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Predictive control for polytopic uncertain linear systems with
guaranteed constraints satisfaction
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Abstract: Based on the invariant set theory, invariance constraint predictive control (IC-PC) first proposed by Chiscil et
al, is extended and generalized to a framework of model predictive control for constrained linear systems with polytopic uncer-
tainty. The crucial point is to reformulate online optimization problem corresponding to nominal model with an appropriate addi-
tional robust and feasible constraint. It is shown that in this configuration feasibility of online optimization problem as well as
satisfaction of constraints for the real plant can be guaranteed in all time steps if the optimization problem is feasible at the initial
stage. Moreover, a sufficient condition of robust stability is given for closed-loop uncertain system, which provides a guide to
the choice of cost function to guarantee robust stability .
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1 Introduction

It is well accepted to date that model predictive con-
trol (MPC) is the most effective way to address the
complex constrained multivariable control problem. Ro-
bust predictive control is often used to name MPC algo-
rithms that can be successfully applied to uncertain sys-
tem. The existing robust predictive control methods can
be generally classified into two categories: one makes
use of only nominal plant but seeks an ad hoc way to en-
sure some robust properties, while the other takes into
account the uncertainty explicitly in receding horizon im-
plementation of MPC, which is often referred to as min-

max robust predictive control. Both methods have some
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drawbacks. The formmer can not guarantee robust con-
straints satisfaction for uncertain system in all time steps,
while the latter tends to cause the propagation of the ef-
fect of uncertainty over the predictive horizon and make
online computation prohibitive when uncertainty is very
complex or long horizon is indispensable.

In this note, we propose a frame of robust feasible
model predictive control (RFMPC) for constrained poly-
topic linear systems, which is able to overcome the
aforementioned drawbacks to some extent. It formulates
online optimization problem corresponding to nominal
plant with an additional feasibility constraint to guarantee
robust constraints satisfaction. The idea is based on, ca-
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lled invariance constraint predictive control (IC-PC),
proposed in [1]. Using invariant set theory, we extend
this pioneer work to a more general form by further en-
larging domain. It is equally important to be aware that
robust feasibility does not involve robust stability for IC-
PC, noting that simulation of a numerical example in
[ 1] showed closed-loop system could sometimes demon-
strate limit recycle behavior. Neither analysis criterion
nor synthesis technique was given in [ 1] for robust sta-
bility. Here we formulate a sufficent condition for robust
stability of RFMPC, which can be used as a guide to the
selection of cost function to provide stability guarantee.

2 Problem formulation

Consider the following discrete time linear uncertain

system with state and input constraints:

x(k+1) = A(K)x(k) + B(k)u(k), (1)
where

[4(k) B(K)]€ A,

Q = Co{[4, Bil,~--,[4 B, (2)

x(k) € X c R, u(k) € U R™ (3)
Co in (2) denotes the convex hull. Without loss of gen-
erality, we assume that X is close and U is compact,
each containing its own origin as an interior point.
Moreover, we assume that they are all convex to avoid
technicalities. Hereafter we will always use X, U in (3)
to denote state constraint set and input constraint set re-
spectively.

Model predictive control (MPC) strategy is often de-
ployed to regulate the states and control inputs to zeros
for systems (1) ~ (3). In order to derive computational
efficient algorithm, only the nominal model based MPC
method is discussed in this paper.

Define nominal plant for uncertain systems (1) and
(2):

x(k +1) = on(k) + Bou(k),
[4g Bol € Q.
MPC control action is determined at each time step by

(4)

solving the following optimization problem over finite
horizon with regard to nominal model (4) :
N-1
min [ D L(x(k+ilk),u(k+ilk))+

“o.n-nt®izo
F(x(k + NV E))], (5)

s.t.

x(k+i+l 1 k)= Agx(k+ilk)+Bou(k+i | k),
(k1 k) = 2(k),
x(k+ilk)€E X, u(k+ilk)€EU,
: =0,1,~-,N-1,
x(k+NVE)E Toc X.
(6)
In (5), the stage cost L(+, *) defined on X x U is con-
tinuous, non-negative, time-invariant and F(+) defined
on X possesses these properties too. Ty is named as ter-
minal constraint set in MPC literature which is often
carefully selected to provide stability guarantee in con-
junction with F(+)!}. The decision variable in (5) and
(6) is the control sequence, i.e.,
ugo,n-11(k) =
[Tk E) uwT(k+11Ek) u'(k+N-11k]".
When the optimal control sequence is computed, dnly
the first control action is applied to the real system. In
the next time step, the computation is repeated from the
new state and over a shifted horizon, leading to a mov-
ing horizon policy. Now there arise such questions as
whether the MPC problem (5) and (6) is always feasi-
ble and whether the MPC controller based on the above
optimization problem can stabilize all plants within the
polytopic uncertain models. These questions will be ad-
dressed in the next section.
3 Robust feasible predictive control algo-
rithm
3.1 Preliminary about invariant set
Invariant set theory plays a fundamental role in the de-
sign of controller for constrained systems since the con-
straints can be satisfied all the time if and only if the ini-
tial state and state evolution remain inside some invariant
set. For the convenience of further discussion, we first
introduce some definitions and the relevant propositions
in invariant set theory. We recommend readers to [3]
and references therein for detail. Except of particular
specification, definitions in the following are all with re-
gard to the uncertain system dynamics and constraints in
(1) ~(3).
Definition 1 ( Robust one step controllable set
0(E))
O(E) A
lx(k) € X1 Ju(k) € U:x(k +1) € E}.
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Next, we give some basic properties of robust on step
controliable set and the conception of controllable invari-
ant set together with the geometric condition for invari-
ance.

Proposition 1 O(E;) ¢ O(E,) if
E, c E, c X.

Proposition 2 Let 0,(E), 0,(E) be robust one
step controllable set of E corresponding to system dy-
namics 3, , 3, respectively. If 3, ¢ X,, then

0,(E) o 0,(E).

Remark 1 As for system dynamics like (1),(2),
%) c 2, is equivalent to 2y C (.

Definition 2(Robust controllable invariant set) The
set E C X is a robust controllable invariant set if and only
if Vx(k)€ E,Ju(k) € Usuch that x(k + 1) € E.

Proposition 3 ( Geometric condition for invariance )

* E is robust controllable invariant if and only if £ C
O(E).

Proposition 1,2 is quite simple to prove, so the proof
is omitted. Detailed proof of proposition 3 can be found
in [4].

3.2 Robust feasible predictive control algo-
rithm

In this section, we first give a framework of the ro-
bust feasible predictive control problem for constrained
polytopic uncertain linear system, then proceed to dis-
cuss its robust feasibility with the above preliminary .

Robust feasible predictive control problem. At each
sample time %, solve

N-1
min [ D, L(x(k+ilk),u(k+ilk))+

“l0.¥-1] i=0

F(x(k+N1K)], @)
s.t.
x(k+i+11k)=Agx(k+i | k)+Bou(k+ilk),
(k1 k) = x(k),

(8.1)
x(k+ilk) € X, u(k+ilk) € U, i=0,1,-,N-1,
(8.2)
Ap(kVE)+ Bu(kik) € Xg, j=1,2,,1, (8.3)
x(k+N1k)€E ToC X (8.4)

The control action is applied to the real plant in tradi-
tional receding horizon manner.

Problem posed above is the same as the problems (5)

and (6), but with additional constraint (8.3) . We refer
to Xy as robust feasible constraint set and assume that it
is convex. Let Xp(Xg, To, N) denote the set of states
for which problem (7) and (8) has a feasible solution,
in other words, Xp(Xg, To, N) is the feasible domain
of problem (7) and (8). For the consistency of nota-
tion, we denote by Xp( Ty, N) the feasible domain of
problem (5) and (6).

Definition 3(Robust strong feasibility) MPC opti-
mization problem is robust strong feasible if and only if
the feasibility at the current time step implies the feasi-
bility at the next time step.

As far as strong feasibility of problem (7) and (8) is
concerned, the following theorem holds.

Theorem 1(Robust feasibility)
robust controllable invariant, satisfying Xz ¢ X#(To,
N -1), then (7) and (8) are robust strong feasible

If Xy is convex and

with the feasible domain
Xp(Xg, T, N) = O(Xg).
Proof Assume that problem (7) and (8) is feasible
at the current time step k&, i.e.,
x(k) € Xp(Xg, To, N).
Satisfaction of (8.3) means x(k) € O(Xg). Fulfill-
ment of (8.1), (8.2) and (8.4) means that x(k) €
Xr(To,N). So it can be claimed that
Xp(Xg, To, N) = O(Xg) N Xp(To, N). (9)
Let [Ag Bol = Qo and use Oy( ) to denote one step
controllable set under nominal system dynamics (4). It
is clear that
Xp(To,N) = Oo(Xp(To,N - 1)).  (10)
By Proposition I, Xg(To, N — 1) 5 Xg implies that

Oo(Xp(To,N - 1)) Q OO(XR) (11)
Furthermore, it follows from Proposition 2 that
00(Xg) D 0(Xg). (12)

From (10) ~ (12),we get
Xp(To, N) D O(Xg).
Thus Xz(Xg, Ty, N) = O(Xg) via (9). By this we
have proven the formula of feasible domain. Moreover,
we can infer that x (k + 1) € X from constraint (8.3),
system dynamics (1), (2) and the convexity of Xz. On
the other hand, invariance of X implies that
Xz c 0(Xg)
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according to Proposition 3. Thus

x(k +1) € Xpg ¢ 0(Xg) = Xp(Xg, To, N)
i.e., problem (7) and (8) is still feasible at next time
step k + 1. Consequently, problem (7) and (8) is
strong feasible. Q.E.D.

In the following, we shall use RFMPC to refer MPC
approaches based on (7) and (8) with the choices of Xg
and T, satisfying the condition in robust feasible theo-
rem.

3.3 Design of RFMPC

Kemel point in the design of RFMPC is to construct

Xg and Ty to satisfy

Xr c Xp(To, N - 1), Xz c 0(X,),
for convexity of Xg is easier to fufill. In this section, we
shall give a scheme similar to the approach of [1] to de-
termine T and Xg, but as being demonstrated later, our
method can encompass the way in [ 1] and bring a much
larger feasible domain .

First, T, can be selected as the maximal invariant set
of nominal system under a constant linear state feedback
control law as proposed in [1]. The choice of Xz may
be generally a little more complicated. Before addressing
this question, we give another conception involving ro-
bust invariant set for the ease of the following discus-
sion.

Definition 4(j-step robust stabilizable set) Let T
C X be robust controllable invariant with system dynam-
ics and constraints (1) ~ (3),its j-step robust stabiliz-
able set S;( X, T) is difined as follows:

S;(X,T)=1{x € X1 Ju€ U:(Ax+Bu)€ S;(X,T),
n=1,2,-,1},
So{X,T) = T.

The following two propositions are based on the in-
variance of T.

Proposition 4 The j-step robust stabilizable set
contains all the previous set, i,e.,

S;(X,T) 5 §;.(X,T), j=1.

Proposition 5
S;(X, T) is robust controllable invariant.

The j-step robust stabilizable set

Let 5;(+, +) denote j-step stabilizable set correspond-
ing to nominal dynamics (4) and controllable invariant
set Ty, then it is apparent that

Xr(To, N - 1) = Sy_1(X, To).
In the following, we shall denote by T the maximal in-
variant set'3! of uncertain system (1) ~ (3) applying the
same linear state feedback law as T;. Then X can be
chosen in the following two ways:

1) Let Xg = S;*(X,T), where j* is the maximal
positive integer j satisfying

5(X,T) ¢ Sn-1(X, Ty).

2) Let Xg = S;(Sy_1(X,Ty),T), where j can be
as possible. Especially when
S« (Sy_1(X,Ty), T) can be exactly determined, we
can choose it as Xg to get the largest feasible domain by
this choice.

From the definition and properties of stabilizable set,
it is obvious that the above two choices of X can both
satisfy the sufficient condition in robust feasible theo-
rem, thus guarantee the robust feasibility of RFMPC and
robust constraint fulfillment of the real plant. The first
choice covers the algorithm presented in [1].

3.4 Robust stability analysis of RFMPC

In the preceding section, we give the sufficient condi-
tion for robust feasibility of RFMPC, but this method
can not provide any guarantee on robust stability sponta-
neously. In this section, we limit L(-, -) and F(-) to
quadratic functions, i.e.,

L(x,u) = 7Qix + u"Ru, F(x) = 27Q,x,
(13)

chosen as large

where
Qi=0{>0,R=R">0, 0, = Q] > 0.
This paper uses ‘ >0’ on a matrix to mean that the ma-
trix is positive definite. Here we also demand that all the
sets included in RFMPC problem are convex polyhedrons
which can be represented by standard linear inequalities .
In the following, we shall discuss robust stability of
REMPC in this case.
Cost function (7) corresponding to nominal model can

be written as

J(x(k),upo,n_)(k)) =

5t woy (B Hutono (B)

#TCk) Yugo non (k) + —;-xT(k)Px(k). (14)

RFMPC problem can be rewritten as
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V(x(k)) = min(“J(x(k),u[o,N-n](k)), (15)

“lo,N-1]
s.t. Cx(k) + Dupo,n-11(k) + E < 0. (16)
E in the left-hand side of (16) is a vector and vector In-
" eq. (16) applies element-by-element. For (15) and
(16), we further suppose that
v(0) =0,
arg min( )J(O,u[o_N_l](k)) = 0.

“lo.N-1]

From robust feasible theorem, we know that RFMPC
problem will be always feasible if it is feasible at the ini-
tial stage. According to mathematical program theory, if
problem (15) and (16) has a feasible solution, it must

(17)

have the unique optimal solution since H is positive defi-
nite. This paper denotes by u[p, y-1](k) the optimal so-
lution at the current time step 4. Based on the convexity
of uncertainty model and the linearity of constraints, the
following theorem establishes the sufficient robust stabil-
ity condition for RFMPC.

Theorem 2(Robust stability) Let

2(k) = [2(B)" ufon-n(B)T,

2k +1) = [k + 1) uf@ gk + 1)),
where ufp, y_17(k) is the optimal solution to (15) and
(16) at x(k);

(k4 1) =Ax(k) + Bu" (k1 k),
i =1,2,,1,

ulo'®-17(k + 1) is the optimal solution to (15) and
(16) at sV (& + 1). If there exists P € R™™", such
that P = PT,
P Y

|>o.
H

[P
M = VT

L ™M (B) =L 2O (B ™MD (k4 1) >
2 2

ellx(k) 12, i =1,2,-,1,
where ¢ is a positive constant real variable, then REMPC
controller is robust stabilizing for the constrained uncer-
tain systems (1) ~ (3).

The preceding theorem can be proven using the stan-
dard Lyapunov arguments and the convexity of the
quadratic cost function. For lack of space, we leave it to
readers.

Remark 2 The robust stability condition here can
be further converted to a more conservative condition in
terms of LMIs using KT condition and S-procedure. We

recommend readers to [5] for details.
4 An illustrative example

Consider the constrained polytopic uncertain system
(1) ~(3) with I =2,

1 0.1 1 0.1

PR P (R §

0 1 0 1.8
0

ne| ],
0.0787

Ay

B,

and
U={ul-2<ux?2, X =R

This is the same model as used in [1]. In addition, let

N =3, Ay = (A, + A2)/2,

By = (By + By)/2,
in RFMPC problem (7),(8) and choose in (13)

Q, = diag (5000,1), R =1,

Q, = diag (1,1).
The linear state feedback control law K essential to the
terminal set T is chosen as

K =[-35.4755 - 16.8591],
which is the optimal feedback gain of the unconstrained,
infinite horizon LQR problem with weights @, and R for
the nominal system. It can be verified that K can locally
stabilize the constrained uncertain system (1) ~ (3) by
the method presented in [6]. Ty is selected as the maxi-
mal admissible set for the nominal system under linear
state feedback control law K1), Xp selected by IC-PC is
only S;(X, T). By choice 1 presented in 3.3, Xj can
be extended up to Ss(X, T). Although for the bound-
lessness of X here, S« (S5,(X,T,), T) can not be de-
termined by finite steps, we can still choose Xy as
S6(82(X, Tp), T) to circumvent X, in choice 1. These
different choices of X are reported in Fig. 1 and Fig.2
compares the corresponding feasible domains attained.
The robust stability of RFMPC is affirmed by the robust
stability theorem in Section 3.4 and the approach pre-
sented in [5]. Fig.3 shows the state evolution of RFM-
PC with the second choice of Xy for an initial state
x(0) = [-0.1 0.1]7,
which is outside of the feasible domain of IC-PC, and
for the realization of
A(k) =(0.5+0.5sin 0. 1k)A, +
(0.5 - 0.5sin 0. 1k) A,.
Fig.4 displays input response.
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Fig. | Xp-( Ty.2)(dotted) and X; (solid) from inside to

outside for IC-PC,RFMPC with choice | and choice 2
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Fig. 3  State evolution of RFMPC

5 Conclusion

In this paper, a framework for a robust feasible MPC
algorithm is presented with a sufficient condition derived
for guaranteeing robust strong feasibility. Compared to
other similar MPC methods corresponding to nominal
model, feasible domain attained by RFMPC can be
shown further enlarged without much more online com-
putation demand. In addition, a sufficient condition is
given for robust stability of closed-loop system. Current
research is devoted to developing a systematic design
scheme to guarantee robust strong feasibility and robust
stability simultaneously .
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