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Abstract: This paper extends the continuous-time dynamic replication theorem for incomplete Markets, which is proposed
by Bertsimas, Kogan and Lo (1997){"). Then this extended dynamic replication theorem is proved using the theory of the

stochastic optimal control.
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1 Introduction

In financial risk management, pricing and hedging
derivative security is an important problem (see [2,
3]). Perfect hedging is impossible in incomplete mar-
kets. To evaluate contingent claims in incomplete mar-
kets, researchers have proposed many new concepts.
Schweizer (1992,1995)[*5) solved the dynamic replica-
tion problem with a mean-squared-error loss function un-
der the probability measure of the original price process.
Recently, Bertsimas, Kogan and Lo (1997)!") proposed
an interesting term e-arbitrage to replicate and price op-
tions in incomplete markets. Although Schweizer consid-
ered the general stochastic processes, Bertsimas, Kogan
and Lo focused only on Markov price processes and used
various principles to characterize the optimal replication
strategy . The Markov assumption allows them to obtain
thorough results. However, Bertsimas, Kogan and Lo’s
result is derived under the assumption that riskless inter-
est rate is zero, and they did not prove the theorem. In
this paper, we extend their result to the case that riskless

interest rate is not zero. Finally, this extended dynamic
replication theorem is proved using the theory of the
stochastic optimal control.

2 Problem

Consider an asset with price P, at time ¢, where 0 <
t < T. Let F(P,, Z,) denote the payoff of a European
derivative security at maturity date T'. It is a function of
P and some other variables Z;.

As suggested by Merton (1973)!6}, the derivation of
the Black-Scholes formula is to find a dynamic hedging
strategy-purchase and sale of the stock and the riskless
asset on [0, T']. The strategy is supposed to be self-fi-
nancing and to come as close as possible to the payoff
F(Pr,Z7) at T. To formulate the dynamic replication
problem more precisely, we begin with the following as-
sumptions :

H1) Markets are frictionless, i.e., there are no tax-
es, transaction costs, short sale restrictions and borrow-
ing restrictions.

H2) The riskless borrowing and lending rate is r.
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H3) There exists a finite-dimensional vector Z, of
state variables whose components are not perfectly corre-
lated with the prices of any traded securities, and
[P,,2,) is a vector Markov process.

Consider a portfolio consisting of the stock and the
riskless bond with initial value V; at time 0. Let ,, B,
and V, denote respectively the number of the shares of
the stock held in the portfolio, the dollar value of the
bonds, and the market value of the portfolio at time ¢,
where t € [0, T]. We have

V, = 6P, + B.. (1)

In addition, we impose a condition that after time O,
the portfolio is self-financing, i.e., all long positions in
one asset are completely financed by short positions in
the other asset so that the portfolio experiences no cash
inflows or outflows. In continuous time, this implies
that

dv, =[rV, + (uo(t, P, Z,) - r)6,P,)dt +
8,00(t, P, Z,) P,dWy,, (2)
where r,uo(t,P,,Z,),00(t, Pi,Z,), are called the
interest rate, the appreciation rate and the volatility, re-
spectively; Wy, are Wiener processes.

We seek a self-financing hedging strategy {6,},t €
[0, T], such that the terminal value Vy of the portfolio
is as close as possible to the option’s payoff F(P,, Z,).
While there are many criteria to measure the “close-
ness”, and each given rise to a different dynamic repli-
cation problem, we choose a mean-squared-error loss
function. Hence our version of the dynamic replication
problem is (see [7,8])

rr}’inE"[ Ve - F(Pr,Zp) TP (3)

subject to the self-financing condition (2), the dynamics
of [P,,Z,]" and the initial wealth V,. The expectation
E® is taken with respect to a probability measure v that
represents the randomness of the difference Vr — F(Pr,
Z;), conditional on information at time 0.
3 Statement of the theorem
For the continuous-time case, let [ P,, Z,]’ follow a
vector Markov diffusion process
dP, = po(t,P,,Z,)Pdt + ao(t,P,,Z,) P,dWy,,
(4)
dZ, =ui(t,P,,2,)Z;dt + o;(¢,P,,Z,) Z;,dW,,
j=1,2,>,N, (5)

where w;,j = 0,1,++, N are Wiener processes with mu-
tual variation d W,dWj, = pi(t, P, Z,)dt.

The continuous-time Bellman principle is the Hamil-
ton-Jacobi-Bellman equation (see [9,10]), and this
yields the following results:

Theorem Under Assumptions H1) ~ H3) and (2),
if the value function J(¢,V,,P,, Z,) is quadratic with
respect to V,, i.e., there are functions a(t, P,,Z,),
b(t,P,,Z,) and c(t,P,, Z,) such that
J(e,V,, P, Z) =a(t,P,Z)[V, - b(t,P,,Z)]*

c(t,P,,Z,), 0t < T, (6)
then the solution of the dynamic replication problem (3)
is characterized by the following conditions:

i) For ¢t € [0, T] the functions a(¢,P,,Z,),b(¢,
P,,Z,) and c¢(t, P,,Z,) satisfy the following system of

partial differential equations
1 x Pq
) Zﬂﬂz Z.Z; Py IZIZ; =

£j=

2(#0—") ¥ da
—ngjszo;a—zj+
j=

—(’)—t*'Z/‘]]aZ

((ﬁogn;r)2 - 2r)a +

o0
—Uz_) o0:Z:Z; Po; Lo ga. 5—;_ , (7)
_t"'Z/‘iZi; Z" Z;Puazzabz
rb + #00'; : ,Z_: 0;Z; Poj 5;
%;é)ogi 0,Z:.Z; poi poj — Pi 5—2 5—2, (8)

de S, 59 L ¢
a1 * Lutitigy * 2 2uoi0lidibi 5757, =
1= 1.j= i

N
aigoaiajzizj(POEPOj - Oy ;Zb 5; 9)
with boundary conditions
a(T,Pr,Zy) =1, b(T,Pr,2;) = F(Pp,Z7),
{ c(T,Pr,Z7) =0,

(10)

where Z; denotes the i- th component of Z, and Z, = P,.

ii) The optimal control 8 (¢, V,, P,, Z,) is linear in
V, and is given by

0*(t,V,,P,,Z,) =
% ab  Vi-bsh 9% oa
—oUOZOPOIaZi a JOUOZOPOIaZj_
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s
EC=—(v, - b). 11
a%ZO(V‘ ) (11)

4 Proof of the theorem
Proof First we define value function of the stochastic
optimal control problems (2), (4), (5) and (3) as fol-
lows
J(t,V.,P,,Z,) = I;}lglE"[ Vi - F(Pr,Zp) 2
(12)
Applying the stochastic optimal control theory to value

function J(t, V,, P,, Z,), we obtain the following par-
tial differential equation

aj(t, Vi, P, Z,) . { -
G 2 e

__2 azj(tsV:yP“Zt)
x] OUUJ aZlaZJ

a](t’ VtyPtth) +
av,

3?1, V., P, Z,)

av?

92](t,V,,P,,Z,)}_O
V,aZ, =

a](t) Vt’Pt’Zt)
7

+ [V, +

(#O—r)e(ty Vt7Ptyzz)Z0]

%(6(t7 Vz,PnZz)UOZO)2

N
6(! , Vtth!Zz)z UOUjPOjZOZj
=0

(13)
with boundary condition
J(T, V¢, Pr,Zy) = [Vp - F(Pr,Zy)]%. (14)
Let
J(¢, V., P, Z,) =
a(t,P,Z)[V,-b(t,P,Z)P+c(s,P,,Z,), 0< t<T.
(15)
Using equations (7) and (10), we can check that
function a(-) is positive. Therefore the first-order con-
dition is sufficient for the minimum in (13). We have

(,Uo r) aJ N
. ~ Ty, 1 ?J
6 = — 82 82 Eajz,pOJavaZ.
0‘2Z _] caZ ji=0 t )
0 OQV% 040 5y
(16)
Substitute (15) into (16) to obtain
* (,UO )
g% = -b)-
o270 (V,=b)
i [ (V.=b)—a =~ b
o0 Zopa i 9 Poj dZ; 2,
(17)

Rearranging the terms we can get

N 92 b Ve-b
9" = .
122 UoZopof 9Z;" a
UJZJ aa (18)

=0 UOZOPOJ 8Z
which indicates that (11) holds.
Apply the optimal strategy (16) to (13), one obtains

aJ s, 3l
a;*}%}f‘fzfaz +

1y 2]
2»-2 0,022} o; 32,37, +

aJ (/lo - T)2 )2

V‘__
rtaV: 2 292]
Oav2
1.1 < 2y 3y
2 3] 0Pl Gy 57 3V,0Z, "
av?
3
(,uo—r)a—é E7
TE"’ iP% 3V,02; (19)
0057%

Substituting (15) into (19) and rearranging the terms to
obtain

da ENt Z da
da 5N, g da
It T " IZ;

2
2ar — (M) a
g9

| <&
?Z_ g,0;2:2,

P a
J Py 9237, t

2(#0 -r) < 2

o) UZPOJ aZ

1 < da da
;vzoaiajzisz01po‘, aZ az](V - b)2
ij=

Fb
+rb— Zaa, Pvazaz

N
b de
g"fzfpofaz.}(v‘ - g+

Z#}ZJﬁ'*' EUUZ Pyazaz

ab 3b
GEG‘,O']Z py‘azgz_

+,j=0

ab 3Ib
GZUinZiZjPOzPOJ aZ ﬁ—o (20)

i,j=0

Since (20) holds for all 1 € [0 T], we have

9, + 2#12153 + 5 EM;Z Puazaz
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Eo—r 2(/‘0—’—) 7 _:2_2__
2ar ‘( o ) RS ;0"12190:92,-
1s, 022, 00:p0y 22 22 < 0 21)
1 0y = )
a it J z 3z,
b s, 3 1Y b
~ 9 ;;":Zi 3z, ~ 2,;}20"1"12121"9 3292
1y da 3b
a;‘?_:oa, 0;Z:Z; pjj 32,92, * rb +
1 & da 3b
—;Z O]Zl j00: 00f 5 7 aZ aZ
"°"i 25 _o (22)
o0 9;Zj o az;="
de S, 53 1 _Pe_
35+j=zo’uz Z gzoop, 'Pﬁaziaz,-”
ab 3b
az """Zizft"iia—z. 37 "
i,j=0 i J
3y b
a 0,0 i 00f 35 5, =0. (23)
1120 2L Poi Poj 37, 97;

The results of (7), (8) and (9) can be obtained by re-
arranging terms in (21), (22) and (23).

By boundary condition (14) we can obtain (10) im-
mediately .
5 Conclusion

In this paper, we extend a method for replication
derivative securities in dynamically incomplete market.
Using the theory of the stochastic optimal control, we
construct a self-financing dynamic portfolio strategy that
best approximates an arbitrary payoff function in a mean-
squared sense. When riskless interest rate is zero, our
optimal hedging strategy coincides with the results of

Bertsimas, Kogan and Lo, which are special case of our

research.
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