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Abstract: A covariance upper bound control problem is formulated for digital finite-precision controllers with synchronous
sampling and fixed-point arithmetic. The finite-precision covariance upper bound controller design problem is reduced to the
problem of solving some matrix inequalities such that the closed-loop system is asymptotically stable.
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1 Introduction

Finite-precision controller design has been an impor-
tant issue in modem control theory and engineering with
the recent advances in fixed-point implementation of dig-
ital controller. Improved control performance and in-
creased levels of integration are especially important in
many application areas, such as consumer electronic
products, automotive and electromechanical control sys-
tems. The fixed-point arithmetic offers the advantages of
speed, memory space, cost and simplicity over floating-
point arithmetict") . However, due to finite-word-length
(FWL) effects, a performance degradation of the
closed-loop system usually occurs since the infinite-pre-
cision controller is implemented using a fixed-point pro-
Cessor.

In recent years many results have been reported in the
literature dealing with the issues of FWL controller im-

plementation. It is well known that there exists an opti- -

mal realization of a given controller>), so that the syn-

thesis in these optimal coordinates will minimize a pro-
posed coefficient sensitivity measure or the noise gain
from round-off effects. A controller designed without re-
gard to controller synthesis can then be implemented in
an optimal realization for this given controller. It is also
known that such controllers are not optimal overall. That
is, the design and synthesis problems are not indepen-
dent problems.

Some improvements are made in [4], where the fi-
nite-word-length covariance control has been studied.
All dynamic controllers which assign state covariances to
the closed-loop system are characterized in the presence
of quantization error in the control computer and in the
A/D and D/ A devices. It also presents a general design
idea, that is, the control problems are reduced to a
problem in linear algebra.

It is well known that upper bounds on perforrnances
might be more useful than the more difficult task of as-
signing exact performance!*). In many cases, the “sma-
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ller” the output covariance, the better the system perfor- x,(k + 1) A, D, B, 2, (k)
mance. This provides motivation to consider a perfor- v, (k) =/C, D, O w, (k) ,
mance specification given in terms of a bound on the (k) M, D, 01Lu(k)+ e, (k)

output covariance. Mathematically, this allows for the
use of inequality constraints in lieu of equality con-
straints on covariance matricest>). In this paper, we
consider the control design problem when the controller
synthesized in a digital computer with synchronous sam-
pling and fixed-point arithmetic. It is shown that the
problem is reduced to a problem of solving some matrix
inequalities .
2 Problem formulation

Consider the linear time-invariant system and the con-

troller (with the assumption of infinite precision imple-

mentation )
Fxp(k+1) A, D, B, xp(k)
y(&) |=]¢ b, ol w]|, @
L z(k) LM, D, 0JL u(k)
xc(k+1) A, B, xc(k)
u(k) 17 lc D][z(k) ’ @

where x, and x_ are the plant and the controller states,
respectively, y, is output of interest, w, is the finite en-
ergy dismrbance, z and u are the measured output and
the control input, respectively.

However, in most application cases, the controller is
synthesized in a digital computer with finite wordlength
and fixed-point arithmetic, and we must take the quanti-
zation errors into consideration. It is well known that the
effects of the quantization error in the control computer
depend on the realization of the controller!23), To this
end, we shall study the control design problem in a
transformed set of controller parameters A, = T;'A.T.,
B. = T;'B.,C. = C.T,,D. = D, with detT, 5 0 and
write the controller dynamics

[xt(k+1) [AC Bc”xc(k)+e,(k)
w(k) 17 le, DAl 2(k) 4 e () 1

(3)
where e, (k) is the quantization error introduced by the
controller state computation x.( %) in the control com-
puter (with wordlength 8,), and e,(%) is the quantiza-
tion error introduced by the A/D converter ( with
wordlength 8,). The plant is described by

(4)
where e, (k) is the quantization error introduced by the
D/A converter (with wordlength 3,). Under sufficient
excitation conditions we can approximate the quantiza-
tion errors e,(k),e,(k) and e,(k) to be zero-mean
white noise processes

W, = diagl: ¢; -1, W. = I, Wy = q.l,
respectively, where ¢; = (1/12)27%:,q, = (1/12)27%.,
gu = (1712)27%A, and B; is the length of the fractional
part of the word storing the i-th controller state vari-
able!*]

Define the matrix

gl 0 0 0

0 W, 0 0
=10 o W, +V o |’

0 0 0 T.W,Tt

where W, and V are the covariance of the plant noise
w, (k) and the measurement noise D.w, (k) , respective-
ly. The closed-loop system is described by

x(k+ 1)1
xe(k+ 1)1 7
A, + B,D.M, B,,CC] [xp(k)
BM, A e ()7
B, D, B,D. B, wp
P P PD ] , (5)
0 0 Bc Ac e; + DZwP
xp(k) wp
y,(k) = [C, 0][xc(k)]+ (0 D,00] e+ Da, |
(6)
or simply
2(k+1) = (A+ BGM)x(k) + (D + BGE)w(k),
(7)
y(k) = Cx(k) + Fw(k) (8)
with

A=[Ap 0],3:[?)’ 3],(::[(:,, ol
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B, Db 0 O
D=[ N ],F:[OD,oo],
0O 0 00
y [Mp 0] E [0 0O I 0 [I 0]
“lo M7 looo 7" T
Dc ac = Dc Cc
G=[~ -],G:T_lGT=[ ],
BC AC BC AC
and
x=[x;r, xI]T,
w=[el, wy el+Dw, ell, y=y,.

The FWL covariance upper bound control problem can
be stated as follows.

Determine if there exists a controller which stabilizes
the system and yields an output covariance bounded
above by a given matrix (2. Find all such controllers
when they exist.

3 Main results

Lemma 1

Consider the linear time-invariant discrete-time system
x(k+1) = Agx(k) + Baw(k),
y(k) = Cx(k) + Do (k),

where w is the stochastic white noise process with co-

Let a symmetric matrix {2 be given.

variance W. Then the following statements are equiva-
lent:

1) There exists a stabilizing feedback gain G such that

lime[y(k)y"(k)] < Q3

2) There exists a matrix X > O such that

X > AuXA, + B4WBY, CaXCy + D WDY < Q.

Proof See Lemma 6.1.2 of [4].

Lemma 2(see Corollary 2.3.6 of [4]) Let matri-
ces A, B, Q and R be given. Suppose Q = QT,R = RT
> 0and BBT > 0. Then the following statements are e-
quivalent:

1) There exists a matrix X such that

(A + BX)R(A + BX)T < Q; (%)

2) Q >0and BL (Q - ARAT)BLT 5> 0or BB™ > 0.

If the above statements hold, then all matrices X satis-
fying ( % ) are given by

X =-(B"Q"'B)"'B"Q"'A + (B"Q"'B)-\2Lv¥,
where L is an arbitrary matrix such that || L || < 1 and
VAR '-ATQ'A+ATQ'B(BTQ"'B)-'BTQ'A.

Thus the finite-precision covariance upper bound
problem reduces to the following theorem:

Theorem 1 Let a symmetric matrix {2 be given and

consider the system (6), then the following statements
are equivalent:

1) There exists a stabilizing feedback gain G such that
}irge[y(k)yT(k)] <

2) There exists a matrix X such that
BL (X - AxA" - DWD") BT > 0, (9)
CXC" + FWF" < 0, (10)
AXA" + DWD" - AXM"(MXM™ + EWE")"'MXAT < X.

(11)
In this case, all such state feedback gains are given by
G =
—(B"Q-'B)"'BTQ ' AXM"R"'+(B"Q"' B)" V2 [¥"?,
(12)
where L is an arbitrary matrix such that || L || < 1 and
Q o X - AXAT - DWDT + AXM"R-'MXAT > 0,
VAR '-0T(Q'-Q'B(B"Q"'B)'BTQ-)® >0,
R o MXM" + EWE", @ o AXM'R™'.

Proof The Lyapunov inequality in this case is given by
X >
(A+BGM)X(A+BGM)"+(D+BGE)W(D+BGE)".

Noting that EWD" = 0, the covariance inequality can
be expanded as

X >
AXA"+ DWD" + BGMXA™ + AXM" G"B" + BGRG" B,
where R 4 MXM" + EWET,

Since X > 0 and there is no redundant sensor ( MMT
> 0), we have R > 0. Hence, we can complete the
square with respect to BG as follows:

(BG + AXM'R"")R(BG + AXM"R-Y)T < (,
Q = X - AXA" - DWD" + AXMTR-'MxA".
Using Lemma 2, the above inequality is solvable for G.

Now the FWL covariance bounding control problem
has been converted to an algebraic problem of finding
matrices X and G satisfying the condition (12), which is
given by the intersection of the three sets defined by two
LMIs (9),(10) and a Riccati-like inequality (11). Al-
though none of them are immediately verifiable, they
may be useful to develop computational algorithms or al-
gebraically verifiable tests to determine if a given system
is stabilizable with a finite-precision digital controller.
As shown in [4], the results obtained from this upper
bound approach are computable via convex programming
or some other algorithms.
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4 Conclusions

In this paper, we have shown that the FWL covari-
ance upper bound control problem can be reduced to
some matrix inequalities problem. The matrix inequality
approach to the control problem essentially derives from
[6] and [7], the covariance upper bound control prob-
lem with finite wordlength and fixed-point arithmetic
considerations, however, is first discussed in this paper.
For discrete-time systems, there are lots of similar prob-
lems to be solved, such as LQG control problem, Ha
control problem, H, control problem, subject to syn-
chronous or skewed sampling between measurement and
control, and subject to finite precision computing in the
A/D, D/A devices and in the controller state noise with
variance related with the wordlength.
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