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Robust guaranteed cost control for uncertain discrete delay
systems via dynamic output feedback
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Abstract: The problem of robust guaranteed cost control for a class of time-varying uncertain discrete delay systems is

studied. The guaranteed cost control law is implemented by using a dynamic output feedback compensator. The proposed meth-

ods are given in terms of linear matrix inequalities (LMIs) . A numerical example is given to demonstrate the effectiveness of the

proposed methods.
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1 Introduction

Many physical systems contain inherent time delays
and uncertainties. Since time delays always result in in-
stability of control systems, there has been increasing in-
terest in the research of robust stabilization for uncertain
time-delay systems“'z] .

Recently, with the development of robust control the-
ory, the robust guaranteed cost control approach to the
design of state feedback control laws for uncertain sys-
tems has been a subject of intensive research. Quadratic
guaranteed cost control for uncertain non-delay systems
was dealt with in [3 ~ 5] and robust guaranteed cost
control for continuous-time uncertain systems with delay
was considered in [6 ~ 9]. However, all those
researches have been done on uncertain systems without
time-delay or continuous-time delay systems. Little at-
tention has been paid towards discrete-time uncertain
systems with delay. And furthermore, most of the work
is based on the assumption that the system states can be
measured such that a memoryless state-feedback control
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law can be constructed to stabilize the proposed systems.
In the case that the system states are non-measurable,
these methods will fail.

In this paper, we consider the problem of robust guar-
anteed cost control for a class of linear discrete delay
systems with time-varying uncertainties. By using the
discrete Lyapunov function technique, based on a dy-
namic output feedback compensator we develop the ro-
bust guaranteed cost control for the uncertain system,
which makes the closed-loop system quadratically stable
for all admissible uncertainties and guarantees an ade-
quate level of performance. The proposed methods are
given in terms of linear matrix inequalities (LMIs) . We
show that the feasibility of the LMI ensures the existence
of the output feedback compensator which solve the ro-
bust guaranteed cost control problem.

2 Problem description and some prelimi-
naries

Consider a discrete-time uncertain system with delays
in the states described as
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x(k+1) = [A+0ACk)]x(k) + [Ag + form:
AAG(E)1x(k - k) + Bu(k), {E(k +1) = A8(k) + Ag&(k - h), s)
y(k) = [C +AC(Kk)]x(k) + (1) z2(k) = C,&(k) + Cy&(k - h),
[Cyq+AC4(Kk)]x(k - R), where

x(k) = ¢(k),Vk =-h, - h+1,-,0,
where h is a positive integer for delay time, x (k) € R”
is the state vector, and # (%) is an initial value vector at
k.A,Agand B represent constant matrices with appropri-
and AA(k),AA4(k),AC(k) and
AC4(k) denote parameter uncertainties of the following

ate dimensions,

form:
[AA(k) AAy(k)]
[AC(k) ACy(k)]

H F(E)[E, E,],
H,F(K)[E, E,],
(2)

where H; and E;(i = 1,2) are known constant matrices

It

with appropriate dimensions, and properly dimensional
matrix F(+) is unknown, time-varying but norm-bound-
ed as
FY(E)F(k) < 1.

Because we will consider the stabilization problem and
controller design problem independent of the size of time
delays, it is necessary to present the following assump-
tion:

Assumption 1 The matrix A + A4 is Schur stable.

Indeed, the stability of the nominal system of (1)
without uncertainties is a necessary condition, but is not
sufficient. Note also that if A + Ay is unstable, the sys-
tem cannot be stabilized independent of the delay size.

Choose the controlled output z(k) as

2(k) = C,x(k) + Cyx(k - h).
Let a quadratic cost functional be

Ja 2 2"(k)z(k), (3)

k=0

where J is called the guaranteed cost function. We are
interested in finding output feedback compensator as

#(k+1) = Az(k) + B.(k),

w(k) = C2(h), 2(0) = 0, “
where (k) € R" is the compensator state vector; A.,
B_ and C_ are the system matrices of the compensator to
be designed such that the closed-loop system with this
compensator is robustly stable and achieves an upper
bound & for the cost function J for all admissible uncer-
tainties. The closed-loop system is of the following

x(k)
e = (2 0)
- A+ AA(k)  BC,
A= (BCC+ BAC A, )
- Ag + AA4(k) 0
A= (Bch + B.AC, (k) o)’
C.=(C, 0),Cq=1(Cq 0).

In view of the form of closed-loop system matrices,
we can guarantee the Schur stability of matrix A + A4 by
choosing appropriate matrix A,, B, and C..

The proof of our main results needs the following
Lemma.

Lemma 11" The inequality Y + HFE + ETFTH"
< 0holds for all F satisfying || F |l < 1 if there exists
e >O0suchthat Y + eHH' + ¢ 'E"E < 0, where Y is
symmatric matrix and H, E and F are real matrices of
appropriate dimensions.

3 Guaranteed cost control for delay sys-
tems without uncertainties

In this section, we provide an approach based on LMI
to construct guaranteed cost output feedback compensator
for linear discrete-time systems with delays without any
uncertainty .

For convenience of description, we use the following
notations :
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Cl -5 -1
2y = NE 13 =( ,

I -9
- Ri! 0
055 = -1 ’
0 - R;
T = diag { X3,1,X3,1},

T = diag {X3,1,X3,1,1,1}.
Define Lyapunov function as
V(e(k)yg(k - 1)11$(k - h)) =

eT(kYPECE) + D) (K - i)RE(E — i), (6)

=1

For simplicity, we denote V(&(k),&(k - 1),--,
€(k - k)) as V(k), and then V(£(0),&(- 1),
(- h)) = V(0). Also define V(=) as the denotion
of V(&(K),6(K-1),,é(K-h))when K— .

Then we have the following theorem.

Theorem 1 Consider the system (1) with the out-
put compensator (4), the closed-loop system (5) is sta-
ble if there exist symmetric positive definite matrices Q ,
S and real matrices &y, 8,,d; for some given positive
definite matrices R, and R, such that the following LMI
is feasible:

Ou 0 23 Oy s
* Dy £y 2 O

Dy=| * * 0m 0 0 1<0, (7)
* * * -1 0

* * * * {255

g

where “ * ” denotes the symmetric blocks of the sym-
metric matrix and
MN" = I - SQ,
{61 = C,M", 8, = NB., (8)
83 = NA.M™ + QAS + QB3 + 8,CS.
Moreover, the parameters of output feedback compen-
sator A, B, C. can be computed based on (8), and the

cost function J satisfies the following upper bound
h

o = $7(0)Q #(0) + D) 8T(= )R $(= i).

=1

Proof Taking the forward difference of (6) we get

E(k) \T &(k)
AVEE) z(e(k - h>) H‘(s(k - h>)’
2T(k)z(k), (9)
where

I ATPA_P+R+ CTC, ATPA,+ C'C,
b AIPA+CT,C,  ALPA,~R+CNT,)

(10)
Noticing the manipulation as
m o 0
-P 0 |=2"I,3, (11)
0 -1
where
1 0 AT ¢T
sr_ |0 1 AT T
0 0 I o
0 0 O
-P+R 0 AP (T
1, - * - R AP CI, ,
* * -P 0
\ * * * -1

we can conclude that IT;, < 0 holds if IT, < 0. And fur-
thermore we can conclude that

AV(E) < - 2"(k)z(k),
and V(o) —0.

Hence, it follows from the Lyapunov stability theorem
that the system (6) is asymptotically stable. On the oth-
er hand, under the initial conditions x(k) = ¢(k),
u(k) = 0for - h < k < 0, we have

=~

J< S -av) -

h
¢T()Py(0) + 2 ¢T(- i)Rp(- i),
=1
Up to now, we should prove that (7) is the sufficient
condition for II, < 0 via LMI tool.
Without loss of generality we can always choose in-
vertible matrices P, X, X, as

A NN

NY U MYV
I 0 S I
R I I
Y I AR Y YO
and furthermore
QS+NMT:I,
N'S + UM" = 0.

Therefore, it is easy to see that PX, = X, which is
equivalent to
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P = X, X;'. (12)
Premultiply 77 and postmultiply T to IT,, we have
11

- XIx,+XIRX, 0 X3A"X, XxjCT

* - R HgXl CId

< 0.
* x - X1X; 0
* * * -1
(13)
If we choose R in (13) as
R, O

lo &)’

and substitute correspondingly the system matrices and
the decompositions shown in (12) into (13), it is ob-
tained (7) based on notations in (8) by using Schur
complement lemma. Furthermore it follows J < o.

Procedure

Step 1 Given R, > Oand R, > 0, solve LMIs (8)
to obtain Q > 0,S > 0,8,,6, and J3;

Step 2 Compute a pair of invertible matrices M and
N based on the first equality in (9) by svd function in
Matlab;

Step 3 Substitute @, S, M and N into X, and X,, and
~ we obtain P. If P > 0, next to Step 4, else to Step 1;

Step 4 Solve A, B, and C, via the other three equa-
tions in (9).

4 Robust guaranteed cost control for de-
lay systems with uncertainties

In this section we consider how to determine an output
compensator for delay system with uncertainties de-
scribed by (1) and (2) such that the closed-loop system
is robustly stable with guaranteed cost . The following
result casts this robust guaranteed cost control problem
into one which can be solved by the approach proposed
in Section 3.

Theorem 2 Given positive definite matrices R, and
R,, the closed-loop delay system with uncertainties (6)
is robustly stable if there exist positive definite matrices
- XIX, + XIRX, O

* - R

%* %*

*

Q, S and real matrices 01, 87, 63 for any admissible un-
certainties satisfying (14) for a given scalar e > 0, and
the cost function (3) satisfies the following bound

o = $7(0)Q $(0) + 25 #7(~ DRi$(- i),

o, 0 Q1
I_Io = * - el 0 < 0, (14)
* * —er
where
Q"= (E,S" E, E, 0 0 0),

0L =( 0 0 0 HT HTQ + HIsY).
Proof Similar to Theorem 1, AV(k) + z"(k)z(k)
< 0 can be guaranteed by

-P+R 0 A"P+C] C]
il - * - R AlP Chy <0
* * - P 0
* * * -1
(15)
It is obvious, based on (2) and (5), that
(A Ad) = (A Zd) + HF(E, E,),

where
H,

7- (
BCHZ

Using Lemma 1 it can be obtained IT; < 0 if and only if
there exist P > 0, R > Oand e > O satistying
i,

), E = (E 0),E = (E 0

-P+R 0 AP C] E 0
* -R AlP CT, E, 0
* * - P 0 0 PH
< 0.
* S 0
* * * * — el 0
* * * * * —e 7
(16)

The following proof procedure is based on the same
method via (12) to (13).
Premultiply 77 and postmultiply T to IT,, we have

XTATx, XxIcT XIE, 0
ATX, ", E, 0
T T73
-X3x, 0 0 XiH | _ R0
* -1 0 0
* * — el 0
* * * - 5‘1[



http://www.cqvip.com

No.2 GUAN Xin-ping et al: Robust guaranteed cost control for uncertain discrete delay systems via dynamic output feedback 203

If substitute R in (13) and the decompositions in (12)
into (17), we have (14) by using Schur Complements
lemma once more. On the other hand, we can see (14)
indicate the following inequality

AV(E) + 2"(k)z(k) < 0, (18)
so J < o can be obtained easily if we conduct add from
k = Oto o at the two hands of (18) apparently.

Remark 1  Theorem 2 provides an ILMI based
method for the design of an output feedback compensator
that robustly stabilizes uncertain discrete delay system
(1) and guarantees an adequate level of performance. It
should be pointed out that the feasibility of LMI (14)
does not provide a unique solution @, S, 8y, 8, and §35.
However, the non-uniqueness is in fact an advantage
since we can construct a family of controllers using this
property. The optimal quadratic guaranteed cost con-
troller can be determined by a search over all parameters
Q,S,8;,8, and &5 satisfying LMI (14). The optimal
cost is found as follows.

Remark 2 The advantage of LMI approach is that
the problem of finding the optimal cost can be easily
solved without requiring the tuning of any parameters.
Note that the performance bound o depends on the initial
conditions ¢(i)(i = - h, - h +1,--, =1,0). To re-
move this dependence of the initial conditions, we as-
sume that the initial state is a random variable satisfying
the following set

O = {$(i) € R":x(0) = UpVy,
x(= i) = UV, ViV < If.

In the case, we can get

(19)

h
J <8 < Al USQUs + D, URUL).
i=1

Then, the optimal quadratic performance can be comput-
ed by solving the following quasi-convex optimization

problem
minmize A
[—10 < 0,
h
s-t A+ 25 URU, USQ
i=1
QU -0

Remark 3 The dynamic output feedback compen-
sator used in this paper is the discrete case of the one
proposed by V. Kapila (1998) . It should be noted that
the results of discrete time case are more useful than the

corresponding continuous time results since the use of
digital hardware invariably requires that the designing of
robust controller be implemented in discrete time.
5 Tlustrative example

In this section we present an example to illustrate the
theory developed in preceding sections. Given the time-
discrete delay system (1) with the following parameters

. (0.13 0.63) (0.18 0)
Vo 08/ T Vo2 0.4l
(0.25) (1 -1)
= 1C= ’
1.4 0 0.5
0.11 0 0.5 0
(0 ) me (0 2
0.1 0.13 0 0.5

Ca= (0.2 0.2), F(k) = %(sin(lOk) + 1),

0.2 -0.01
Hy = ( ’ H2 = ( )1
0.12 0.22

E, = (0.3 -0.1), E, = (0.12 0.3),
C,=(0.1 01), h =4, Ry, =1, ¢ = 1.

The initial state matrices in (19) are such as

1 0 0.1
) UO = ’
01 0.2
0.6 0
Ul = ’ UZ = ’
0.1 0.3

0.83 -0.78
- (°8). = 27).
-0.5 0.12

And the cost function is

Ja S (k)a(k).

Consider system (1) without uncertainties, and by
solving the LMI (8) based on Theorem 1, we abtain
that

Vo

- 0.0554 - 3.8061
( 0.0366 —0.6072)’
- 0.0835 3.5801
( 0.1274 2.2820) ’
C. = (-0.0263 - 0.4518).
With the above control parameters, the control law

c

(5) robustly stabilizes uncertain discrete delay system
(1) and guarantees the optimal quadratic performance
J(k) < 1.3444,

Consider the uncertain system whose parameters are
given above, and by using the optimization technique
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and the svd function in Matlab, we have

- 0.4997 - 1.3206
¢ = (_0.0710 _0.4715)’
5 - (0.3525 6.9151)
° 7 10.3007 5.8423/°
C, = (-0.0815 -0.1467),

J(k) < 1.2399.

From the example we can see that our method to de-
sign the output feedback compensator is feasible and
simple enough.

6 Conclusion

An output feedback compensator which can robustly
stabilize the discrete delay uncertain systems has been
obtained by solving the LMIs. We have obtained a suffi-
cient condition for guaranteeing not only the quadratic
stability of the closed-loop system but also the cost func-
tion bound constraint. Moreover, we have presented the
cost bound by assuming the initial values to be a zero
mean random variable. The LMI has the advantage that
it can be solved very efficiently by the computer soft-

ware.
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