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Abstract: A new kind of optimal fuzzy PID controller is proposed, which is composed of an on-line fuzzy inference
mechanism and a conventional PID controller with incomplete derivation. In the fuzzy inference mechanism, three adjustable
factors x, , x; , and x, are introduced. Their function is to further modify and optimize the result of fuzzy inference so that the
controller has the optimal control effect on a given object. The optimal values of these factors are determined based on the ITAE
criterion and the Nelder and Mead’ s flexible polyhedron search algorithm. The PID controller has been used to control a D.C.
motor of the intelligent artificial leg designed by the authors. The result of simulation indicates that the controller is very effec-
tive and can be used to control different kinds of objects and processes.
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1 Introduction

Proportional-integral-derivative (PID) controllers are
most frequently adopted in practical cases due to their
simple structure and algorithm. They can provide ac-
ceptable performance for a large range of processes.
Fuzzy inference has been recognized to be very appropri-
ate in implementing the operator experience in designing
control systems. It has been widely adopted in the last
decade!*), and some applications to PID controllers
have been devised. Tzafestas and Papanikolopoulos pro-
posed an approach in which the performance of PID con-

trollers is enhanced based on a fuzzy matrix that contains
the experience of a human-controller®’. S.Z. He de-
vised a method that contains a Ziegler-Nichols-like for-
mula with a single parameter. This parameter can be
self-tuned by means of an on-line fuzzy inference mech-
anism!*) . Zhao et al developed a fuzzy gain scheduling
scheme where PID parameters are determined based on
fuzzy rules, depending on the values of error signal and
its time derivativel®) . Visioli proposed a method on the
basis of the fuzzification of the set-point weighting in
which to achieve both the aims of reducing the overshoot
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and decreasing the rise time, a fuzzy module is used to
modify the weight depending on the current output error
and its time derivative'®).

In this paper, a new kind of optimal fuzzy PID con-
troller is proposed, which contains two parts. One is an
on-line fuzzy inference mechanism, and the other is a
conventional PID controller with incomplete derivation.
In the fuzzy inference mechanism, three adjustable fac-
tors x,, x;, and x4 are introduced. Their function is to
further modify and optimize the result of fuzzy inference
so as to make the controller have the optimal control ef-
fect on a given object. This kind of optimal fuzzy PID
controller has been used to control 2 D.C. motor of the
intelligent artificial leg designed by the authors. Section 5
gives the result of computer simulation for the motor

system.
2 PID formula with incomplete deriva-
tion

Introducing derivation control can improve the tran-
sient performance of a system but the system output is
very sensitive to disturbances in this case. To overcome
the drawback, a first-order inertia term can be added to
the PID formula, which is a low-pass filter and its trans-
fer function is G/(s) = 1/(1 + Tys). The derivation
control with the first-order inertia term is called incom-
plete derivation control. The transfer function of PID
controllers with incomplete derivation is expressed as:

K, K, Tys
U(s) = (K + — + YE(s). (1)
Tis 1+ Tys
In discrete-time domain, the above formula can be ex-

pressed as:
u(k) = Ke(k) + K,-_Ee(j) + uy(k), (2)

ug(k)=Ky(1-2)[e(k) —e(k-1)]+Aug(k-1),
(3)

where K; = K, T/T;,K; = K,T;/T, andA = T;/( Ty +
T) < 1. T is the sampling period.
3 Optimal fuzzy PID controller
3.1 Structure of the fuzzy PID controller

The structure of the optimal fuzzy PID controller is
in which the on-line fuzzy inference
mechanism is used to adjust PID parameters K,,, K;, and
K, in real time according to the system error e( ¢ ) and its

shown in Fg. 1,

time derivative ¢é(¢).
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Fig. 1 Structure of the optimal fuzzy PID controller
The inference mechanism implements the following
mapping :

E x EC—~ Ky x Ky x Ky, (4)
where £ and EC are the fuzzy quantities of e(t) and
é(t) respectwely Another part of the controller is a
PID controller with incomplete derivation. Its output can
be computed by formulas (2) and (3). In Fig. 1, three
adjustable factors x,,x;, and x4 are introduced. For a
given system, their optimal values can be determined by
means of ITAE criterion and the Nelder and Mead’ s
flexible polyhedron search algorithm!”), which will be
introduced in Section 4. After these factors are deter-
mined, the PID parameters K, K;, and K, can be ob-
tained by the following formulas:

K, = Ky % %,
K; = Ky x x;, (5)
Ky = Ky x =4,

where
O0<x <1,
O<x <1, (6)
O< ;<

From the formulas (5), one finds the effect adjusting
the values of factors x, , x; , and x, is equivalent to modi-
fying the fuzzy inference rules.
3.2 Idea of adjustment of PID parameters

1) K, controller: In the initial stage of a regulation
process, K, should be assigned to a suitably smaller val-
ue to reduce the impact on the system which results from
the initial variations of physical quantities of the system.
In the middle stage, K, should be increased to raise the
response speed and dynamic precision of the system. In
the final stage, K, should be decreased to reduce the

overshoot and raise the system’s static stability.
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2) K, controller: In the initial stage of a regulation
process, K; should be assigned to a very small value to
prevent the integral saturation phenomenon which results
from the saturation non-linearity characteristic and other
affections of the system and may cause the increase of
system overshoot. In the middle stage, K; should be as-
signed to a moderate value and not be too large to avoid
bringing about any effect on the dynamic stability of the
system. In the final stage, K; should be increased to re-
duce the steady-state error and thus raise the control pre-
cision of the system.

3) Ky controller: In the initial stage of a regulation
process, K, should be assigned to a larger value to re-
duce overshoot and overcome oscillations. In the middle
stage, K, should be assigned to a smaller value than that
of the initial stage and keep invariable because the regu-
lating characteristics are sensitive to the variation of K, in
this stage. In the final stage, K, should be reduced to
enhance the system capability of rejecting disturbances
and compensate for the increase of regulating time,
which results from the larger K, value in the initial stage
of the regulation process.

3.3 Rules for fuzzy inference mechanism

The fuzzy sets of E and EC are all defined as {Z,S,
M,B}. Also the fu;zy set:;f PID parameters K, K
and Ky are all defined as {Z,S,M,B} . According to the
abovz mentioned adjustment idea, sixteen fuzzy rules
can be obtained as shown in Table 1.

Table 1 Fuzzy rule table of 5"// Ey/ Edf

E
EC o
-~ B M S Z
B M/Z/S S/S'M M/M/'Z M/B/Z
M B/Z/M M/S'M B/B/S B/B/Z
S B/Z/B M/Z/B B/B/S B/B/Z
Z B/Z/B M/Z/B B/B/S Z/B/Z

3.4 Control inquiry table

The Mamdani inference method is used as the fuzzy
inference mode. The method to achieve the greatest de-
gree of membership is adopted for defuzzification. By
these methods, the control inquiry table for PID parame-
ters 5, s Eif and 541- is obtained as shown in Table 2.

Table 2 Control inquiry table for K,/ K/ Ky

E
EC o~
-~ 0 +1  +2  +3  +4 5 +6
0 6/6/0 6/6/1 6/6/1 4/0/6 4/0/6 6/0/6 6/0/6
+1 6/6/0 6/6/1 6/6/1 4/0/6 4/0/6 6/0/6 6/0/6
+2 6/6/0 6/6/1 6/6/1 4/0/6 4/0/6 6/0/6 6/0/6
+3 6/6/0 6/6/1 6/6/1 4/0/4 4/0/4 6/0/4 6/0/4
+4 4/6/0 4/6/1 4/6/1 1/1/4 1/1/4 4/0/4 4/0/4
+5 4/6/0 4/6/0 4/6/0 1/1/4 1/1/4 4/0/1 4/0/1
+6 4/6/0 4/6/0 4/6/0 1/1/4 1/1/4 4/0/1 4/0/1

4 Determination of the optimal values of
adjustable factors
The Nelder and Mead’ s flexible polyhedron search al-
gorithm is used to determine the optimal adjustable fac-
tors x, ,x; , and x; for a given system. First, ITAE
criterion is taken as the objective function F(X), which
is expressed as follows:

F(X) = ITAE = J:t | e(t) | dt, (7

where X = [x,,;,%4] is a three dimensional vector and
the values of x,, x; and x, are hidden in e(¢).

To obtain the optimal vector X* = [x, ,%/ ,%7 ],
first an initial flexible polyhedron with four vertices X9,
X3,X3, and X9 must be formed. Among the four ver-
tices, X} can be selected randomly but each element of
which must satisfy the constraints given in (6). X3, X3,
and X can be determined according to the construction
principle of regular polyhedronm'

Definition A vertex is called feasible point if it
satisfies constraints (6). Otherwise, the vertex is called
infeasible point.

In order to ensure that X?,i = 1,2,3,4, satisfies
constraints (6), a program has been written which can
convert an infeasible point into a feasible one. The pro-
gram is called “the feasible point converter ( FPC)”.
The converting rules of FPC are defined as follows:

1) Ifx,,x;0r x4 > 1, then set x,,x; or x5 = 1.

2) If z,,x; or x4 < O, then set x,,%; or x4 = 0.

Among the four vertices of the mitial polyhedron, let
X, and X, have the greatest and smallest values of objec-
tive function F( X) respectively, and let X; have the sec-
ond greatest value of F(X). Let X, be the centroid of all
the vertices excluding X, .

The basic formulas of flexible polyhedron search algo-
rithm are summarized as follows!! :
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4 determine X*, X¥, and X*.
X. = X0 - x )3, (8) £
( Z: 2 Step 5 Compute the centroid X% by (8).
X =X +a(X. - X;), (9) Step 6 Reflect to obtain X* by (9). Convert X* to
X, = X+ v(X, - X.), (10)  become feasible by FPC if X* is originally infeasible.
X, = X. + B(X; - X.), (11) Step 7 If F(X¥) < F(X*), then do a) and b)

X;i~X, +0.5(X; - X,), i = 1,2,3,4, (12)
where X,,X,, and X, are reflection point, expansion
point, and contraction point, respectively; a, ¥ and 8
are reflection, expansion, and contraction coefficient,
respectively . Formula (12) is utilized to reduce the size
of the flexible polyhedron.

According to the idea of Nelder and Mead, after the
initial flexible polyhedron is formed, the algorithm
should enter into an iterative process, in which the size
of the initial polyhedron will be reduced step by step.

4

When >, || X¥ — X*1l < e,(e; is a preselected small

=1

number and k denotes stage number), the polyhedron
will become very small and the solution is obtained at a
local optimum point. To search further the global opti-
mum solution, X* will be used as the first vertex to set
up another new nitial polyhedron, and then another cy-
cle of iterative process that reduces the size of the new
initial polyhedron will be started again. In the following
algorithm, when the iterative process reaches Step 12, it
completes one iterative cycle; when the process reaches
Step 11, it completes one iterative stage of that particu-
lar cycle. kk is the cycle number that starts from zero,
and k is the stage number that starts from zero for each
cycle. If the difference of the solutions from two consec-
utive cycles is less than a preselected small number ¢,
the optimal solution X * is obtained and the iterative pro-
cess will stop. The optimization algorithm for X * is giv-
en as follows.

Optimization algorithm for X *

Stepl Setkk = 0,k = 0,and X* = [0, 0, 0].
Select @, ¥ and B in (9), (10), and (11). Also select
e;and e,.

Step 2 Select X? randomly. Convert X} to become
feasible by FPC if it is originally infeasible.

Step 3 Determine X%,i{ = 2,3,4, according to the
construction principle of regular polyhedronm. Convert
X%,i = 2,3,4, to become feasible by FPC if it is origi-
nally infeasible .

Step 4 From the four vertices X%, X%, X%, and X%,

specified below; else go to Step 8.

a) Expand to obtain X¥ by (10). Convert X* to be-
come feasible by FPC if Xtis originally infeasible.

b) Set

k

{Xf, if F(X*) <« F(X5),
g =

Xt if F(XF) > F(X0),
thenset ¥ = k£ + 1, and go to Step 10.

Step8 If F(X¥) < F(XF) < F(X}), set X* =
X¥, thensetk = k + 1, and go to Step 11. Otherwise
go to Step 9.

Step 9 If F(X}) < F(X*) < F(X%), contract to
obtain X} by (11). Convert X} to become feasible by
FPC if X} is originally infeasible. Otherwise go to
Step 10. If F(XF) < F(X%), set X¥ = X%, then set &
= k + 1, and go to Step 11. Otherwise go to Step 10.

Step 10 Reduce the size of the polyhedron by (12),
then find the new best vertex Xf with the smallest value
of the objective function F(X), and set k = % + 1.
Continue the next step.

4
Step 11 Ifz hxt - x4\ < €1, then output x*
i=1

and go to Step 12; else go to Step 4.

Step 12 If || X¥ — X* || < e, then output X* as
X" =[x, ,%/,%] ] and output F(X"); else set X3
= Xfand X* = X*. Thensetkk = kk+1, k = 0, and
go to Step 3.

The above optimization algorithm for X * can be real-
ized by the program written in Matlab. Fig.2 shows the
simulation structure of a system with the optimal fuzzy
PID controller.

compute F(X)=ITAE

E@ d D f F(X)= g

el ITAE

____________________________________________

MATLAB

v, control | ¥
step d/dr function object
signal

Fig.2 Simulation structure diagram of a system
with the optimal fuzzy PID controller
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5 Computer simulation example

The above optimal fuzzy PID controller has been used
in the intelligent artificial leg designed by the authors.
This artificial leg consists of a knee joint, a shank and a
foot. In the knee joint, there are a walking speed sen-
sor, an air cylinder with a D.C. motor at its tail, a mi-
croprocessor and batteries. The walking speed sensor is
used to measure the walking speed of the leg in real
time. The air cylinder is the actuating mechanism used
to control the bend and stretch movements of the knee
joint. The motor is used to control the opening of a
throttle valve in the cylinder. Regulating the opening can
change the bend and stretch speeds of the knee joint and
thereby change the walking speed of the leg. The micro-
processor controls the motor’ s motion according to the
measurement value of the walking speed. The power of
the control system is supplied with small-size lithium
batteries'®’ .

The optimal fuzzy PID controller has been used to
control the motor. The transfer function of the motor is
G(s) = 6068/[s(s* + 110s + 6068)]. For the given
system, the relevant parameters are selected asA = 0.9,
a=1.0,y=2.0,=0.5,e; =0.0land e, = 0.01.
The first vertex of initial flexible polyhedron is selected
as X} = [0.6, 0.6, 0.6]. The unit step responses of
this system are shown in Fig.3, in which one is the re-
sponse obtained by means of the classical Ziegler-Nichols
method, and another is the response obtained by means
of the optimal fuzzy PID controller proposed in this pa-
per.

2 S
fuzzy
5 15 /\ wmseens 7= N
=3 [
3 i\
g | N ~
15 |
2 ]
05y}
/
/
0
0 0.1 02 03 0.4 0.5

time/s
Fig. 3 Unit step responses of the given system
The result of the solution for the optimal adjustable

factors X * is shown in Table 3. From the table, the val-
ue of the object function F( X *) is reduced in each cy-
cle. For this given system, the optimal adjustable factors
are x, = 0.3073,x; = 0.5199, and x; = 0.2217.

Table 3 Result solving for X~

cycle
factors cycle cycle cycle cycle
1 21 2 2
x,  0.2975 0.3073 0.3080 0.3073
X* x  0.6031 0.5020 0.5166 0.5199
x;  0.0405 0.2217 0.2212 0.2217
F(Xx*) 0.67121 0.0550 0.0547 0.0547

6 Conclusions

From the result of computer simulation example, it is
concluded that the optimal fuzzy PID controller proposed
in the paper is correct and very effective. It optimizes
the performances of conventional PID controllers and can
be widely used to control different kinds of objects and
processes .
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