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Abstract: An output feedback tracking strategy for a class of uncertain nonlinear systems in strict feedback form is pro-
posed. The uncertain nonlinearities of the system do not need to obey the linear growth conditions. A high-gain differential ob-
server is used to estimate the derivatives of the tracking error. Instead of these signals themselves, their signs are used in a spe-
cial variable structure observer. The controller is then designed via backstepping procedure. It can guarantee the boundedness of
all signals in the whole closed-loop system. The tracking error can be limited in any desirable range.
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1 Introduction

The control problem has attracted much attention.
Conceming how to achieve robust stabilization or track-
ing via feedback control when a nonlinear sysiem em-
bodies uncertaintics, such as unmodeled dynamics, un-
known parameters or exogenous disturbance. Compared
with the rapid progress in state feedback control!!*?,
there are very few results of robust output feedback sta-
bilization or tracking for uncertain nonlinear systems de-

scribed by state space models'? ~ ¢}

. The aim of this pa-
per is to investigate the problem of robust output feed-
back tracking for a class of SISO uncertain nonlinear sys-
tems in strict feedback form. The uncertain nonlinear
functions involved need not obey the linear growth con-
ditions, provided that the nonlinear functions together
with a sufficient number of their time derivatives are

piecewise bounded by some known functions. The key
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contribution of the method is to introduce a variable
structure observer with special form. What is needed
here is the signs of the signals obtained by the high-gain
differential observer. Robust output feedback control law
is obtained by a backstepping procedure with the use of
signals from the variable structure observer. The con-
troller can guarantee boundedness for all signals in the
closed-loop system, and make the tracking error to be
arbitrarily small by choosing suitable parameters of the
variable structure observer from a solvable set of inequal-
ities.
2 Problem statement
Consider the following SISO system

% = xa + fi(x,do),

%, = u+ fi(x,d,), (1)

y =%, 1t =12,,n-1,
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where x(t) = [ x, )" is an n-th order state
vector, functions f;(x,d;) s represent the system non-
linearities with uncertainties, d;(t)’ s are uncertainties
that include unknown but bounded parameters, unmod-
eled dynamics and exogenous disturbances. Assuming:
Assumption1 In system (1), functions f;(x, d;),
{ = 1,2,-,n and their continuous time derivatives
from Ist to (n — i) th order satisfy
lff")(x,d,-)|<h,~,~(xl,"'
Vj=0,1,"
except at some limited number of discontinuous points.
Here h;(x(,

functions.

)xi+j))

i — 1
»%;, ;) s are known sufficiently smooth

Under this assumption, system (1) belongs to a class
of nonlinear system with strict feedback form®>"). The
aim of this paper is to design a tracking control via out-
put and some signals constructed by output. First of all,
we have the following assumption:

Assumplion 2 The reference trajectory y,(¢) and
all its first sth-order time derivatives are bounded, or,
there exists a positive constant ¥ such that

1y () 1< 7, ¥t =20,i =0,n

Assumption 3  There exist some known positive
constants a; such that | x;(0) ! < a; is valid for the initial
values x;(0) of the system (1) .

Remark 1 Assumption 1 is somewhat restrictive.
But there still exists a wide class of nonlinear systems in
strict feedback form satisfying such an assumption.
Some abruptly changed exogenous disturbances can be
considered. And in fact, the systems discussed in [ 8]
satisfies this assumption.

Now all the states of system (1) are to be estimated .
It is rather difficult to use high-gain observer directly due
to the severe nonlinearities in the system. So the variable
structure observer of special form as follows is proposed:

éi = -I‘ei+1 + gi(flvaZv'“vai) + lei(zi)!
2, = u+ g (2) + Lon(z,), (2)
=1,2,---,n - 1.

Functions g;(*+) are to be chosen. Variable structure
gains L; are positive constants to be determined, ¢ = 1,
-+, n. Functions ¢,(+) ’s are defined as

segn(x), | 21> k;,

oilx) = {x/ki, | x < ki (3)

Auxiliary signals z;(¢) ’s are defined in a recursive form

as follows:
71(t) = x,(2) - £,(2),
m(t)— (Z,( ))+( 1),(L,al(z,(t)))
[ = 1,"',n -1,
(4)

where the positive constant » and the non-negative con-
stant k;,i = 1,:'*, n will be determined later. The ini-
tial conditions z;,,(0),i = 1,*:, n — 1 are chosen to be
ZeI0.

Remark 2 In this paper, a system

r(1) = (us +

1)nw(t),n =m

means that
Wi =-yi+ Y. i=1,",n-m-1,
MY == ¥+ Fjsts
MY = Fjsl = ¥ J = R— My,
r(t) = y1(1),
with 7,,;(t): = w(¢) and initial values y;(0) = O,
i = 1,--,n. Itis easy to see that the first (n—m+k)th
time derivatives of the signal r(¢) exist if the input

(5)

w(¢) is kth-order differentiable. Here k is any non-neg-
ative integer.
Several simple propositions are introduced:

- — 1 where
T (s + D)™

¢ > 01is a constant and m is a non-negative integer;

Proposition 1  Let r(t)

suppose there exists a positive constant M such that the
input satisfies | w(t) | < M, then
Dir()I<M
2) Furthermore, if there exist positive constants p and
q satisfying
w(it)=p+qlorw(t)<-p-q),
Vi€ [tg,t0+ T, Vo >0,
then for any given positive constant r < ¢, there exists
the positive constant { which is not related to 2 such that
r(t) =zp+l(orr(t)cs-p-1),
Vi€ oo+ pl,t0+ T,

where T is a constant larger than wp{.

oy S
Proposition 2 Let r(t) = pran lw(t), and sup-

pose w( ¢t) is differentiable, then

r(t) =

w(O) +
us Us +

1u’z(t).



http://www.cqvip.com

No.2 ZHANG Kan-jian et al: Robust output feedback tracking for a class of uncertain nonlinear systems 175

Proposition 3  For any constant L, let r(z) =

(—’—_s 1),,L, n = m and n,m are non-negative inte-
us +

gers, then there exists a positive constant « which is not
L+ L
related to 2 such that | r(z) | < ke 2 —;
M

These propositions can be easily proved by linear sys-
tem theory.

Setting e = x — £, it can be obtained

é; = e + fi — g - Lioi(z),
én = fo — &n - Luou(2,), (6)
i=1,,n-1.

After introducing the variable structure observer, the
objective of this work can be defined as follows:

For a given positive constant ¢ and any smoothly
bounded reference trajectory y,(¢), an output feedback
controller

u=u(z,y, ,y,"))
with suitable parameters u and k;, L;(i = 1,-:-,n) is
said to be tracking with accuracy e, if it makes all the
signals in the closed loop system bounded and there ex-
ists a positive constant T such that
lx1(¢) =y () 1<e, Ve T. (7)
3 Controller design

The controller for the observer (2) will be designed in
this section firstly. All the signals of the observer can be
obtained directly; the functions g;(-)’s and the con-
stants L,’s are to be chosen and | Lo;(z) |< L;,i =
1,-*,n. Therefore, the control law can be constructed
as a special case of a class of strict feedback system with
bounded uncertainties, such as investigated by [1] and
[2]. So, taking the observer (2) as the controlled
plant, the feedback controller can easily be designed by
backstepping procedure as follows:

Consider the following coordinate transformation for

observer (2)
o= & - (£, 8,9, ,y5‘ Ve, (8)
with sufficiently smooth functions v;(£1,"*,%i_1, %>
o, y{D) as:
v = )’y(l),

- -1 2
_ % [ 5[ 9w _
Ui+1=_'\ixi*4?[44(a£l'j) + L%]—xi—l - &t

1 i-1
S 9o Y 9y L)
23;\:( 1+g,)+2,9y(] DA O

ven =1,

(9

,n) are arbitrary positive con-
stants, the observer (2) can be rewritten in the new co-
ordinates;

— i-1 2
> _ _ X; 91},-
;o= Ziy — A% - r[ 2(517) + L%] -

j=1 Jj

where A;(e;,1 = 1,

~ duy
Xi-1 + 2 a_x_LjUj + Lo,
j=1 J

] i=1,2,,n-1
n-1

-”énzu"l'gn—z

( +1+gj+Laj)_

n-1

Iy,
( (
E 3yl- 25y -y 4 Lya,.

(10)
Consequently, by choosing the controller

u=-2,

>

_'/’En-l - &n +

(:EM + g + Lio) +

s -
- e

ay(] l)ys") + )’gn) - Lnan (11)
and using the followmg Lyapunov function V(%) =

% S1#2, it can be concluded that the derivative of
i=1

V(%) along the trajectory of the observer (2) satisfies
V< - AV + Ae, that is
V(%) <€+ (V(0) -e)e™, Vi=0.

=

Here

n—1
E=%Z(i£,-),/\= min A (12)
s k

V(0) is an initial value of V(%) at ¢ = 0. Noting that
the initial conditions of the observer can be set arbitrari-
ly, and the initial values at ¢ = O of the reference trajec-
tory together with all its first n-th order time derivatives
can be used directly, the following equation can be satis-
fied step by step:
£,(0) = v; (21,2 (13)
i = 1 PR
This leads to V(0) = 0, thus it can be obtained that
V(%) <e, Vt=0. Since A;(e;,i = 1,*-,n) can be
chosen arbitranily, so is e .
Based on the above analysis and noting that v; ’ s are

i-1
i—layr"”’ygl )) It:Oa

expressed in a special low-triangle form, the following
lemma can be directly verified:

Lemma 1
there exist positive h;(L;,**,

For any positive constant ¢ in (12),
L;_5) and a;(Ly, -,


http://www.cqvip.com

176 Control Theory & Applications

Vol.20

L_)(i = 1,2,
formed by system (1) together with the observer (2)

, n) such that the closed loop system

and the controller (11) satisfies:
[ 2:(0) I< A;(Ly, s L),
| 2,(¢) 1< a;(Ly, ", Li_), ¥t =0
i=1,,n
(14)
and | £,(¢) — 7,(¢t) </ 26,¥t =0
Remark 3 The parameters L, *, L, are to be cho-
sen. They are contained in the functions a;( +) and
h;(+) in the controller (11).
With above assertions, the differential observer (4) is
analyzed below. Appling Propositions 2, we can obtain
from (4) and (6) that

I = €],
Ll]
L 2 (us ¢ i -8+
\1 s
————2(0), [ =1,
2t (s w119
Define
O=tg<t; <ty< = <t,<- (15)

to be discontinuous points of the functions f; "s and de-
ﬁnef,-("‘l‘f) ’s to be any values at instant ¢,, then ap-
plying Proposition 2 repeatedly, we yield

icl-j
()us + l)i'lfj -

D SRR S )
(ps + I)i'lfj e

i-2-7 . k
3 - (k)

T +
kl(#5+1)‘1f’ 1=0

-J-k SR . (k
"“““—(f:,'<k)|l=lp - fi )|1=Z;),

max {v | E,, < ).
(16)
By Assumption 1 and applying the property (1) of

S

Proposition 1, from (14) it can be concluded that there

exists (_],:,'(Ll,"',Li_z,bl,"',bi_l)SUCh that
S SR S !
(ps + DT <
qij(Ll,“',Li_?_)bl)”')bi—l>)
V | €} |s bk, k= 1,"',i—1

is satisfied for arbitrary positive constants ;. From the
above inequality and (16), it is clear that g;(*)’s can

always be selected (in particular choose g; = 0) such

that there exist g;( Ly, ", Li.2,by,"*, b;_1) s satisfy-
ing

i1 i-1-j

S T (.

,_Zl (#S + l)i—l(fl gj) =
qi(Ll"”! i2!bl!'”! i—l) +

‘Zl‘il L 1-j-k

s (ps + 1)t l(f’ =0

i-1i-2-y i-l~j-k (")l (k)

)0,z

11;”2;(#5+1)‘l ’ l‘")’
V lels by, E=1,,i-1. (17)

From the discussions above, by applying Propositicn 3
and Lemma 1 together with Assumption 3, the following
lemma can be obtained:

Lemma 2 For some positive ¢;(L;, ", L;_2, by,
-+, b;_;) satisfying

Ci(Ll!Li—2: bl)'”)bi-l)
i=2,-,n

= fioi- gl

and for any given—%min {ty01 - Ly} > 8; > 0, there ex-

ists a positive constant M such that
=<

1
Lll\

T (us + 1)
Ci(le'” ')bi—l);

Vt 6 [E[ + 61',E[+1), I = 2,"',n

’ i—2a bl)”

for any u satisfyingi > Mwith [ = 0,1, and ¢; in

Eq.(15).
Combining the above Lemma and Proposition 1, the
following lemma can be proved:

Lemma 3 For any given positive constant z;, sup-

pose that
{ =1, (18)
i;C(Ll:":Li—z,bx,"':bi-l)’rdia
and
ei(t) =ci+d; or - e(t) = ¢ +d,
V€ Ltorto+ Tl c Lty + 8intint)s Ti > 1

for some ¢, defined in (15), then there exists a positive
constant M(t,,***,7,), such that
0:(z) = sgn(e;), YVt E [to+1i,t0+ T)
(19)
is satisfied for the signals z;(¢) in observer (2) under

the feedback control (11) and any p satisfying i >

=
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M. Here d; = 2""'k;, k; is defined in (3), §; and
c;i(LyyryLi g by, b )i = 2,-",n) are ob-
tained in Lemma 1.

Proof Suppose e;(t) = ¢; + d; (Similar proof can
be conducted for — €,(t) = ¢; + d;), ¥t € [tg, 10 +
T;], applying the Proposition 1 and using (18), it can

=
=

be obtained that there exists a positive constant ¢; not re-

d;
(us + l)i—lei =6+ ai-1 =+

ki ¥t € [to+ p&i to + T;]. By applying Lemma 2,

lated to p such that

it can be concluded that for given §; = % there exists a

positive constant M; such that

1
‘zi‘ (ps + 1)1

Ci(Llrn.yLi—Zr blr'”rbi—l)r

<

~

Vit =6, for anyi > M;. Note that ¢; is not related to

_ 27,
pand take M = max {Mi, ;'}. Thus, it can be

obtained from (3) that (19) is valid. Lemma 3 is
proved completely.

What remains to be done is to choose the parameters
in (2). From the above analysis, a set of inequalities as
follows can be constructed:

(b1 = a1,

bivt = 2L (tis1 + 8it1) + ainrs

by = ki,

bivi = 2L (tip1 + 8iy1) +
cintCLys ooy Lisyy byyoor i) + digy + 1,

L = 2biyy + 1,

(L = 2b;,1)(A = 8 - 1) = 2L(8: + ©),

L, = Cn(Ll1"'7Ln—lrblv"'rbn) +1,
i21‘4(7-'27”'17-'11)1
U
(20)
with A: = Smin {Z,. - I,}. Here i = 1,0 = 1,
8i and Ci(Ll,"',Li_l,bl,"',bi) are obtained from

Lemma 2, d; and M(z,,"**,t,) is obtained from Lem-
ma 3, and ¢, defined in (15).

From the structure of (20), the following lemma ex-
ists:

Lemma 4 There exists a positive constant pq such
that the Inegs. (20) are solvable for arbitrary given pos-

itive constants d;,i = 1,**,n - 1 and any p satisfying
0 < ¢ < po-
Now, the following theorem can be established:
Theorem 1 For any given positive constant ¢, let

_ 2
k1=%in(3)ande =%

trary positive constants %;,i = 2,°--,n, the controller
(11) with any solution of (20) can fulfil the tracking
task with accuracy e.

Proof Obviously, Inegs. (20) are solvable by
Lemma 4. For the controller (11) with any solution of
(20), what follows will be the proof by contradiction
that | e; | << b;,0i = 1,""",n.

If this is not true, it can be defined that

{ti = inf {tll e(e) Il > &4, i =1,,n,

T: = .min t;
w0

i=1,"

in Lemma 1, then for arbi-

(21)
with bounded T. So, it can be set T € [¢,,¢,,1] for
some v with ¢, defined in (15). From (20), there exist
b; = a; = ¢;(0), thus it is obvious that

le(t) < b, Ve T, i =1,-,n (22)
is satisfied from (21). f T = ¢,, since e,(¢) is contin-
uous and b, = a; = €,;(0), it can be concluded from
(21) that

| e,(T) 1= by, ei(T)ey(T) >0. (23)
Let Lyapunov function, from (17), (20) and (22), the
derivative of V| along the trajectory of (6) satisfies
Visle Il (by+b) -Lilels-lel,
Vierlzk, Vet T,
which contradict (23). f T = ¢;,, I =< 1, then
| ¢(0) I aj < by - 2L, (z; + &)
can be obtained by (20). Since ¢;(¢) is continuous,
from (21)
T, = max {¢t |l eCe)ll =8, - 2L,(z; + &),
t € [0,T]}
can be taken, and
|l e,(T) I = b, | e(Ty) 1= b -2L(zr; +6)),
{I e(t) 1= b -2L(c; + 8), Yt € [T, T

(24)
are satisfied. At the same time, the sign of e;(t) is in-
variant for ¢ € [ Ty, T']. Therefore, from (20) and (6)
it can be obtained

L é(e) 1 =1 en1(e)+fi-gr + Lia(z) | < 2L;.

(25)
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From (22), it can be observed that conditions of
Lemma 3 are satisfied when ¢t € [ T}, T]. Now, if T}

> L, + % with A = min {t,,, - ¢}, that is, there is

at most one discontinuous point in [Ty, T1, then from

(20) and Lemma 3, it can be asserted that o;(z;) =

sgn(e;) is not valid at most with measure §; + 7 in

[Ty, T]. Thus, it can be obtained from (24) that
lef(e) 1< 1 e(Ty) 14 2L,(8 + 77) = by

is valid for any ¢t € [ Ty, T]. This contradicts (24). So

Ty <ty + %, this leads to [ 71, T] ¢ [ Ty, T] with
Ty: =t, - % Thus, the conditions of Lemma 3 are

satisfied when ¢ & [7'1 ,T]. By using (20) and apply-
ing Lemma 3 again, it can be sure that o;(z) =
sgn(e;) is not valid at most with measure 8, + z; in
[T,, T]. This means that

| 61(7'1) | =

| e,(T) 1=2L,(8; + ;1) +

(L =26, ))(T =T, - & - 11),
and from (6) and (20), and by (20) it leads to
| ¢,(Ty) | > b;, which contradicts (21).

From the above discussion, it follows that | ¢; | << b;,
i=1,,n. Thisleadsto V, < -l e |,V |l &) I =
k,, and by applying Lemma 1 we can achieve that there
exists a positive constant Ty such that

ly(t) =y () I< e, ¥Vt =Tp
is satisfied. Theorem 1 is proved completely.

The forgoing discussion shows that Theorem 1 is valid
under the influence of discontinuous exogenous distur-
bance. This is made possible because only the signs of
signals z; ’s are used. When the exogenous disturbances
are abruptly changed, the large errors between e; and z;
may occur in the high gain observer, but their signs will
become equally swift.

4 Simulation example

Consider the following system
29 + fi(x,dy),
g9 = x3 + fo(x,d2),
u+ f5(x,ds),

Yy = %x1.

The reference trajectory is y,(¢t) = 0.7 + 1.3sin ¢, and

X

(26)

X3 =

the uncertain nonlinear functions are taken as follows

f1 =0.5+0.5sin ¢,
fo = %5 + 0.1x%cos 0.5¢ + xysin ¢t + cos 0.5¢,
2 = z3 + 0.25¢™ + xyc0s %1 + sin 1.5¢.

The initial values are z;(0) = 0.1, x,(0) = 0.4, x,(0)

= 0.4. In the following design, suppose the uncertain
nonlinear functions satisfy

lAls, TAls, 1 il ],
| fo 1< 0.623 + 222 + 3.5,
I ol zs 14+l 2o 1410123 141 2 1+ 1,
l fAlsl 23 1+0.3¢™ 1 25 1+ 1,
for all ¢ and the initial conditions satisfy
I %1(0) 1< 0.1, 1 %2(0) 1< 0.5, | %3(0) 1< 0.5.
In the simulation,
e, = 0.3, &5 = 0.6,
ky =0.02, A; = 1,i = 1,2,3,
Li=2,L,=17, Ly = 11,
ky =1, ky =2, p = 100
can be taken.
tracking error.

With these parameters, Fig.1 shows the

0.7

0.6

0.5

0.4

v 03
0.2

0.1

0
-0.13

2 4 6 8 10
t

Fig. 1
Remark 4 In the simulation there is no discontinu-

Tracking error

ous point, but the simulation results are almost the same
if the sin ¢ signal in f] is replaced by a unit square wave.
5 Conclusions

A robust output feedback-tracking controller for a
class of uncertain nonlinear system has been designed.
Here, a high-gain differential observer is adopted in a
special variable structure observer. This may be consid-
ered as one of the key approaches that make the proposed
design procedure successful. The other achievements is
that only the signs of the signals from the differential ob-
server are used in the variable structure observer. By
solving some inequalities, all the parameters in the con-
troller can be obtained. With these parameters, the con-
troller makes all the signals in the closed-loop system
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bounded, and furthermore, by choosing the suitable so-
lution of the inequalities, any tracking accuracy can be
achieved. It is worth mentioning that due to the unique-
ness of our variable structure observer and controller, the
robustness of the closed system is significantly im-
proved.
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