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Abstract: Decentralized stabilization conditions in the form of linear matrix inequalities (LMIs) for large-scale intercon-
nected linear continuous systems with unknown constant delays are established under a certain interconnection decomposition. An
example is given to illustrate the proposed LMI approach and to compare the obtained results with those in the literature.
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1 Introduction

As we know, the main time-domain methods for sta-
bility analysis of time-delay systems are Lyapunov func-
tion method and Lyapunov functional method!). By
Lyapunov functional method, Lee and Radovict??) es-
tablish some decentralized stabilization conditions for
large-scale linear time-delay systems consisting of /V in-
terconnected subsystems and including N x /N constant
delays. In their methods, more structure information of
the interconnections are taken into account by introduc-
ing some cardinalities corresponding to the interconnec-
tions and by considering some different decomposition
cases of the interconnection matrices. Recently, Hu!*
and Trinh and Aldeen'® also use Lyapunov functional
method to study the same problems for large-scale linear
continuous systems with /V constant delays. However,
no numerical schemes for designing the stabilization con-
trollers are proposed in the above references. In this pa-
per, we establish decentralized stabilization conditions

expressed in LMIs for large-scale interconnected linear
continuous systems with NV x N unknown constant delays
under a certain interconnection decomposition. An ex-
ample with three interconnected subsystems is given to
illustrate the proposed LMI approach and to compare the
obtained results with those in the literature.
2 System description and preliminaries
Let us consider a large-scale linear continuous time-
delay system S consisting of /V interconnected subsystems

S;,t =1,2,,N, as follows:

N
Si: a&i(t) = Aixi(t)-l-BilLi(t)'l- ZAijxj(t—Tij)
i1

(1a)
with the memoryless local state feedback control law
u;(t) = Kz,(t), (1b)

where x; € R"™ and u; € R™ denote the state and input

N N
of the subsystem S; with Zni = n and Zmi =m,

i=1 i=1

A;, B; and A;; are constant matrices with appropriate di-
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mensions, r; € [0,7] denotes N x N arbitrary un-
known constant delays, K; € R™>" is the constant local
controller gain matrix. Then, the closed-loop system 3§
corresponding to system S can be written as follows:
S %) =(A + BK)x,(2) + ZN;Aij"‘j(“Tij)
i=
(2)
fori =1,2,---,N. Assume that for each isolated delay-
free subsystem: z;(t) = Az;(¢) + Bu;(t),(A;, B;) is
stabilizable and also A; satisfies the following decompo-
sition!2 =81
A; = BH; + Dy, i,j =1,2,~",N. (3)

Here, we define some sets of indices:

where k( J) denotes cardinality of the set J.

Definition 1 The system S is said to be decentrally
stabilizable by the memoryless local state feedback con-
trol if every solution x(¢) of the corresponding closed-
loop system S starting from an arbitrary initial function
¢ € C[- r,0],1R*) converges asymptotically to zero as ¢
— o, where C([ - 7,0],1R*) denotes space of continuous
functions mapping [ - z,0] into R" with given r > 0.

Lemma 1 Fora given constant matrix M € R**™,
2u™y < W"™MC'MTu + "G, u € R, v € R™

(6)

holds for any symmetric and positive definite constant
matrix G € R™*™,

J:(H) = {j 1 H; %0, j =1,2,~,N}, 3  Decentralized stabilization condition
Ji(H) = {j 1 H; 20, j = 1,2,-,N}, @) and local controllers design
Ji(D) = {1 Dy 20,7 =1,2,—,N}, In the following, for the system S in the decomposi-
Ji(D) = {j 1 Dy 20, j =1,2,,N}, tion case (3), we establish the decentralized stabilization
and let conditions and also provide the approach of designing the
Ny(i) = k(J,(H)), Np(i) = k(J;(D)), memoryless local state feedback controllers.
{i=1,2,-",N, (5) Theorem 1 If the following ILMI problem:
(ALY + YAT + 2BW, + 2WIBT+ (Ny(i) + Np())F; Du¥y = DY, - Duly]
Y, D} - F, 0
: <0, (M
D} )
L YaD'ly 0 - Fyd

Y, >0, F; >0, i = 1,2,~-,N, j € J.(D) in
variables ¥; € IR"*", F; € R"%*™ and W; € R™™" is
feasible, the system (1a) is decentrally stabilizable by
the local control law (1b) with the following gain matrix

1
Ki=E(W;‘— Z

HY,F;'YHIBD) Y. (8)
JEJ(H)

Proof Let

(V(x,) = E[x’{(t)yi'lx;(t) + Vt(i)]’

V(i) = E J-’ x;r(s)Yj'leY,-'lx,-(s)ds +

JETLHY b7,

¢t
E J' x;r(s) Y]leYj'lxj(s)ds ,

L JETLY t=T;

)

N
x(t) ER%,x(t) ER"withn = D, n;, F; = FT >
=1

0ER™%and Y; = Y] > 0 € R%*™. Along the trajec-
tory of the closed-loop system (2) and by Lemma 1, we
obtain

V(x,) <

N
DolaTC) (Y74, + ATYT! 4
i=1

1
2

2T(8) D5 YI'DYFYDTY % (¢) +
JEILD)

'e;)u)x}‘(t - r,-j)Y,-'leYj'lxj(t - T;j) +
1=

Z x;r(t - r,-,-)Y,-'leYj'lxj(t - r,-j) + V,(z)}
€ J{D)

Y?UBW, + WIBD YD x (1) +

(10a)
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=~

By V, (i) =

‘E () YT FY (1) -

ke J - T,J)YITJFI'YI'_lxj(t - T,.j> +

E 2 ()Y Y () -

1€ J (D)

>0l - o) YPUEY (e - ),
]GJ(D)

and the definitions of J,(H),J.(H),J.(D), and
J; (D), we further obtain form (10a) and (10b)

V('ﬁ)

(10b)

[x (Y74, + AT+ 7 Y (BW+ WBD Y )x (0)+

1= ]

) DT YIDYFINDY e (2) +
]GJ‘(I))

S OYE () + S N OYEY ()] =
JEIH) JEILD)

N
ANEHON S BV H ey Y BW A WB) Y a0+

1

£1(e) 20 YI'DYFTYDNY M () +
1€ D)

DA OYTEY () + D) <l (OYIEY )] =
jé](ﬂ) JEID)

M L) V(A 1A s 5 LB+ WIBY) 4+ (Ny () +

1= 1

with ¥, > 0€ R%*", F, > 0€ R"*"%and g, > 0 € 1!,
,Nandj & J;(D). Then, the corre-
sponding gain matrix for i becomes

where 1 = 1,2,

K= -~ B! 7127?,’”H1-,-Y,-F;'Y,~H}} BlY;'.
(15)

The feasibility problems (7) and (14) can be solved by
using the MATLAB ILMI Toolbox which has been used
worldwide .
4 An illustrative example

Let us consider the interconnected time-delay system
(la) with N = 3,

NoG)F; + 25 DEFPYDDY ()] (11)
j€I(D)

Note that the LMI problem (7) can be converted to non-
linear inequalities by using Schur complements, and thus

(7) is equivalent to
AY, + YAT + S(BW, + BIBD) + (Nu(i) +

Np(i))Fi+ 25 DyYF;'YDY < 0. (12)
JGJ(D)

Therefore, if the LMI problem (7) is feasible, then we
N

yz E || Y7'x;(¢) || *forall t = O, where
1=1

p= max [A M(AY+YAT+‘(BW+WTBF)+

L=

have V(x,) <

(Nu(i) + NyGFo+ > DYF'YD)] <0,
JGJ(D)

(13)
where A, () denotes the maximum eigenvalue. By
Theorem 2.1 in [ 1], we complete the proof of the theo-

wem.

Remark 1 The LMI problem (7) is an LMIP in the
matrix variables Y;, W, and F;. According to [8], this
IMIP is equivalent to the following LMIP with fewer

matrix variables:

[AY: + YAT - 6BBT + (Ny(i) + Ny(D))F, DaYy - DgY, DYyl
Yl D£1 - Fl O
o <0 (14)
YJ'DI'J' - F
L YaDly - Fy

0 0 -1
A [‘22] B, ={0|, B,={1 2 |, B [1]
3= 3 17 1= s 2= =~ ’ 3-1’
1 0 1
3 -2 0
Ho=[-2 1 2], D=0 0 3/,
0 0 O
1 0 2 1 0
Hu= ) o o) I,
BT oo 200"P T 0
1 -1 0
Hy =[3 -1 1], D :[ ]
o= 1, Ds 1 -1 0
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i (2 2 0l. D [— 1 0 -1 5 Conclusion
2 TRl o0 o Decentralized stabilization conditions for large-scale
Hy =0, Hy =0, Hp =0, Hy3 = 0, interconnected linear continuous systems with N x /V un-

Dy =0,D53=0, Dy =0,
Dy =0, Dyy = 0and D33 = 0.
Therefore, we have Ny(1) = 2,N,(2) = 2,Ny(3) = 1,
Np(1) = 1,Np(2) = 2and Ny(3) = O.
According to Remark 1, we solve the LMI problem
(14) and obtain a group of the parameter matrices as

follows:
oy = 35.1465, o, = 1.6273, o5 = 100.5535,
[ 42.2221 - 2.3047 - 23.7527
F{ =| -2.3047 44.5701 -1. 1380} ;
L_23.7527 -1.1380 17.9957
( 0.6606 0.3109 - 0.9267}
F; = 0.3109 9.9203 - 2.36481,
L~ 0.9267 -2.3648 1.7292
Fro- [ 89.2736 - 1.9528 ’
L~ 1.9528 22.7085
16.5076  2.4084 - 7.2878
Yr o= { 2.4084 16.8537 - 2.0579},
-7.2878 - 2.0579 4.8960
0.7826 0.9225 -1.0235
Y, = { 0.9225 5.0666 - 2. 1067} ;
-1.0235 -2.1067 1.8829
y; - 19.4347 - 11.2449
- 11.2449  20.6891

Based on the above parameter matrices and Eq. (15),
we obtain the local controller gain matrices as follows

Ky = [-6.1625 -0.8584 - 14.2425],

K= | 2.7153 - 2.8237 - 4.6520 ’
4.4821 - 5.0178 -~ 5.6574

Ky = [-10.7905 - 10.3666].

This example has also been studied in [2]. Let us con-
sider the Frobenius nomm of K given by || K|l p =

N
[D7tr(KTK;) 112 to measure the size of the decentral-

i=1
ized gain, where K = blockdiagl Ky, K,, ", Ky].
Here, we obtained || K || » = 24.0775 while the decen-
tralized gains from (2] and [6] give || K|l r = 26.
2819 and || K || p = 31.4519, respectively. Thus, it
turns out that a smaller decentralized gain given by our
method is sufficient to stabilize the overall system.

known constant delays have been estabilished for a cer-
tain interconnection decomposition. The conditions are
expressed in LMIs and hence they are numerically
tractable. An illustrative example has been given to
compare the proposed LMI approach with those in the
literature .
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