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Connectionist approach for cognitive map learning and navigation

based on spatio-temporal experiences
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Abstract: A connectionist method is proposed for mobile robot, which lacks a priori environmental model and global lo-
calization information, to learn goal-directed cognitive map from its own spatio-temporal experiences. Temporal sequence pro-
cessing network (TSPN), which is constructed at run-time, provides compact representations of history perceptive information,
transforms spatial knowledge into cell firing characteristics and retrieves them in later runs to guide the robot. The navigation
system integrating TSPN and a reactive safeguard module performs dynamic landmark and heading detection, route leaming and
collision-free real-time navigation in noisy environments. The simulation and real world experiments demonstrate the effective-
ness and flexibility of the system.
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1 Introduction

Purely reactive robots with memoryless intelligence
suffer from perceptual aliasing and cyclic behaviors,
which is termed as amnesia in biology!"). So the ability
of having and using memory is essential to an au-
tonomous robot. Without a predefined model of the
world, spatial memory is necessary in more complex
task-environment contexts. It may be presented in differ-
ent forms. Building a metric map based on odometer and
range sensor information seems straightforward since it
can easily be used to plan paths and generate detours or
shortcuts'?) . But the robot should always be aware of its
accurate position and heading relative to a reference point
and direction to maintain the spatial consistency, which
is difficult due to the integration errors of dead-reckoning
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process and the absence of necessary sensors. Such a
bird’ s eye world model tends to reflect the worldview of
the designer rather than the robot’ s sensory system. Tol-
man®! introduced the concept of ‘Cognitive Maps’ as a
way to interpret experimental findings that in path selec-
tion behaviors of rats that used some form of internal
spatial representation. Robots may also solve navigation
tasks using a cognitive map containing the relationships
of places with salient features. How can the cognitive
map be constructed?

Grounded on the fact that leaming, recognizing and
recalling temporal patterns contribute greatly to human
intelligence, we conceive that robots may also leam spa-
tial knowledge from the regularity of temporal sequences
of sensory and action flows. So the problems need to ad-
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dress in order to build such a navigation system are:

1) What is a suitable episodic memory mechanism for
the task of navigation?

2) How should the system extract and store meaning-
ful sensory data from noisy real world?

3) How is the temporal memory taken as a cognitive
map to generate required actions?

Moreover the mechanism should be computationally
cheap so that it is applicable in real time.

In this paper we presents a connectionist architec-
ture—temporal sequence processing network ( TSPN)
that earns complex temporal motor-sensory flows from
the robot’ s own experiences and retrieves them to per-
form navigation tasks in a noisy environment. Section 2
gives a description of TSPN. In section 3, we describe
the details and relative problems when the network is ap-
plied to mobile robot navigation. The experimental re-
sults are presented in section 4, which validates our ap-
proach on the AmigoBot, a product of Activmedia Inc. ,
in a world with obstacles and colored objects.

2 Network architecture

Due to the incomplete, noisy and imprecise action and
perception, learning algorithms for navigation have to
compensate for a range of distortions in time and in da-
ta. Furthermore, in order to adapt to the ever-changing
external and internal environments, robot’ s knowledge
should be updated frequently to expand its capacity, ac-
quire new patterns and preserve old data. Artificial neu-
ral networks ( ANN) are regarded as one of the most at-
tractive approaches for many reasons such as their con-
nectionist architecture resembling human brain’ s struc-
ture, requiring little knowledge of the task, strong non-
linear mapping ability etc. General problems with most
ANN leaning methods are that they often require numer-
ous examples and computational work’ that the user is
unable to do online learning.

Temporal sequence processing network (TSPN) spe-
cializes in dealing with complex sequences, different
from ANNs used in approximation or mapping. It is a
non-symmetrical recurrent network with two kinds of
neurons — original and abstract units, as shown in
Fig.1. Original units represent symbols that constitute
sequences while an abstract unit may represent a se-

quence.

2.1 Learning and retrieval processes

The learning process is forming a network while the
retrieval process is using stimulus and other information
to trigger and recall remaining part of a sequence.

The acti\;ity of a neuron { at time ¢ is denoted by
y;(t), where { = 1,***, N. If the neuron fires in time
t, theny;(¢t) = 1 or — 1. Self-connection tp; causes the
decay of excitation level of unit i at each time step by
the same factor, which enables associations between
units reflecting time delay. If unit ¢ is not activated or
inhibited at time ¢,

yi(t) = %(e = 1) + 1py. (1)

It is more compact to use the self-decay mechanism
than an external time counter, which will be discussed in
section 3. The activation will be reset to O if it drops be-
low a predefined value.

During the learning phase, when unit ¢ is activated,
other units with non-zero activities are all regarded as
pre-synaptic neurons that influence its activation. The
connections are created and updated by the rule:

() = {yj(t) , tp; =0 and y;(1) 50, )
pi+a(y;(t)~1tp;), else.

In Fig. 1, the white disks represent the original units
and abstract units respectively. For clarity, not all of
possible connections are drawn. Dash lines refer to those
connections that transfer to the abstract units. Although
the connections in one direction have been transferred,
those in the other direction are intact.

abstract units
s h

o)

original units

Fig. 1 Schema of TSPN
Connections between unit i and j, fp; and tp;, may
be different. They reflect when the activations of pre-
synaptic units have the greatest impact on the post-
synaptic units. During the retrieval phase, once input
stimuli of a unit cause its post-synaptic potential V;(¢)
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to rise above a threshold 4, the unit 1s activated. Then it
is combined with other activated units to fire next units.
A wave of activity is formed and propagates stably. The
firing chain is the sequence stored in TSPN.

yi(t) = F(V(¢) - 0), (3)
where
0, <0
F(x):{l, x>0’ tp(je["lal],
Vi(e) = x,(t) + CE G(ipy,y(t = 1)),
G(a,b)=sgn (ab) - min {abs (a/b),abs (b/a)}.

(4)

%;(t) is the external input signal and ¢ is a normaliz-
ing factor. G(a,b) is used to measure the proximity . If
a, b have different signs, it means an obvious inconsis-
tency and the negative product reduces the potential of
unit Z.

In complex sequences, a later occurrence of a symbol
may overwrite its earlier occurrence stored in the unit as
its activation, which dramatically decreases depth n
(i.e. the ability to record n repetitions of the same sym-
bol in a sequence) of the network. In order to deal with
the overwriting problem, a unit is expanded to a net-

(4] 1t has multiple terminals to hold different oc-

work
currences of a symbol, with multiple connections to oth-
er units (see Fig.2(a)). The terminals will be added
dynamically during the leaming stage. Suppose unit ¢
has p terminals, the activation of gth terminal is repre-
sented by ¥, holding the gth occurrence of unit { in a se-

quence and its connections with other umits are tp;s or

LPi"j .

]
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Fig. 2(a) The expanded network of units
For example, sequence S is as follows and “—>"

denotes the time delay m:

2 5 7 3 6 9 4 3
A—-B—>A—>C—>A—>C—>D—>B—>A.

We assume fp; to be 0.9 here. The leamed network
structure is shown in Fig.2(b). The figures on connec-
tions are values of ¢p;. Since A, B, C occur more than
once in S), their expanded networks respectively have 4,
2,2 terminals. This is a simplified example to demon-
strate how the network works. In fact more than two
units can be co-activated in applications. Their activa-
tions all leave traces in connections. In Fig.2(b) and
Fig.2(c), light gray cells with letters are original units,
cells with “ H’ is an abstract unit.

Fig. 2 (c) Demonstrations of the network for §)
2.2 Abstract units

Obviously pattemns stored in the above network are un-

stable because if a new sequence is presented, the con-
nections may be changed to represent the new pattemn,
forgetting old relationships. We have to introduce some-
thing to retain what the network has leamed so that the
lifelong learning is feasible. The abstract unit in TSPN
organizes and stores the experiences for the lifetime of
the individual. The connections between original units
and their terminals serve as a fast, temporary storage
created immediately when the experiences come in, just
like the short-term memory. Memories stored in the
connections between abstract units and original units may
be taken as long-term memory .

An abstract unit is created when a new pattern shows
up. It collects the connections relative to the last se-
quence and arranges them according to the order in
which units occur in the sequence. The algorithm to cre-
ate an abstract unit and connections is as follows:

1) Create an abstract unit H with activity 1,

yH(l) = 1.
2) Connect H and the first activated unit j with weight 1.
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3) Decrease its activation by
yu(t) = tpuy x yu(t - 1).

4) Retrieve the sequence from j.

If the end of the sequence is reached, end.
Else

If there is no unit activated in this time step, go to 3).
Else if unit £ is activated,

connect H and k with weight y;(t);

5)j = k,goto3).

Note that tpyy = tp;. The hidden unit representing S,
is the green unit H in Fig.2(c). When the memory of a
sequence is transmitted to an abstract unit, the connec-
tions and terminals relative to the sequence will be delet-
ed. There is no upper bound for the number of abstract
units or the terminals of units.

3 TSPN for robot learning and control

As a mobile robot travels through an environment,
acting selection should depend not only on the latest in-
put, but also on the history perception and action data.
Otherwise it might suffer from ‘ perceptual aliasing’ . In-
formation about the past can be made available through
the incorporation of an input buffer that stores a number
of the latest inputs. But it is very hard to find an appro-
priate size for the buffer. To sort out inputs with useful
information is also a formidable task. Actually the
changes of inputs carry most of the important environ-
mental features for localization and task performance.
Assume the robot’ s translation velocity and rotation ve-
locity are uniform during the learning phase. The dura-
tion of an action can reflect the distance or the change of
its heading. So temporal sequences can be regarded as
another kind of spatial representation. A system based
on TSPN capable of change detection and sequence re-
calling is designed to guide the robot.
3.1 System setup

AmigoBot, the test-bed robot of our experiments is
equipped with a color camera and eight sonar sensors.
Its task is to explore an environment, construct and
maintain a network that contains the relations of actions
and their spatio-temporal contexts incrementally. The
robot that sets out from random position learns, rather
than programmed or trained, to follow routes that may
lead it to particular spots which have salient features and
are potential goals of navigation tasks. Routes are mo-
tion sequences stored in TSPN represented by the tempo-
ral characteristics of cell firing. A particular envionmen-

tal context may trigger a firing chain in TSPN and the
output is used as routing signal to guide the robot to
reach the other end of the path. The robot may not exe-
cute every step as it has leamed since the leamed action
flow may be not applicable in present situation.

3.2 Context extraction

Three kinds of context information should be extracted
from the sensory flow: sonar range readings, landmarks
and motor signals. To reduce the sensor space complexi-
ty and to leam the structural feature of the environment,
the qualitative properties of the data are used rather than
their exact values.

Robot control cycle is 100 ms. Due to the noisy and
imprecise sensor readings, recording all of the data in
every cycle is unnecessary. Those numerous and jum-
bled data may conceal the regularities in action and per-
ception. The data recording and leaming frequency is
1 Hz so as to integrate the information in past 10 control
cycles.

Fig.3 illustrates the organization of 8 sonar sensors on
the robot. They are divided into 4 groups: front, left,
right and back sensor, which are represented by 4 units
in TSPN. To prevent oscillation at the boundary of the
two classes, a hysteresis of a few centimeters is used to
Fig. 4
shows an example of the mapping between right sonar
readings and the activation of right sonar unit. In Fig.4,
(light line, [0,300]) and the activation of right sonar
unit (dark line, [ - 1,1]). Two dashed lines denote the
rising and falling treshold of the hysteresis classifier. S,
= 1500, S,_ = 800. The activation value

classify inputs in terms of ‘near’ and ‘far’.

yi() =

-1, input > Sg, and y?(z—l) > 0,
yi(t - 1) 1py, else,

1, input < S,_ and y7(t - 1) < O.

{ (5)

Fig. 3 The AmigoBot and the organization of sonar sensors
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Fig. 4 The relations of right sonar readings

The decay mechanism records sensor experiences so
that the robot can incorporate both the past and present
sensor inputs and comprehend the nature of its environ-
ment. The lower the activity, the fewer the fluctuations
of sensor data. Therefore a snapshot of unit activations
contains past sensory information.

The vision system processes images with 640 x 480
pixels at 10 Hz. It is used to discover salient objects and
obstacles. An object with a distinct color is taken as a
landmark. Combining sonar units’ activities and the vi-
sion signal, observations of an object from different
viewpoints can be discriminated. we uses a location unit
to stand for the discovery of a landmark from a particular
direction. So there may be several location cells for the
same landmark. The activity of location cell y~(¢) is:

yi(t) =
0, no object detected
or yi(t =1) =1 (k % i),
1, the object detected and y-(t — 1) = 0

. H Wii
and y;(#)w; > 0 and min (L,;f) 5,
¥y
yr(t=Ditp;, y(t=1)=0and yf(1-1)=0 (ksi).

(6)

The location cells inhibit each other, but a connection
e, 1s generated between the successive activated cells to
indicate a known routs.

e = yi(e - Dyi(t), (7
in which ¢ denotes the processing cycle when location
cell k is activated. €; implies the length of the path
tharks to the self-decay of y*(¢).

We use several motor primitives, i.¢. going straight,
tuming left and tuming right, to code mobile robot’ s
action repertoire as they are sufficient for the robot to
reach almost any place in a plane. The tuming action in
100 ms only causes about 2° heading difference. So a

less than 10° heading change means a go-straight behav-

ior and the turning actions mingled in this cycle can be
taken as slight heading adjustments since the robot does
not intend to tum to another direction. Once a motion
unit is activated, all other units including location and
sonar units with non-zero excitation level are connected
with this unit. The weight tp;; represents bow long action
or perception j lasts before action  is activated. Its activ-
ity will decrease by #p;; in every processing cycle as long
as no other motion cell is activated. Otherwise a new
motion cell is generated. The ensemble of connections
forms the firing context of the motion cell.

3.3 Learning and recalling of routes

The navigation system has two working modes: ex-
ploration mode and navigation mode. In the exploration
mode, TSPN is constructed and updated to learn spatial
and temporal relations of perceptions and actions. When
a goal is designated, the robot applies the knowledge
stored in TSPN to find its way, which may be concate-
nated paths, from various starting positions.

When a location cell is fired, the network constructing
process begins. Motion cells generated during the travel
from one location to another cluster to constitute a subnet
corresponding to a route. The firing of the terminal loca-
tion cell inhibits all motion cells in the same subnet.
Fig.6(a) shows a learnt network.

In the navigation mode, a landmark is given as the
goal. Reaching it from any direction is allowable. Be-
fore a leamed sequence is stimulated to function, the
robot takes reactive behaviors. Once it reaches a location
that can be linked with the goal by one or several routes,
the guidance signal begins to function. Units in the sub-
net fire in a precise temporal sequence, retrieving the
leamt motion chain. The activation of a motion cell
needs cooperative efforts of location cells, sonar cells
and other pre-synaptic motion cells.

4 Experimental results

The environment of the physical experiment shown in
Fig.5 consists of a 3.5 m x 3.1 m pen containing some
of wooden blocks and plastic bottles as obstacles. A
varicolored ball and a green ball are used as landmarks.

A reactive safeguard module is combined with TSPN
to avoid collision. Initially the robot freely explored the
environment using its reactive controller. We placed

some indications such as black strips and blocks in the
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places where the robot may be trapped. The robot could
perceive them by the vision system and would not go
further. The robot memorized what it had done and per-
ceived in TSPN, the utilized the knowledge to perform

navigation tasks in an environment without indications,

s
9

i
1

e
A

, -
3
: i
' ' M
T r

(a) The trajectory of lcarning phase (b)

i ‘

The trajectory of the robot moving
reactively, without memory

where the innate controller was not competent. Without
global localization information, it leamed a cognitive
map of the environment. The experimental result in
Fig.5 shows that the robot can select the right path and
tune its heading timely with the right angle.

(¢) The trajectory of the robot
guided by TSPN

Fig. 5 The physical experiment

Figure 6(b) shows the simulated environment and the
exploration process. The generated network in Fig.6(a)
indicates that the robot can distinguish various headings
using history sensor data. There are two location cells
for light blue landmark and two for magenta landmark.
When the robot approached light blue landmark for the
third time, it inferred from the environmental context
that it was at the same location where it saw the land-
mark for the first time. So new location cell was not
generated, the fourth location cell was activated instead.
During the exploration mode, the number of cells will
increase fast at the early stage and tend to be stable lat-
er. In Fig.6(a), the gray level of a cell indicates its ac-
tivity from O for white cells to 1 for black cells. For
clarity, connections betwecn sonar cells and motion are
not presented. In Fig.6(b), characters indicatethe color
of a landmark. b — blue, Ib — light blue, g — green,
lg — light green, m — magneta, p — purple, r —
red, y — vyellow.

turn-nght
turn-lelt o

(a) (b)

Fig. 6 The structure (a) of TSPN learnt during the
exploration in a world shown in (b)

go-straight
tocation cct

5 Conclusions

The approach has some common ground with DRA-
MA proposed by Billard and Hayes!®!, but DRAMA
(dynamical recurrent associative memory architecture) is
not used to provide navigation instructions and it has dif-
ficulties in processing complex sequences. Different
from some map learning and navigation system[6~8] ,
TSPN is used to solve navigation problems where the
robot has no idea about the global coordinates and direc-
tion, but can identify some special places, as human be-
ings do in their daily life. It processes past sensory data
based on change detecting and stores them in a connec-
tionist way, other than a grid-based map. As a computa-
tionally inexpensive and concise method to encode the
history of motor and sensor readings, TSPN provides
necessary contexts for distinguishing similar perceptions.
It is an incremental network with hierarchical structure,
which enables learning throughout the entire lifetime to
cope with dynamic environments. Experiments in simu-
lation and real world have shown that the model is a fast

and robust architecture for learning and navigation.
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