability and some methods of estimating exponential
convergent speed of equilibrium. But they did not con-
sider the estimation about error-correction capability of

such networks. In fact, there can be several equilibria in

a Hopfield neural network with delays, these equilibria
correspond to different modes. In the case of employing
the networks for associative memories, it is desirable
that each equilibrium be asymptotically stable and the
domain of attraction of equilibrium be estimated because
it is much relevant to evaluation of error-correction capa-
bility and the domain of attraction of equilibrium. The
capacity of associative memory can be analyzed with the
extent and the rate of error-correction. However, to the
best of our knowledge, little has been reported about the
results on estimation of the exponential attraction domain
and exponential convergent rate and evaluations of error-
correction capability for associative memory neural net-
works with delays. In this paper, we will discuss the
asymptotic behavior of Hopfield associative memoryneu-
ralne tworks with delays and obtain some sufficient cri-

teria for exponential stability of such networks and some
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methods on estimation of the exponential attraction do-

main and exponential convergent rate of equilibrium of
such networks by employing the inequality techniques
and the properties of nonnegative matrices.
2 Main results

Throughout this paper, [R” denotes the n-dimensional
Euclidean space and 2} = {z}- lz=(z1,,2,)TE€ Q,
z = 0} where the set 2 c R". We define [x]* =
Loy Ly, 1 )T forz = (2,0, 2,)" €ER®. 2 <
ymeans x < y and x; < y;(i € I') for x,y € R}
where I' = li:x; =« 0,1 < i < n}. The symbol p(4)
denotes the spectral radius of a square matrix A and
WP(A) the characteristic space associated with p(4).

In the paper, we consider the following Hopfield as-
sociative memory neural networks with delays

w.(6) = ~ban(D)+ ) Tig (e )) vei,

t=1,",n,t =0, (1)
where u;(t) is the state of i-th neuron, b; > 0, T;; and
¢;(i,j =1,-,n) are constants, 0 < z',-j(t) < (i =
1,**, n) where 7 is a nonnegative constant and g;: R —
R(j = 1,--*,n) is a continuous function. The initial
conditions associated with system (1) are of the form

u(s) = ¥i(s), i =1, ,n, s € [-7,0],
(2)
where ¥;:[ - ,0] = R is continuous. We assume that
the solutions of the system (1) and (2) exist' and u*
= (uf ,,u, )" is an equilibrium of the system (1),
that is,

—bu! + 2 Tyg(uf) + ¢ =0(i = 1,-,n).
j=1

(3)

Definition A setD c R*(D - {u "} is nonempty)

is said to be the exponential attraction domain of the e-
quilibrium  * of the system (1), if there are constants
M = land a > O such that, for all ¥ = (¥, ",
¥, )':[- ,0] > D, the solutions u(t) of the system

(1) satisfy

lu(e) -u" |l sMI¥-u"ll.,e% Vt=0,
(4)

where || + || denotes some nomand || ¥ - u* ||, =

max Il ¥(s) —u” |l .ais called as the exponentially

TS
convergent rate.

Let x,(¢) = u;(¢) — uf and fi(x;(t — 743(2))) =
g (u;(t - 7;(¢))) - gi(u; ), and the system (1) can
be written as

£(2) = = b)) + 2 Tyf(xle - 7)),

i=1,",n, (5)
and the initial condition (2) as
%;(s)=T(s)-u =¢i(s), s € [-7,0],i = L,-,n.
(6)
Thus the system (5) has equilibrium O and the stability
analysis of the trivial solution of the systems (5) and
(6) is equal to the equilibrium u * of systems (1) and
(2). So, we will only discuss the stability of the trivial
solution of the system (5) in the paper.
Theorem 1 Assume that the system (5) satisfies
H) f:R—R(j = 1,"*+,n) is continuous function;
H,)
| filx (e - 73(e))) I <
il 5 () W N (x(e—zy(e (i, j=1,--,n),
where p;(+) 2R is continuous and monotonically non-
decreasing in O and {| %;(¢) | = max 1 %(c+s) 1

H,;) There exists a positive vector K = (ky, =, k,)"
such that p(P(K)) < 1, where P(k) = (py(k;))nxn
| Ty | p;(k;)

b;
are vector d = (dy,"*,d,)" > 0 and constant ¥’ =
max {d7'k;} such that the set Hx g = {x € 2 |

lgign

(x]*< (dy,"*,d,)"k’'} is an exponential attraction
domain of the trivial solution of system (5) and the ex-
estimated by

is n x n matrix and p;(k;) = , then there

ponentially convergent rate « is

max { o(P(K) 12} < 1.

lgign

Proof Since p(P(K)) < 1, there are constants
d;, > 0(i = 1,--,n) such that, fori = 1,"**,n,
| Ty 1 pi(k)
—‘bi— <1
By continuity of p;(+), there are a sufficient small posi-

D didp(k) < 1, or D) di'd;
i=1

i=1

tive constant & and a positive constant ¢ < max { b;}

lgign

such that
n | Ty | pi(k; + 8d;)
max Zd,-‘ldj REA e < 1. (7)
lgign ; bi -a

Let x(t) = (x,(t),"*,x,(¢))T be the solution of
the system (5), then, by constant variable formula, we
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have
x(t) =
t n
¢i(0)e'[’-‘+j02 T, fi(x(s~73(s)))e b= ds,
j=1
t >0,
o), -rt<t=<0.
(8)
Setting
(1) {d{l b 2;(t) 1 e®, t =0,
Z; t =
di'te(t)1l, -rt<t<0,

then || x:(¢) Il . < d: |l z(¢) || .(¢+ = 0). Taking ab-
solute value and multiplying both sides by d;'e in (8)
and using assumption H,), we have

z(t) <z(0)e b 4
t n
JOE | Ty | d7'dp;(d; || z(s) | )z(s -
j=1

Tg(s))e"e‘(”f“’)("‘)ds. (9)
Noticing, when ®(s):{ - v,0] — Hg 4, there are pos-
itive constant £ < %" and r € {1,'-",n} such that
' e ll. = kanddi' [ ol . < k(i 2 r). We
first show that, for @(s):[ ~ z,0] — Hy, 4, the above
kande € (0,0),

2(t) < (k+e)E < (K +€)E, Yt =0,
(10)
wherez(t) = (zl(z),'-',z,,(z))TandE = (1,"',1)T
is an n-dimensional column vector, of which each com-
ponent is 1.
If (10) is not true, there must be some ¢; > 0 and [
€ {1,--,n}, such that
z(t)) =k+e, and z(¢t)< (k+e)E, V¢t € [0,¢,].
(11)
By(7), (9) and (11), it holds
k+e=z(t) <

t n
(k+e)e o 4 fo'Z | Ty | di'dp;(d;(k +

i=1
ek + e)eTe brdl=s)ds <

(k +eYemad 4 E | Ty | dr'dp;(k; +
1=1

e"(br_")'l

dje)(k+e)e‘"l_ <

b - a
(E+e)e @ 4 (k+e)l-e %) =k te,
which is a contradiction and so (10) holds. Let ¢ — 0,

and we get

2(t) < kE = &' |l o | E, Yt =0.
Thus there is constant M’ = 1 such that
Izl <M 81l ¢t =0 (12)
This implies that, for @ :[ - z,0] — Hy 4, ,there are
constant M > 1 and @ > O such that
lz() Il s M| @l e, ¢ =0. (13)
Sotheset He,y = {x € 21 [x]* < (dy,+,d,)Tk'}
is an exponential attraction domain of the trivial solution
of system (5).
Because ¢ is sufficiently small in (7), the exponen-
rate a is easily estimated by
be™

Jé‘f’i‘n{”(”("))bl

tially convergent

a} < 1 using the spectral proper-
ties of nonnegative matrix.

From Theorem 1 and its proof, we can get the follow-
ing corollaries .

Corollary 1 If the assumptions H; ) and H,) hold
and there exists a nonnegative constant 4 such that, for
2 I T; | pi(k;)
i b
{xER 1 x = (21, ,2,)TE 2, 1 x;, | < k] isan
exponential attraction domain of the trivial solution of

t=1,,n, < 1, then the set D =

system (5) and the exponentially convergent rate a is es-

timatedbylm_a.x{ ! T,;IPj(k)I;ef—a}<1.
sigal ;0 i

Corollary 2 If the assumptions H;) and H,) hold
and o(P(0)) < 1, then the system(5)is exponentially
stable about the trivial solution.

Corollary 3 If the assumptions H; ) and H,) hold
and for any nonnegative vector K , there is p(P(K))< 1,
then the system (5) is globally exponentially stable about
the trivial solution and the exponentially convergent rate a

is estimated bysxll(p,o(P(K)) X max{ b }< 1.

1sienll; — a

Similarly, by properties of nonnegative matrices, we
obtain still the following theorem.

Theorem 2 If the system (5)satisfies H;) and H;)
and the set H ~ {0} is nonempty where H = {x € Q2 |
[z]* < K,[x]*€ W,(P(k)),p(P(K)) < 1}, then
the set H is an eXponential attraction domain of the triv-
ial solution of system (5) and the exponentially conver-

bie‘"
< 1.
a

gent rate a is estimated by ,o(P(K))b

1
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