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Abstract: The hybrid systems considered here consist of the continuous-valued systems under the supervision of discrete
event. We first analyze the prior results of stability using multiple Lyapunov approach and present that the stability can not be
guaranteed if only the method of multiple Lyapunov functions is used when the switching hypersurface becomes sliding mode .
Based on Filipov theory, the result of viable Lyapunov stability is obtained. When the subsystems of hybrid systems are linear
time-invariant, quadratic stabilization condition of LTI hybrid systeins is studied. Finally an example is given to illustrate the

proposed method.
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1 Introduction

Hybrid systems are dynamical systems that inherently
combine logical and continuous process, usually coupled
finite automata and differential equations. In recent years
there has been considerable interest in the modeling,
analysis and the design of hybrid control systems. Many
prior results identifying sufficient conditions for hybrid
systems to be Lyapunov stability were reported. In Ye et
all’l, a model suitable for qualitative analysis of hybrid
systerms was presented, the notion of an invariant set and
several types of Lyapunov-like stability concepts for the
invariant set were defined and finally the sufficient con-
ditions for Lyapunov stability of hybrid systems were es-
tablished. Peleties'® and Savkin® proposed a single
positive definite function as the Lyapunov function for
all controlled systems. Branicky!*! and Hou!®! presented

multiple Lyapunov function approaches that should be
applicable to a larger set of systems than the single Lya-
punov function method.

Although these prior results have provided deep in-
sight into the Lyapunov stability problem of hybrid sys-
tems, most of them did not consider the actual switching
law used by the system, which can cause the emergence
of sliding mode such that the system can not run safely.
Pettersson'®’ studied this problem and assumed that there
is no sliding mode in hybrid systems. He presented the
sufficient condition of Lyapunov stability, but this suffi-
cient condition does not contain the case that the guard
of hybrid systems, that is, switching hypersurface, can
be the sliding mode.

In this paper, the problem of Lyapunov stability for
hybrid systems is further studied. Wicks'”) proposed a
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method to solve the problem that the switching hypersur-
face is sliding mode, but the difficulty of that work lies
in constructing a stable convex combination of multiple
systems matrices. Based on the Filipov theorym
tence condition for sliding mode and prior stability re-

of exis-

sults for hybrid systems, we proposed a sufficient condi-
tion of Lyapunov stability which contains the case that
sliding mode can occur when subsystem is switched to
the next. Then the problem of quadratic stabilization is
studied by using the sufficient condition and these prob-
lems can be transformed into the LMI’s problems.
2 Modeling hybrid systems

In this section we consider controlled hybrid systems
of the form

i = foo(x(e),u(t)),
q() = v(x(2),q(t7)),

where x(t) € R*,q(t) € Q ¢ {1,-, N} Syt R®
— IR*, each locally Lipschitz vector fields; q(¢~) refers
to the left-hand limit of the function ¢(¢) at point ¢.
The trajectory of hybrid systems is the ordered pair, (x,
q), where x: R — R" and ¢q: IR — @ which solves the
system equation. The value taken by the trajectory at
time ¢ € R is denoted by (x(t),q(t)). Therefore,
(x, q) solves the system equation if and only if the e-
quations are satisfied by x(¢) and ¢(¢) for all ¢ € R.

A finite automaton associated with the hybrid system
is the directed graph (V,A) where V = [ is a set of ver-
tices and A ¢ V x Vis a set of directed arcs. By defini-

tion, the automaton associates a subsystem £ = f; with

(1)

each vertex of the (V, A). It is possible to express the
change of discrete states by defining a number of switch
sets as {2; = {x € R™| gj = v(x,q,-)}. Typically, the
set {2;; is given by hypersurface h; = 0. The hybrid sys-
tems (1) evolves from the initial conditions (zg, go) .
The order pair (i,;) is an arc of A if and only if 2; 5
$. The guard therefore represents a subset of the hybrid
system’s state space in which a switch can occur. The
set {27 represents the set in which subsystem f; remains
active.
3 Stability analysis via multiple Lyapunov
functions

In this section, we discuss Lyapunov stability of hy-

brid systems via multiple Lyapunov functions. The suffi-

cient condition presented in [4,5] and used in [9,10]
to compute candidate Lyapunov functions provide an ap-
proach for testing switched and hybrid system stability .
In the first place, the stability theorems in [4,5] require
that V; be Lyapunov-like. Those papers have not consid-
ered that switching between subsystems can lead to slid-
ing mode so that the whole hybrid systems can not run
safely. Here is an example to show that the hybrid sys-
tem can not run safely when the sliding mode occurs
even if it satisfies the requirements of Branicky multiple

Lyapunov stability.
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Fig. 1 Trajectory of hybrid systems

Example 1 Consider = f,(x) = A, x(¢) where
A ['1 3]A [2 '3] And that
= , = . su al

1 _3 _1 2 6 -4 ppose

the first switching hypersurface is h;; = x,(2) + x2(¢)
+1, z¢ = (2,0).

Then # = f,(x) is globally stable for ¢ = 1,2. But
the hybrid system using f; when A, > 0, and f, when
hiy < 0, is used. From Fig. 1, we can see that the
switching event occurs when the trajectory of hybrid sys-
tem from initial point (2, 0) clockwise reaches the hy-
persurface h;; = O, then the subsystem is switched to
x(t) = Ayx(¢t). But the trajectory evolves through the
hypersurface hj, = 0 counter-clockwise. If the switching
hypersurface is the surface of invariant set of subsystem,
it will violate the safety requirements. In addition, it can
cause other switching event so that the system can not e-
volve stable if the switching event generated by switch-
ing hypersurface is “two-sided”; that is, a switching
event occur when the hypersurface is crossed in either di-
rection. Therefore such a hybrid system can not be con-
sidered stable in the sense of Lyapunov. In the real in-
dustry process, there are many hybrid systems like Ex-
ample 1. So it is necessary to analyze the stability of
these systems and study how to design the controller that
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can stabilize the hybrid systems such as Example 1.
3.1 Prior results

Before we analyze and design the stabilizing controller
of hybrid system, the prior results on the switched and
hybrid system stability are to be reviewed. Let (x, q) be
any trajectory generated by the hybrid systems. Assume
that £,(0) = Ofor all f,, ¢ € Q. Then equilibrium point
x = 0is said to be stable in the sense of Lyapunov if and
only if all ¢ > O there exists & > Osuch that || (o) |
> & implies | x(t) || < e forall z = ¢.

Definition 1 Given a strictly increasing sequence of
times T = tg,t;,""
for function f and trajectory x( +) over T if:

* V(x(t)) < Oforall t € I( T) which is the interval

completion;

“5ty, - in R, V is Lyapunov-like

* V is monotonically non-increasing on the even se-
quence of T'.

Using this definition, a sufficient condition of Lya-
punov stability was proved in [11]. But this sufficient
condition does not include the case that the guard of hy-
brid systems can become the sliding mode when the sub-
system is switched to another subsystem. So the hybnd
systems can not run according to the requirement of safe-
ty constraints and switching logic generated by a finite
discrete event transition system, such as finite automata
or Petri net. Then the definition of viable stability can
be given as follows.

Definition 2 If the guard of hybrid systems is not
the sliding mode and at the same time hybrid systems
satisfy the sufficient condition of Lyapunov stability
in [11], then the system is viably stable.

3.2 Main result

In the sequel we present and prove the main result of
the research in this paper.

Theorem 1 Suppose we have candidate Lyapunov
functions V;,i = 1,-,N and vector fields z =
f:(x(t)) with £,(0) = Ofor all q. Let S be the set of
all switching sequences associated with the system. If for
each S we have that for all ¢, V;,i = 1,---, N is Lya-
punov-like for £, and x(-) over S/q, and for each
switching guard, we have

clim S 50, @

= . d
V€ Q, llm‘ th, dz

’I"""O hq'—'O

then the hybrid system is viably stable in the sense of

Lyapunov.

Proof For each switching guard that should be
reached and then be left, according to the idea of exis-
tence condition of sliding mode in Filipov theory[s] , we
have

. d . d
lim -k, > 0 and llm_ th, >0

hw——o’ de™ h,—0

or
. d . d
lim —h, < 0and lim A, <O,
b 0" de' ™ - de™
~ .d .ood
so we can get Y x € 2, lim dth"’ « lim dth"’ > 0,
hq'——o‘ hy~0”

so that the sliding mode can be avoided. The remainder
of proof is similar to [11].

In order to apply this theorem to the analysis and de-
sign of hybrid systems easily, a stronger condition can
be got which may be computed using LMI’ s through
non-increasing condition in [11]. At the same time the
general form of formula (2) is adopted, then the follow-
ing corollary can be obtained.

Corollary 1 If there exist scalar function V,:07
— R, each V,(x) differential in x, ¥ x € (2}, and class
K function a :R*— R* and 3:R*— R"* such that

Yz € 027, alx) < V,(2) < B(x),
Yz € Q5 V, <0,
V€ Qy, Vi(x) < Vy(2),

Vx € By, by < Oorh, > 0),

then hybrid systems are viably stable in the sense of Lya-
punov.
4 Quadratic stabilization of LTI hybrid
systems
In this section, we will derive the condition of stabili-
ty of linear time-invariant (LTI) hybrid systems using
Theorem 1. The LTI hybrid systems are described by the
following equations:
2(t) = A;x(t) + Bu(t),
q(t) = v(x(1),q(t7)),
the switching can be autonomous or can be controlled by
some external factors. We want to find a stabilizing state
feedback controller, » = K, x(¢), in discrete state g.
The overall control law will be defined by using each of
these controllers for the corresponding discrete state. In

(3)

order to satisfy the conditions of Corollary 1, we would
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like to determine the K matrices so that in each discrete
state, the closed loop system has the same form of Lya-
punov function V(x(¢)) = xT(¢) Px(¢). If these ma-
trices can be found, then Corollary 1 can ensure that the
LTI hybrid systems are stable in the sense of Lyapunov.
In this section we assume that the guard sets can be
bounded by the conic sectors parameterized by symmetric
matrix R,,. In other words, consider sets, 2, c {x €
R"; x"R,x < O} where ¢ 5 r, and £, represent the set
in which the guard set for transition between the g-th
and r-th vertices.

Definition 3 For dynamic system (3), if there ex-
ists a symmetrical positive definition matrix P > O, sub-
ject to Lyapunov functions V,(x(¢)) = x"(¢) P x(¢)
satisfy

dV,(x(¢))
e~ (y2(0) + Bany () Pyx() 4
2T(e) Po(A;x(e) + Bu,(t)) <0,
~ dh, dh,
V,-V.<0and Vx € 02, _d—t < 0(0r‘§ >0),

then the system (3) is quadratically stable in the sense of
Lyapunov. In the following, applying Corollary 1, we
give the condition of quadratic stabilization in this sec-
tion.

Theorem 2 If there exist positive constants a, > 0,
ag, > 0,8 > 0 and positive definite symmetric matrices
Qqs Qg » Qs P,, such that the following matrix inequal-
ities

APy + PL Ay + 0,0, PiB,

771 [<O,
BIP, % h

P, - Py + 2,0, <0,

ZT,R‘,, + Ry A + B0k < O(or > 0),
where &k = q,randﬁq = A, - B,K,, are satisfied, then
LTI hybrid systems (3) are quadratically stabilizable by
using control law u, = - K x(¢) where K, = ichqu
and l_sq is a constant.

Proof Letu, =- K, x(¢t),K, = kBIP,,k, be a
constant, £ = g¢,r under the condition of theorem.
Since

di(dxt(ﬁ = %[xT(t)P/,x(t)] =

(Apx(t) + By (e))™Pex(t) +

xT(e)P (A, x(t) + Bay(t)) <0,
there exists the positive definite symmetric matrix Q, so
that
ARPi + PA, - 2l PBBTP, + a4Qs < O,
which is equivalent to
APy + PL Ay + aiQi  PiB,
. .
BiP, %1 <?
Since Vp - V, < 0, we have P, - P, + 250, < 0. In
addition,

x € f)q,,
dh, 4 T
& =dt(x Rq,x) =

x"(Ay - BiKy) R, x + 5" R, (A, - BiKy ) x < O(or >0),
S0 ZZR‘,, + Rq,ﬁl, + BiQr < 0 (or>0) can be got where
A, = A, - BKK,.

Remark This condition is more restrictive, but it
can be reformulated as linear matrix inequalities
(LMI’s) that can be solved easily using interior point
methods for convex optimization .

5 Example

For simplification, we only consider a numerical ex-
ample of hybrid systems composed of two controlled
subsystems. We suppose that the hybrid systems are
switched from discrete state ¢ = 1 to discrete state
g = 2, then lie in discrete state ¢ = 2, and hybrid sys-
tems reach stable state.

Let
A [_1 1] P [2 -3 [o]
R O 'Y il - S Rt N S0
1 3.2629 - 1.2089
Bz=[],R12= ].
0 - 1.2089 1.5466

Stating the stability conditions and solving the corre-
sponding LMI’ s problem results in a solution

b 0.6047 - 0. 3793]
YT ll0.3793 0.4472 17
0.1791 -0.1012
- I
~0.1012  0.0993

Hence, the hybrid systems are stable and the control
laws u; = [0.3793 - 0.4472]x(¢) and u, =
[-0.1791 0.1012]x(¢) can be got.
6 Conclusion

In this paper, we discuss the problem of stability for
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hybrid systems based on multiple Lyapunov functions.
At first the viable Lyapunov stability is studied. When
the subsystems of hybrid systems are linear time-invari-
ant, the quadratic stability is discussed and stabilization
conditions that can be computed by LMI’ s are obtained.
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