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Abstract: This paper addresses the robust H,,-almost disturbance decoupling problem with stability (RADDPS) for a
class of uncertain time-delay systems. The paper presents a sufficient condition for the feasibility of RADDPS via linear matrix
inequality and algebraic Riccati equation, respectively. In addition, the corresponding state feedback controllers are constructed

to solve RADDPS by the proposed approach.
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1 Introduction

Robust almost disturbance decoupling problem with
internal stability (RADDPS) is to find a controller such
that the closed-loop system is asymptotically stable, and
satisfies any given L, gain constraint in the presence of
uncertainties. Recently, [1] discusses the RADDPS for
a class of smooth systems with structural uncertainty.
However the RADDPS for systems with uncertainty has
not been fully solved in the literature and there are few
results on the ADDPS for time-delay systems. In this
paper we address the RADDPS for a class of systems
with time-delay and uncertainties.

Almost disturbance decoupling problem with internal
stability (ADDPS )!?] has been an interesting and practi-
cal topic in control theory for many years. In [3], AD-
DPS is solved in terms of necessary and sufficient geo-
metric conditions, which involve almost controlled and
almost conditionally invariant subspace. Since then,
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various extensions to nonlinear systems have been made.
These works in [4] solve ADDPS for a class of SISO
nonlinear systems. In a different formulation, [5] dis-
cusses the ADDPS of linear systems subject to input sat-
uration and input additive disturbance. It is well known
in [6] that the sufficient conditions for solving robust
H. control problem for time-delay systems are often re-
alized as linear matrix inequalities (LMIs) or algebraic
Riccati equations ( AREs). However, these IMls or
ARE:s are dependent on the prescribed disturbance atten-
uation level ¥, and may not always be feasible when 7
varies, especially when 7 is very small. Hence, the tra-
ditional techniques developed in the literature for robust
H, control can hardly be applied in solving the RAD-
DPS for time-delay systems. In this paper, a design of
state feedback controller is developed to solve the RAD-
DPS in terms of LMIs, which is independent of 7. In
addition, further discussion is made for the feasibility of
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the IMIs in terms of the equivalent modified ARE.
2 Problem statement

In this paper, we consider the following class of sys-
tems with time-delays and parameter uncertainties:

r

(1) = D (A + 0A(D)]x(e - d) + [B +

i=0
AB(2)Ju(e) + Dw(t) +[ A1 +A4,,,(2) ]
gle,x(e),x(t - dy),,%(t ~ d)],
z(t) = Cx(t),

(1)
where x(¢) €ER",u(t) € R™,w(t) ERPand z(t) €
R® are respectively the state, the control input, the dis-
turbance input and the controlled output; dy = O and d;
= 0(i =1,2,,r) are the time-delays; A;,B,C,D
are known constant matrices with appropriate dimensions
(i =0,1,+,r +1);AB(t),AA;(t) are appropriately
dimensional matrices representing time- varying parameter
uncertainties which are sometimes denoted as AB and
AA;fori = 0,1, ,r + l;g[t,x(t),x(t -dy),,
x(t — d,)] is known vector-valued continuous function
and can also be regarded as a perturbation for systems
(1) . For convenience, we denotex,,._ =x(t-d)(i =
O,l,“',r),xdo asx,g = g[t,x(t),x(t ~dy)y,
x(t - d,)].

The purpose of this paper is to discuss the robust H.,
almost disturbance decoupling problem with internal sta-
bility (RADDPS) for systems (1). That is, this paper
presents a sufficient condition under which for any given
Y > 0, a linear state feedback law can always be found
such that the resulting closed-loop systems for systems
(1) are globally asymptotically stable with the distur-
bance attenuation constraint || z(¢) ||, < ¥ Il w(2) |,
for all allowable uncertainties.

The following assumptions will be used in the sequel.

Assumption 2.1 The uncertainties AA;(¢) and
AB(t) satisfy the following conditions:

AA(t) = HF,(t)N;, AB(t) = HF,(t)N,,
{ FF(OF() <1, F(0)F () < 1,

(2)
where H;, N;, H,, N, are known constant matrices with
appropriate dimensions. The matrix-valued functions
F;(t),Fy(t) are time-varying Lebesgue integrable,
i=0,1,2,-,r +1,

Assumption 2.2 Assume that D, B, H, and g sat-
isfy the following conditions:

i) There exist constant matrices Dy, H, with appropri-
ate dimensions such that D = BDg and H, = BH,,O;

ii) There exist a constant ¢; > 0 and constant matrices
E.(i = 0,1,2,**-, r) with appropriate dimensions such
that

g'e < 2 c,-xd’iEfE,-xdl. (3)

The following lemma‘“:ill be used in the proof of the
main results of this paper.

Lemma 2.1 Assume that A, H, N are real con-
stant matrices with appropriate dimesions. If F' (¢) F(t)
< I, where F(¢) is a matrix-valued function with ap-
propriate dimension, then the following matrix-inequali-
ties hold.

i) HF(t)N + NF(O)H <

e 'HH' + eN'N, Ye > 0.

ii)

(A + HF(t)N][A + HF(t)N]) <
A(I - eN'N)'A" + e ' HH'

with ¢ > O satisfying eN'N < 1.

3 Main results

The following theorem is the main result of this pa-
per, which shows that if two LMIs (5) and (6) are fea-
sible, then the RADDPS is feasible and a state feedback
control law be constructed by the LMIs, simultaneously.

Theorem 3.1 Under Assumptions 2.1 and 2. 2,
the RADDPS for systems (1) is feasible via the follow-
ing form of state feedback

u(t) == 1+ 9)BX'2(1), =0, (4)
if the following I.MIs on X, Y and positive constants ¢,

(i =0,1,*",r + 1) are feasible.
- 21 + SNéNb Hbo
<0, (5)
L Nb(: — el
ry r, I
ry r, 0|<o, (6)
\Fé 0 Ps

where
Fl: = AoX + XA(S - 2BB' +€BN[;N[,BI +€0H0H(I),
Iy:=X(IINy), I'y:=(Ay** Ay Hy -+ Hyy Hy),
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I's: = blockdiag(-Y, —(Zc,-ESE,-+rI)'l, -eol),

i=1
I's:=blockdiag( - I+ NNy, s =T+, Ny Neyys
—e >, - ead, - €l).
Proof Suppose that X, Y are the solutions of LMIs
(5) and (6). For convenience, let P = X°',Q =
Y~'. Choose a Lyapunov functional candidate

V= 2(T)Px(t) + Zj:_dx’(s)(l + ¢EE)x(s)ds.

(7)
Thus, the derivative of V along the closed-loop systems
(1) and (4) is
v =2x’PZ (4; + AAi)xd‘_ +2x'P(A . + DAL )g +

i=0

24'P(B + AB)u + 2'PDw + ' D (I +
i=1
cE/E)x - Dgal (I + cEE)xy. (8)
i=1 ' '
It follows from LMI (5) and the Schur Complement
Lemma!®) that there exists an ¢ > 0 such that R.: =121
- e'lH,,oH,,(; - eN{N, > 0. 1t follows from Assumption
2.2 and Lemma 2.1 that for 7 > 0, we have
2x'PDw = 22’ PBRY’R;'Dow <
7' PBR.B'Px + n~'w' D4R;'Dow. (9)
Using (3),(4) and (9), we have
14 s2x’PZ (4; + AAi)xdi +22'P(A .+ M )g -

i=0

21 + 7)x'P(B + AB)B'Px+x’ D, (I+cEE)x—

i=1
Doxd (I + GEE )z + D cxiElExy —
=1 ! ' i=1 ' '

g'e + 'PBRB'Px + 7~ 'w'D4R;'Dow.

Let
M, Ml)
2: = , 10
Lt (1)

where
My: = P(Ag + AAg) + (Ag + AAg)'P -
(1+9)P[(B+AB)B' + B(B+AB) 1P+

r

2 (I + ¢EE) + Q + nPBR.B'P,

i=1

My: = (P(A, + AAY) P(A,, + AALL)),
(11)

then

V<-20x + 77 wDR:'Dow + 202", (12)

where Z: = (& xd: xd; xd: g).
Next we shall show that
0 < 0. (13)

For any €9, > 0, by Lemma 2.1, we have

[ PAAg + AAGP < eqPHoHGP + e5' N§No,

- (1+7)P[(B+AB)B + B(B+AB)Y]P =
J -2(1 + p)PBB'P - (1 +

7])PB(H,,OFbN,, + NgFgH,,;)B’P <

\ - PBRB'P - 7PBR.B'P.

(14)
By (11) and (14), we obtain
Mo < PAg + ASP — P(BRB' - eoHoHY) P +

EO-lNéNo + ZC,’EEE,‘ +rl + Q (15)
i=1

In addition, it follows from the Schur Complement Lem-
ma'®) that IMI (6) implies that there exist constants
g; > Osuch that I - ¢NiV; > 0, and

r+l

AoX + XA, - BRB + DT, + eoHoHy +

1=1
X(D) GEE + e5'NyNo + rI)X + XY™'X < 0,

i=1
(16)
where T;: = A;(7 - eNiN;)™"Al + e7'"HH,, i = 0,1,
e, + 1.
Then it follows from (15) and (16) that we have

r+l

My <- PO, TP. (17)

i=1
Furthermore, it follows from Lemma 2.1 that we have
P(A;+0A;))(A;+0A))P< PTP, i=1,2,-+,r+1.

(18)

r+l

Then (17) and (18) imply Mo + P D (4; + AA;) (A4

i=1

+ AA;)’P < 0. By means of the Schur Complement
Lemmal®!, (13) holds.

Therefore (12) and (13) imply

V<-2Q0x+ 77 'wDiR:'Dow. (19)

Ifw = 0, then V < - 2’Qx, which implies that the re-
sulting closed-loop system is globally asymptotically sta-
ble.

Next we shall show || z(¢) |, < ¥ | w(e) || 5. Let
x(t) be the trajectories of the closed-loop system of (1)
and (4) with initial condition x(¢) = 0(z < 0). Inte-
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grating both sides of (19) form O to ¢, we have that
t t
Aol @)1 %1175 < 77 I DREDo I [ 1 w1 2.

. [ | D§R;'Dy |l
Thatis, |21, < —77—;;"—(—(;)‘ | wll . For any

| DER:'Do Il Il C I ?
yzAmin(Q)
7= 7"(r), thenwehave || z Il 2 < 7 Il w ||, which

Y > 0, choosing 7" (7) =

completes the proof.

Remark 3.1 It can be seen from Theorem 3.1 that
IMiIs (5) and (6) arc independent of the disturbance at-
tenuation level ¥. For any given ¥ > 0, the control law
(4) can be easily constructed by means of MATLAB
LMI Toolbox!®).

Theorem 3. 1 implies that if LMIs (5) and (6) are
feasible, then the RADDPS is feasible. It is usually hard
to present a sufficient condition to guarantee the feasibil-
ity of LMI directly. In order to present sufficient condi-
tions to guarantee the feasiblility of LMIs (5) and (6),
from Theorem 3. 1, we obtain similar result based on
ARE as follows:

Theorem 3.2 Under Assumptions 2.1 and 2.2,
the RADDPS for systems (1) can be solved by the feed-
back law u(t) = - (1 + 7)B'Px{(t)(5 = 0) if there
exists a positive definite solution P for the following
modified ARE

rel

PAg + A(P - P(BRB' - >, T, — eqHoH)) P +

i=1
r

D cEE; + G NiNg + rl + Q = 0, (20)

i=1
where T;: = A;(I ~ ¢,N:N;)'A; + e'HH,,Q,e and
¢; are properly chosen constant positive definite matrix
and positive constants with R, = 2/ -~ ¢~'H, H, -
eN;N, >0and I - g;NN; >0, =0,1,2,-~,r+ 1.

Proof The proof is similar to that of Theorem 3.1,
therefore omitted.

The following remark presents sufficient conditions
under which the modified ARE (20) is feasible.

Remark 3.2 Suppose that (Ag, B) is stabilizable
and there exist constant matrices Hy = BHy, Ag;, Hy;»
ande; > Osuch that H; = BHp;, A; = BAo:(i = 1,2,
=1+ 1) and

eViN; < I,

I

r+l
Ro— D0 [Agi(I-eNiN;) " Aol + €7 HoHo! ] > 0.

i=1
r+l

Let R(eg): = R ~ 2 [Au(l - eNiN;)'Aof +
=1

e7'Ho;Hy' ] — eoHooHy » noticing that the matrix-valued
function R{eq) is continuous function of e, then there
exists a sufficiently small e > O such that R(ep) > O.
It further implies that the modified ARE (20) has a u-
nique positive definite matrix solution P, see [10]. It
follows from Theorem 3.2 that the RADDPS for the sys-
tem (1) is feasible.

Remark 3.3 From the proof of Theorem 3.1, it is
easy to see that the modified ARE (20) and IMiIs (5)
and (6) are equivalent. That is, both Theorems 3.1 and
3.2 give an equivalent relationship to the RADDPS. It
can be seen that the modified ARE (20) is always feasi-
ble under some conditions according to Remark 3. 2,
then the feasibility of LMIs (5) and (6) can be guaran-
teed in this case. One of the advantages of using IL.MIs
in Theorem 3.1 is that the solutions are obtained without
tuning any parameters, while some parameters are re-
quired to be tuned to search for the solutions in the mod-
ified ARE (20).

4 Conclusions

This paper presents a new way to implement a robust
controller for RADDPS for a class of time-delay systems
with uncertainties. A state feedback controller has been
constructed by means of LMIs. The necessary conditions
for the RADDPS are under investigation, and further
analyses are camied out to construct dynamic output
feedback controller to solve the RADDPS for a wider
class of systems with uncertainties .
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