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Training of parameters and time delays of
universal learning network with switching mechanism
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Abstract: A new modeling method using the ULN with switching mechanism is studied, where both parameters and time
delays are adjusted to model the nonlinear systems. The simulation results of nonlinear system identification problems show that
better performances can be obtained by the proposed method than the conventional method using only the parameter optimiza-
tion. And how the generalization ability of modeling dynamic systems is influenced by the network size is also studied using the

ULN with switching mechanism.
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1 Introduction

Neural networks have been widely studied in recent
years. Based on a natural extension of the well known
recurrent neural networks'!!, Hirasawa and his cowork-
ers have proposed a universal
(ULN)!23! | which is constructed by arbitrarily connect-
ing nonlinearly operated nodes to each other with multi-
branches that may have arbitrary time delays including
Zero or minus ones, so that it can be used to model and
control large scale complicated systems naturally. In our
previous paperst*!, a switching mechanism has been in-
troduced into the ULN in order to realize an optimal
modeling of dynamic systems. It has been shown that a
compromised model in terms of model error and model
parsimony can be achieved by appropriately training the
parameters of the ULN with switching mechanism* ¢,
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learning network .

On the other hand, one of the distinctive features of the
ULN is that the ULN can have arbitrary time delays be-
tween the nodes. Simulation results show that appropri-
ate time delays can improve the performance of the ULN
significantly .

In this paper, we shall study how the generalization a-
bility of the ULN can be improved by taking advantage
of the switching mechanism and the ability of having ar-
bitrary time delays between the nodes. A new training
method for the ULN is presented, in which both the pa-
rameters of the ULN with switching mechanism and the
time delays between the nodes are adjusted. The effec-
tiveness of the proposed method is investigated via nu-
merical simulations of nonlinear system identification.

2 Basic structure of the ULN
The structure of the ULN is shown in Fig.1, where
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N; denotes the node i, D;(p) and a;(p) are the time

delay and switching function on the pth branch between
node i and node j. It can be seen that ULN provides a
fully recurrent connection between nodes. The number
of nodes, the number of branches between nodes and the
time delays they represent are flexible.
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Structure of the ULN with multi-branches
and switching mechanisms

The output value of node j, h;(¢), can be described by
hi(t) = 0;({h (¢ - Di(p)) i€ JF(j),
p € B, phin() 1 n€ NI,
(D) ImeMHt),je ), e T,
(1)
where O; denotes nonlinear function of node j, A, (¢) is
value of m-th parameter, r,(¢t) is value of n-th extemal
input variable, JF(j) is set of numbers of nodes whose
outputs are connected to node j, B(i,;) is set of num-
bers of branches from node i to node j, N(j) is set of
numbers of external input variables of node j, M(j) is
set of numbers of parameters, where output of node j
can be partially differentiable with respect to these pa-
rameters, J is set of numbers of nodes, and T is set of
sampling times.
The switching function a;(p), used for controlling
branch deletion, is supposed to be

1
ag‘(P) = 1 —‘I’ﬂ,(P)’ (2)

+e

where 3;(p) is adjustable parameter and ¥ is a slope
factor. B;(p) can be adjusted in the same way as other
parameters. ¥ will be set to a small value at the begin-
ning of the training, and scheduled to increase gradually
as the learning progresses. In this way, an upper bound
aj(p) = 1.0 or a lower bound a;(p) = 0.0, which
means the connection and disconnection of the pth
branch from node i to node j respectively, can be deter-
mined by comparing a;(p) with a threshold value. If

a;(p) is less than the threshold, then a;(p) = O and
this branch will be deleted. The switching function is

shown in Fig.2.

%)

Fig. 2 Switching function

3 Training algorithm for the ULN

Generally, there are two ways to improve the general-
ization ability of a network. One is to increase the train-
ing data. The second is to optimize the structure of the
network. We mainly use the second method that is real-
ized by introducing switching mechanism and extended
criterion function into the ULN. Furthermore, the gener-
alization ability can also be improved by appropriately
training the time delays between the nodes.
3.1 Training of the parameters 1, and B;(p)

The training of the parameters A,, and §;(p) will be
performed by minimizing an extended criterion function L
including the parsimony of the model, which are given by

E+ R, 22525 (ay(p)),
E(n (o)} {a,(01),

where E is supposed to be usual criterion function, R, is

L

(3)
E

weighting coefficient that can balance the criterion func-
tion E and the parsimony of network.

In references (2) and (7), a unified training algo-
rithm has been proposed for the ULN. The algorithm is
distinctive in that it is capable of dealing with arbitrary
time delays and multi-branches between the nodes of
ULN. Based on the same scheme, the parameters A, and
B;(p) in the ULN with switching mechanism can be ad-
justed using the following algorithm[z‘ﬂ :

An() = An(e) = 7 535, @
B,(p) = B;(p) - 7% (s)
I L Ihy(t') AL

M - /zeznemu )[ ) 6(d 1+ Iy’ (6)
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sy = S S 2ot Dulp))

k€ IB())p€ B(j . k) ahj(t)

aL
a(kvt + D]k(p>>] + ah](t)’
jE€J, tET, (8)
wherea L "L are the ordered derivative proposed

A "265(p)
by Werbos®), JD(A,) is set of numbers of nodes
whose output can be partially differentiable with respect
to A,,. When the nonlinear function of the node in the
ULN is chosen to be bipolar sigmoidal functions shown

in (9), further expressions are given by

B(e) = A= (9)
1 + e

o; = 2 2 h,](p)a,](P) X hi(t—Dij(P))‘Fejv

i€ JF(j)p€ B(i.j)

(10)

ahj(t) 1_4_ hj(l)

hy(p) 5 (1= (T Pay(p) x hile - Dy(p)),
(11)

—_.ahj(t) _A M 2 .

hi(t—Dij(P)) gDXaij(p)(l—a,-j(p)),(IZ)
oL
28,(p) = 2Rae (Pl - ay(p)), (13)
Ik (t + Dy (p)) _
ahj(t)
A ("k—(‘i%@m ha(P)ag(p)s  (14)

where A,, is denoted as h;(p) , the weight on pth branch
from node i to node j, and §; is the external input.
3.2 Searching of the time delays

In the previous training algorithm, the time delays be-
tween the nodes of the ULN are fixed because it is diffi-
cult to train the time delays in the same way as training
of the parameters since the time delays can only take in-
teger values. In order to minimize extended criterion
function, the time delays should also be adjusted”*’ . In
this paper, such training is performed by a combination
of the following two searching procedures.

First, search the optimal time delays using a kind of

random search procedure. It can be described as fol-

lows: select one branch randomly out of the branches,
and calculate the criterion function L with the develop-
ment of the time delay of this branch, for example,
from 1 to 10. Find optimal time delay of the selected
branch with the time delays of other branches being
fixed. Here, the criterion function L takes the minimum
value for the optimal time delay.

Then, the parameters of the ULN is adjusted using
gradient method.

A combination of the above two training procedures
for the time delays and for the parameters is repeated un-
til the stop condition is satisfied.

4 Simulation of nonlinear system identi-
fication

To illustrate the investigation of the training and the
generalization ability, a nonlinear system described by
(15) was modeled by the ULN shown in Fig.1, which
has 5 nodes denoted as Ny to N5 and has fully recurrent
connections with three branches between every two
nodes. So the initial branches is 5 x5 x3 =75. N, has
an external input and the output of the ULN is obtained
from the Ns. The teaching signal described in Fig.3 at
the training stage was obtained by exciting the nonlinear
system with the input signal obtained by (16) .
1.34y(k) - 0.277y(k - 2) -
0.80y(k -4) +0.01, u(k) =0,
1.34y(k) - 0.277y(k - 2) -
0.80y(k —4) - 0.01, u(k) < O,

y(k +1) =

(15)
sin (Slok), 0< k < 100,
1.0, 100 < k < 150,
wlk) =3 10, 150 < k < 200,
uniform radom
200 < k£ < 400.
‘number in{ - 0.5,0.5),
(16)

Figure 4 and Fig.5 show the input-output data for in-
vestigating the generalization ability, which are obtained
by changing the order of sine function, rectangular func-
tion and random number for input z(k) in (16). The

other simulation conditions are shown in Table 1.
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Fig. 5 Input and output data for investigating the

generalization ability (case 2)

Table 1 Simulation conditions
A A=1.5
Initial value of parameter
hi(p) Random numbers in ( - 1.0,1.0)
Di(p) Positive discrete value in [1,10]
Bi(p) 0.3(fully connected)
Learning coefficient of
hi(p),Byi(p) A, = 0.00002,45 = 0.0002

Root square error of
the teaching signal
Increase from 20 to 5000

Identification error E

g in switching function

Table 2 is the identification results for the training da-
ta. For example, cases (a) and (b) mean that only the
parameter training of 500 000 times were carried out with
the time delays being fixed to 1 sampling time and initial
random sampling time respectively. Case (c) means that
the parameter training of 10000 times and the time delay
searching of 50 times. From Table 2, the average identi-
fication errors for the training data were calculated by

averaging the 7 cases out of 3 initial parameters x 3 ini-
tial time delays ( the best and the worst errors were omit-
ted) . So as apparently indicated by the results, adjusting
not only parameters but also time delays is effective to
improve the identification errors. And, it is also seen
that the identification errors and parsimony of the network
are appropriately determined corresponding to the R, .
Table 2 Identification results (initial branches = 75)

case (a) (b) (o) (@ (o
Number of leaming ¢330 500000 10000 1000 100
of parameters
Number of time 0 0 50 500 5000
delay search
= 0.0
e b
branches -

R =05 7 7 7 7 5
Average R, =0.0 4.4 2.78
error R, =0.1
(x1073) R, =0.5

In Fig.6 ~ Fig.8, the average identification errors for

case 0,1,2 are obtained by averaging the same cases as
Table 2. We can see that the results of case (a) and (b)
without optimizing time delays are worse than that of
case (d) and (e) with enough searching of optimal time
delays for various R,. Teaching signal and simulated
signal obtained by the ULN after training are also shown
in Fig.9 ~ Fig.11, in which case 0 denotes the simulat-
ed and teaching signals for the training data, while cases
1 and 2 show the simulated and teaching signals for the
generalization investigating data. From the simulation
results, the following can be concluded:

1) A new training algorithm that can adjust the time
delays as well as the parameters of the ULN is present-
ed. The simulation results indicate that the proposed al-
gorithm is effective. Especially, the identification errors
of a nonlinear system by the network that has less
searching for time delays become worse compared with
the identification errors by the network whose time de-
lays are sufficiently adjusted.

2.97 3.21 3.09
6.33 5.25 5.18 3.68 3.78
10.4 9.0 7.8 7.65 5.5

2) From the results of the simulations for investigating
the generalization ability, it has become quantitatively
clear that (D the larger the size of the network is (in oth-
er words, the larger the number of the branches is), the
smaller the identification errors are for the training data;
(@ the errors for the generalization investigating data are
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bigger than the errors for the training data; Q@ the small-
er the size of the network is, the smaller the identifica-
tion errors are for the generalization investigating data;
@ in case that the size of the network is too small, the
identification errors increase (See Fig.6 ~ Fig.8).
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Fig. 8 Average identification error (Ra=0.5)
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(Ra=0.0, the number of search is 5000.)
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Result of identified signal and teaching signal
(Rz=0.5, the number of search is 5000.)

5 Conclusions

A new method for optimal modeling of the dynamic
systems using the ULN is presented. The word ‘opti-
mal’ means that both the modeling error and the parsi-
mony of the model are taken into consideration, and the
time delays are optimized for modeling the dynamic sys-

Fig. 11

tems.

The important features of the proposed method are the
introduction of the switching mechanism and the search-
ing the optimal time delays.

The identification errors of a nonlinear system by the
network that has less searching for the time delays be-
come worse compared with the identification errors by
the network whose time delays are sufficiently adjusted.

Especially, in this paper, the generalization ability of
the proposed method has been studied using the simula-
tions of nonlinear system identifications. And quantita-
tive relations between the size of the network and the
modeling errors and the effect of time delays search have
been revealed.
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