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Abstract: A new method used for time-optimal trajectory planning and control of industrial robots is proposed, which can
ensure the motion of a robot’s hand along a specified path in Cartesian space has the minimum traveling time under the con-
straints on the boundary values of joint displacements, velocities, accelerations, and jerks. In this method, the planned joint tra-
jectories are all expressed by a quadratic polynomial plus a cosinoidal function and are continuous not only in displacements, ve-
locities, accelerations but also in jerks. By using the method, a robot’s working efficiency can be raised and its life span can be
extended. The results of computer simulation and experiment with a Unimate PUMA 560 type robot proves that this method is
correct and effective. It provides a better solution to the problem of industrial robot’ s time-optimal trajectory planning and con-
trol under the nonlinear kinematical constraints.
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1 Introduction

The problem of time-optimal trajectory planning and
control for industrial robots means optimizing the joint
motion trajectories of a robot by taking the minimum
traveling time as the performance index so that the mo-
tion of the robot’ s hand between two points or along a
specified path in Cartesian space has the minimum trav-
eling time. Conducting this research is of practical sig-
nificance for raising the working efficiency of industrial
robots.

So far, many researchers have studied this problem
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and developed many methods to solve it. These methods
can be divided roughly into three categories: 1) use the
constraints on joint velocities and/or accelerations, and
choose optimum joint velocity and/or acceleration pro-

[3‘4]; 3) use

files!"); 2) use the maximum principle
various optimization algon'thms[s 61,
researchers studied this problem using neural networks or
genetic algon'thmsm .

The research method adopted by the authors of this
paper falls under the third category. In this paper, a new

and effective method for the time-optimal trajectory pla-

Moreover, some
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nning and control of industrial robots will be proposed,
in which each joint trajectory of a industrial robot will be
expressed by a quadratic polynomial plus a cosinoidal
function and the constraint on joint jerk (the rate of
change of acceleration) continuity will be added to this
optimization problem. This method can ensure the mo-
tion of a robot’ s hand along a specified path in Cartesian
space has the minimum traveling time under the con-
straints on the boundary values of joint displacements,
velocities, accelerations, and jerks. These optimized
joint trajectories can prevent a robot’ s mechanical parts
from excessive wear and tear. This method can not only
raise a robot’ s working efficiency but also extend its life
span.
2 Formulation of joint trajectories

In Cartesian space, the hand position and orientation
of an industrial robot can be expressed by the following
4 x 4 homogeneous transformation matrix(®’ ;

n(t) s(t) a() p(v)
0 0 0 1

where p is the position vector of the hand; n, s, and a

H() = . o

are the unit nomal, unit slide, and unit approach vec-
tors, respectively. These vectors are all expressed with
respect to the base coordinate frame Oy — XYy Z, of the
robot! ¢

Assume that m knots are selected from the initial
point to the terminal point along a specified path of a
robot’ s hand in Cartesian space, and the times corre-
sponding to these knots are f,,?,,* ", 1, in order. To
construct joint trajectories, these knots H(t;),i = 1,2,
-+, m, must be first transformed into joint vectors [ g,
QZl:"'aQNl]: [Q12a422a"'aQN2],“'a [tha‘hma"'a
gnw ] by use of the inverse kinematical equations of the
robot , where ¢;; is the displacement of joint j at knot i
comresponding to H(¢;) and N is the number of joints of
the robot. Secondly, a suitable function must be selected
for each joint to fit joint displacements g;, g, s gjn
together. In this section, we will adopt a quadratic poly-
nomial plus a cosinoidal function to construct trajectory
for each joint. Because the procedure of constructing

joint trajectories deals with one joint at a time and joint

number j is not necessary to be specified, g;; will be re-
placed by g; for simplicity .

Assume that at the initial time ¢ = f;, the joint dis-
placement ¢, velocity v, and acceleration a; are speci-
fied; so as g, ,v,, and a,, at the terminal time ¢ = ¢,,.
In addition, joint displacements q; at¢t = ¢; fori = 3,4,
-+, m — 2 are also specified. However, in order to give
enough freedom to solve the optimization problem with
the constraints, ¢, and g,_, are not fixed, which are re-
ferred to as extra knot. Let Q;(¢) be a quadratic polyno-
mial plus a cosinoidal function defined on the time inter-
val [ t,,t;,,]. The aim of trajectory planning is to spline
Q.(t), fori = 1,2,~-,m - 1, together so that the joint
displacement, velocity, acceleration, and jerk are con-
tinuous on the entire time interval [ ¢, £,, | ; and the mo-
tion of the robot’s hand along a specified path in Carte-
sian space has the minimum traveling time under the
constraints on boundary values of joint displacements,
velocities, accelerations, and jerks.

Because (;( ) is a quadratic polynomial plus a cosi-
noidal function, the second time derivative (;(¢) must
be a constant plus a cosinoidal function. Hence, Q;(¢)

can be expressed as:

0:(t) = k| + kacos [hﬂi(t - 1)1, 2)

t € [ty i = 1,2, ,m =1,
where h; = f;,1 - t;,k; and k, are two undetermined
constants .
Let £ in (2) be equal to ¢; and ¢;,, respectively, we
can obtain k; and k,. Substituting k, and &, into (2), we

obtain the expression for joint acceleration as follows:

Oi(t) =%[Oi(5i) + Oi(ti+l)] +

L0000 = Qutea) Jeos [ - 1)1,
(3)
Integrating ();(¢) twice and imposing the conditions
Q:(t;) = q;and Q;(t;,,) = q;,1, We obtain the expres-

sion for joint displacement as follows:

2
Q:(r) = {Qi + 5}:—;2[0;'(5» - Qi(tiﬂ)]}'l"
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Giv1 = G hir o Al 4 9ix1=9i 9i=di-\y ;53 ... o1

{ hi - 4[Ql(li) + Qi(ll+1)] - (Tf2—4)h,,( hi hi-.l )) L= )3) y .

%[Q,(l;) - Oi(lnl)]}(l - )+
2000 + 0.0 - 1)? -

L1000 - 0uasa)Jeos £ (- ). @)

Differentiating Q;(¢) once and three times respectively,
we obtain the expressions for joint velocity Q;(¢) and

joint jerk Q;(¢) as follows:

0u(0) = { B - B0, 4 0uuan)] -

%[O"(li) - @i(li+1)]}+

%[O"(li) + 0:(ti )]0 - 1) +

%[Oi(h‘) - Q;(t;11) Isin [hﬂl(l _ li)] ’
(5)

(z - )]
(6)

Because (; () is a sinusoidal function, its values at the

Qi(e) = - [Q(l)—Q(t,H)]sm[

two ends of [ ¢, , ¢;,,] are all equal to zero, which makes
the joint jerk be automatically continuous at the juncture
of two adjacent time intervals. This is why the variable
of the cosinoidal function in (2) is taken the form of ( :
— t;)/h;. Because the joint jerk is continuous in the
process of motion, the acceleration profile of each joint
does not generate zigzag lines. Obviously, this is bene-
ficial to the extension of the life spans of mechanical
parts.

According to (3) ~ (6), Q,(2),0Q,(¢),0;(¢), and
Q;(t) can be determined if {,(t;) ‘and Q.(tiy) are
known. The following is the introduction to the solution
for Oz(lz)y03(l3),"',O,,z_l(l,n_l)-

According to the continuity condition for velocities,
we obtain Q;_1(t;) = Q;(#;),i = 2,3,
which leads to the following equations by use of (3) and
(5):

th_IQL 15 1)+(1r2+4)(

1 I.

ceeom - 1,

11+h

)Ql(t )+Qz(lz+1) =

(7)

The unspecified joint displacements of the two extra

knots can be expressed in terms of initial conditions at

the beginning and terminal knots together with (;(z,)

and Q1 (t,_1). By use of (3) ~ (5) and letting i be
equal to l and m - 1 respectively, we can obtain

2
= 4,,.
g2 = q1 + v1hy + . zhlal + T 5 41(2 h%01(t2),

(8)
2
qm—1=qm_vhml+ 42hm1am+
— 4 ..
2 h%n-lQm-l(tm—l)- (9)
Leti =2,3,-,m - 1, respectively, (m - 2) equations

can be obtained using (7). By means of these equa-
tions, the following matrix equation can be obtained:

Q,(12) 4
03(.t3) _ C.z ’ (10)

Om_l(lm_l) Cn-2

where the matrix B has the following form:

[ by bp O 0 - 0 0
by by by 0 - 0 0
B =| 0 by by by - 0 0
L0 0 0 0 - by m3 b,,,_z_,,,_zj
(11)
The elements of the matrix B and ¢;, ¢5,°**, ¢,,.2 can be

obtained from the left side and right side of (7) respec-
tively. They consist of the given values of g’s, v's,
a's, and h's,

A program called SUA (solving for unknown acceler-
ations) has been written, the purpose of which is to
solve (10) for the unknowns Q;(t;),i = 2,3,

Property 1 The trajectory problem described above

has a unique solution, i.e., the system matrix B of

com-~1.

(10) is nonsingular.
The proof of this property is omitted because of the
limitation of the paper length.
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3 Description of optimization problem
First formulas (3) ~ (6) are modified as follows: a)
the joint number j is added to them; b) let Q;(¢) be the
joint trajectory equation for joint j between knots i and ¢
+1;¢) let Az = Q;(e;) and 4; ;1 = Q1) Sec-
ondly, let VC;, AC;, and JC; be the velocity, accelera-
tion, and jerk constraints for joint ;.
The optimization problem is then described as fol-
lows:
Constraints:
| 0x(e) 1< VG,
I Oji(l) | < AG;,
| bji(l) l< JG;,
j=12,,N,i=12,,m-1

Objective function: minimize

(12)

m-1
T(X) = hy + ho 4 hyy = D ks, (13)
i=1

where X = [hy, ks, ", hm_1] is the vector of time in-

tervals. The above constraints can be expressed in ex-

plicit forms as follows.

1) Velocity constraints:

10;(t) 1< VG, j = 1,2,,N, i = 1,2,7,m - 1.
(14)

The maximum absolute value of velocity exists at ¢;,

tiv1, or t], where ¢ satisfies Q;(¢;) = Oand is in

the interval [ ¢;, ¢;,,]. The velocity constraints then be-

come

o | Qi(e) 1=

maxt | Q{10 1 Qiltiwa) 1. | Qi(e]) 1< VG,
i = 1,2,-.-,m—1,j= 1’2"”,N, (15)

2) Acceleration constraints:
1 0;(¢) I< AG;, j = 1,2, ,N, i = 1,2,,m ~ L.
(16)
Observing (3) and (6), it can be found that the maxi-
mum absolute value of acceleration exists at either ¢; or
tiaon[#,t,]) and equals max {1 A; |, | A i1 I},
Hence, the acceleration constraints become
max{| Ay |, | A 1, | A 1} < AG
j=12,",N.
(17)

3) Jerk constraints:
| Qi(¢) 1< JG, j = 1,2,,N,i = 1,2,,m - L.

(18)
Observing (6), it can be found that the maximum abso-
lute value of jerk is a constant | — n(A; — A; ;,1)/(2h;) |
on [ ;,¢,1]. Consequently, the jerk constraints can be

represented by

E%;(Aji - 4.a) [ < JG,

i=1,2,,m-1,7=12,-,N. (19)

Property 2 The solution is always feasible for the
optimization problem with constraints (15), (17), and
(19).

According to Property 1, Aj,A;, ", Aj,m-1 Can be
uniquely determined if X is given. But, the constraints
on joint velocities, accelerations, and jerks might not be
satisfiled. In this case, we can follow the method used in
Reference [6], i.e., expand all the elements of vector
X in the same proportion to bring the unsatisfied veloci-
ties, accelerations, and jerks down to the constrained
values. The validity of this procedure is explained as
follows.

Assuming A to be a constant greater than 1, if time is
lengthened according to = At, then the new time inter-
val becomes h} = Ah;and [¢;,¢;,,) becomes [ 7;, 7,1 ]
= [ri,7; + h}]. Replacing t;, t;.1, hi, 0:;(t;),
0:(t:01), Q:(1),0:(t;),and Q;(1;) in (3) ~ (6)
with 7,700, h7 ,Q0:(7), 0i(rii1), i), 0:i(=),
and Q;(z;), respectively, and replacing ¢ and h; in (7)
with 7 and h; respective, we obtain five new equations.
By means of these equations, we can obtain the follow-
ing relations: '

Q:(t) = Q:(r),
0:(z) = 0:(e)/1,

. .. 20
0:(7) = Qi(e)/2%, (20)
Qi(T) Ql(t)/Ass
which indicate that if vector X is replaced by [ Ak}, Ak,

***, AR, _1 1, then the joint displacements will not change

but the joint velocities, accelerations, and jerks will be
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reduced to 1/4,1/42, and 1/A° times of their respective
values. These changes ensure that the constraints on ve-
locities, accelerations, and jerks can be satisfied. Fol-
lowing Reference [6], A is called *the feasibility adjust-
ment factor’ . The procedure that converts an infeasible
point into a feasible one is called ‘the feasible solution

converter (FSC)’ .

Let

AL = mja_x{[m‘ax(legla;’i . I Qy(i) |)]/VCj}, (21)
Ay = max [max 1 4; 1 7AG;], (22)
Ay = max[max )_(A - Aj,i+1))/]cj] » (23)

then A can be determined by the following formula:

A = max (1,A1,v/ Ao, As). (24)
After A is determined, we can compute the joint dis-
placements, velocities, accelerations, and jerks by
means of the formula set (20) .
4 Algorithm structure for solving the op-
timization problem
The Nelder and Mead’ s flexible polyhedron search al-
gorithm® is used to develop the optimization algorithm.
First an initial polyhedron must be formed. Let g;1, g3,
"1 qj,m-2» Qjm denote the displacement sequence of joint j.
The displacements of the two extra knots are temporarily
assigned as:
(25)
Gom-1 = (Gj,m-2 + qm)/2. (26)

Thus, the lower bound of the vector of time intervals

gp = (gi + q3)/2,

can be estimated as:

X = [hf,hé’”"h;-l] =
V gp-gj | l g3—qp |
max , max RO
J VCJ J VCJ
I Qjn =G, m-1 I
— . 27
o Ve, (27)

J

Because the vector X is (m — 1) dimensional, the flexi-
ble polyhedron should consist of m vertices. The first
vertex X{ is selected as X' if X" is feasible or selected as
the feasible vertex converted from X’ by FSC. The re-

maining vertices X5, X5, -+, X can be determined as

follows. First the regular polyhedron is computed as fol-

lows:
X; = X{ + [di,dy, dy,,ds],
Xé = X{)"‘ [dZ’dlid27“.7d2]’
. (28)
Xn: = X{)"‘ [d27d2’d2"";dl];
where
dl = (\/— +m 2)
_1 J2
(m-1) (29)
dy = ————(V'm -
2 (m - 1)«/?7.

and D is the distance between arbitrary two vertices of
the regular polybedron. Let X $= [A9,A3,---,4%_,].
According to the suggestion of Nelder and Mead, D is
computed as follows:

m-1
D = 10min {m0'2 22 (hY - ki), (RS - B,
- e=1
(h3 = h3),-, (RS = Rh_D}. (30)
Then, X? is selected as X! if X/ is feasible or X{ is se-
lected as the feasible vertex converted from X; by FSC.
Among the m vertices of initial polyhedron, let X,

X;, and X, have the greatest, second greatest, and least
objective function, respectively. Let X,,,; be the cen-
. X1 is calculated as:

LX) - x].

troid of vertices except X,

1
Xno = 777 (31)

The purpose of flexible polyhedron search algorithm is
to select a better feasible vertex, which corresponds to a
smaller value of the objective function, to replace the
worst vertex X, . Operations for searching a better vertex
include reflection, expansion, contraction, and reduc-
tion. They are defined as follows.

1) Reflection: Reflect X, through the centroid by
computing

Xni2 = X + (X - X)), (32)
where @ > O is the reflection coefficient. According to
Reference [6], « is calculated as

1, if 2R — h% > Oforall ;

hm+1
a = 3"{ for o ¢ [hs hm+‘]}

with 27 '_h¥ <0

(33)

if 267 _ hé< 0 for some i,
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where 0 < 8, < 1 is selected to keep X,,,, away from the
boundary where at least one element of X,,,, is zero.

2) Expansion: Expand the vector (X,,2 — Xp.1) by
computing

Xpe3 = Xy + Y(Xus2 = Xnat) (34)
where ¥ > 1is the expansion coefficient. According to
Reference [6], 7 is calculated as
2, if 272 — A7 > Oforall i,
m+l

o7 max
7 = 2 for those i hr;‘+l—h?+2

m+2  m+l

withhl. —h‘. <0
if 2R*% - ™! < O for some i,
(35)
where0 < &, < 1.
3) Contraction: Contract the vector (X0 — Xpma1)
or (X, - X,,.;) by computing
Xpst = Xmot + B(Xns2 = Xoi1) (36)
or
Xnia = Xop1 + (X - Xuit) (37)
where 0 < < 1 is the contraction coefficient.
4) Reduction: Reduce all the vectors (X; - X,), i =
1,2,---,m, by one half from X, by computing
X <X +0.5(X,-X,), i = 1,2,>",m.
(38)
After the initial flexible polyhedron is formed, the al-

gorithm should enter an iterative process. When

m

2 | X¥ - X¥|l < e,(e, is a preselected small number

i1

and k denotes stage number ), the polyhedron will be-
come very small and the solution is obtained at a local
optimum point. To further search the global optimum
solution, X¥will be used as the first vertex for setting up
another new initial polyhedron, and then another cycle
of iterative reduction process will be started again. In the
algorithm given below, whenever the iterative process
reaches Stepl4, it completes one iterative cycle; when-
ever the process reaches Stepl3, it completes one itera-
tive stage of that particular cycle. &k is the cycle number
and k is the stage number. If the difference of the solu-
tions from two consecutive cycles is less than a preselect-

ed small number ¢,, the vector of optimal time intervals

is obtained.

Optimization Algorithm

Step 1 Select (m - 2) knots from the initial point to
the terminal point along the specified hand path in Carte-
sian space, which are labeled with 1,3, 4,-*-, m - 2,
and m in order. Knot 2 and knot m - 1 are the two extra
ones that are not selected on the path.

Step 2 Call the program for solving the inverse kine-
matical equations of the considered robot to transform the
Cartesian coordinates of the selected (m - 2) knots into
the corresponding joint displacements g;;, g3, q»>"""»
4j,m-25Qm>J = 1,2,°--, N. Compute the displacements
of the two extra knots by (8) and (9).

Step3 Setkk = Oand & = 0. Select 8,,8,, and 3
in (33), (35), and (36), (37). Also select ¢, and &,.
Set OLD X, = [0, 0,---,0].

Step 4 Compute X’ by (27). If X’ is feasible, then
set X* = X'; else set X = the feasible vertex converted
from X’ using FSC.

StepS Fori =2,3,'*, m, compute X; by (28). If
X! is feasible, then set XF = X} ; else set X* = the fea-
sible vertex converted from X} using FSC.

Step 6 From X%, X%,--, X%, determine X%, X},
and X¥, which have the greatest, second greatest, and
least value of the objective function, respectively.

Step 7 Compute the centroid Xt by (31).

Step 8 Reflect to obtain X%,, by (32) and (33).
Make X%, , feasible by FSC if X%, is originaily infeasi-
ble.

Step9 If T(X%,,) < T(X¥), then follow a) and
b) specified below; else go to Step 10.

a) Expand to obtain X%,; by (34) and (35). Make
X% 5 feasible by FSC if it is infeasible originally.

b) Set

Xk if T(XE,) < T(Xh.s),
Xé = { k . k &
Xrizs if T(Xrr2) > T(Xmi3)»
then set ¥k = & + 1 and go to Step 13.

Step 10 If T(X%.,,) < T(X}), set Xt = X&,,,
thenset k = k + 1 and go to Step 13. If T(X}) <
T(X%,,) < T(XF), contract to obtain X%,, by (36).



http://www.cqvip.com

Theoretical and experimental research on

No.2 TAN Guan-zheng et al:

191

time-optimal trajectory planning and control of industrial robots

If 7(X%,,) = T(X%), contract to obtain X%,, by
(37). Convert X%, to become feasible by FSC if it is
infeasible originally.

If T(Xk,.) < T(XE), set Xg = Xk,
then set £ = & + 1 and go to Step 13. Otherwise contin-

Step 11

ue the step.

Step 12
(38). Make those vertices feasible by FSC if they are
originally infeasible. Then, find the new best vertex X f

Reduce the size of the polyhedron using

with the least value of the objective function, and set

k = k + 1. Continue the next step.

m

If > I X¥ - X*|| < e, then go to

=1

Stepl4; else go to Step 6.

Step14 If || X¥ - OLD X, | < e,, then output X*
as the vector of optimal time intervals and go to Step
15; else set X) = X*, and OLD X, = X¥. Then set kk
= kk+ 1,k =0, and go to Step 5.

Step 13

( * Time-optimal trajectory planning * )

Step 15 Call SUA program using the optimum solu-
tion Xf as the input to obtain joint accelerations A, A3,
3 Ajmo1,] = 1,2,--, N, and the displacements of
the two extra knots, i.e., gp and g ,-1,j = 1,2,

- N.

Step 16  Set sampling period and compute the joint
displacements, velocities, accelerations, and jerks at
each sampling point by use of (3) ~ (6). These data
can be used for the on-line path tracking of the robot or

as the result of computer simulation.

5 An illustrative example

In this section, a Unimate PUMA 560 type robot with
six revolute joints will be used to examine the effective-
ness of the above time-optimal trajectory planning and
control method .

Eight knots are selected from a specified Cartesian
hand path. By means of the inverse kinematical equa-
tions, the joint displacements are solved for these knots
as shown in Table 1.

Assume that the robot is at rest initially and comes to
a full stop at the end of the path. Thus, v; = 0,a; =
0,v =0,a;, =0,j =1,2,--,6,m = 10. The veloc-

i

ity, acceleration, and jerk constraints of the robot are

given in Table 2.

Table 1 Joint displacements of selected knots
Joint
knot
1 2 3 4 5 6
1 43.35 7.37 130.57 0 39.06 -46.66
2 (extra knot)
3 43.33 -18.00 152.09 O 4590 48.02
4 50.04 -—-41.85 170.66 0 51.19 -32.35
5 62.67 -53.76 179.41 0 53.59 -4.9
6 78.04 -57.32 18270 0 54.62 33.04
7 94.40 -52.73 178.45 0 53.38 75.%4
8 104.13 -42.46 173.54 0 50.33 94,76
9 (extra knot)
10 11191 6.79 132.830 0 40.41 112.16

Table 2 Velocity, acceleration, and jerk constraints

Joint
1 2 3 4 5 6
Velocity v/(°)-s~! 100 95 100 150 130 110
Acceleration a/(°)+s™2 45 40 75 70 90 80
Jerk j/(°)-s7? 60 60 S5 70 75 70
The relevant parameters are selected as 8, = 0.85,
0 = 0.85,8=0.5,¢, =0.1, and &, = 0. 1. For this

example, the optimization algorithm performs five cycles

Constraints

of search sequences to obtain the optimum solution. The
results from the five cycles are given in Table 3. From
the table, the total traveling time is reduced in each cy-
cle, and the final value is 18.907 seconds.

Table 3 Results from the five cycles

b Cycle
' 1 2 3 4 5
hy 4.825 3.483 3.307 3.272 3.270
hy 0.938 1.778 1.722 1.674 1.673
hs 0.903 0.948 0.934 0.927 0.926
hy 0.857 0.783 0.753 0.747 0.747
hs 1.135 0.928 0.927 0.924 0.94
he 1.582 2.290 2.359 2.343 2.343
by 2.029 1.990 1.964 1.951 1.950
hg 7.443 4.847 4.515 4.460 4.457
hg 4340 2.693 2.652 2.617 2.617
Total times

(t/s) 24.052 19.740 19.133 18.915 18.907

Figure | shows the joint displacements, velocities,
accelerations, and jerks for this example. From this fig-
ure, one can find that some accelerations and jerks are
very close to their constrained values, which means that
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the velocities can be raised in a shorter time so that the
p/(o) V/(')'S—l a/(')'S-Z j/(')'S-J
160 100 45 60

0 0 0 0

-160 100 -45 =60

Py VICYS! alCys iy
225 100 75 55

0 0 0 0

-45 -100 =75 =55

pICY VISt al(y s jICy s
100 130 90 75

0 0 0 0 tls

-100 -130 -90  -75 '

total traveling time of the robot is shortened.

pICY VICYS! anCys? jnCys”
45 95 40 60

-60 -95 -40 -60

PIC) vi(Cys'! aj°ys? j/(")-s'3
170 150 70 70
lp v a j

0 0 0 0 |

-170 -150 -70 -70
joint 4

PICY vICYST arCy s iy s

266 110 80 70

0 0 0 0

-266 -110 -80 =70 ll J

p— position, v—velocity, a—acceleration, j— jerk

Fig. 1 Optimum joint trajectories for this example

Fig.2 shows the graphic simulation result for this ex-
ample, which illustrates the specified hand path.

The 29th picture

Fig. 2 Graphic simulation result for this example

6 Conclusions

In this paper, a new kind of joint trajectory for indus-
trial robots is proposed. The optimization algorithm is
established, which can be used for controlling a robot to
track a specified path on line with minimum traveling
time. From the results of computer simulation and robot
experiment, it is concluded that this new method is very

effective to raise a robot’ s working efficiency .
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