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Synthesis of Petri nets controller for discrete event systems
based on finite capacity places — Part 1
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Abstract: A novel method of controller design for discrete event systems (DES) modeled by Petri nets (PN) is present-
ed. The controller is constructed based on the concept of finite capacity places such that the plant evolves under the constraint of
linear inequalities defined on the place marking. The synthesis procedure of the controller exploits the transformation technique
of finite capacity Petri net to an infinite one. PN controller synthesis algorithms are presented for different cases of the con-
straint.
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1 Introduction

Automata and Petri nets are the main modeling tools
in the research area of control synthesis for discrete event
systems . Petri net models are examined in the DES con-
trol synthesis by many researchers due to the advantage
of the graphical and distributed representation of the sys-
tem state and the computational efficiencies. In this pa-
per we propose a new method for synthesizing the con-
troller of DES modeled by PN. The control objective is
to force the plant to satisfy the logical conjunction of
separate linear inequality constraints, which have the fol-

lowing form

Dolp < b, (1)
i=1

where y; is the marking of place p;, b is an integer con-
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stant, n is the place number of the net, while coefficient
I; may be any integer. Though it has already been ad-
dressed by Yamalidou et all'!, the constraint will be
studied from a new standpoint in this paper.

Many other constraints specification can be catego-
rized into this kind of constraint. Forbidden state (or
state avoidance) problem, which was surveyed from the
time when the control theory of DES was initiated[?’ ,
can be expressed as linear inequality constraint in some
case. In [2], Ramadge and Wonham proposed a state
feedback solution based on automata. In order to avoid
the numerous state representations of automata, the sub-
sequent researchers use Petri nets to study the control
method of this problem. Holloway and Krogh finished
the early work of this aspect in [3 ~5]. Another con-
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straint specification is so-called generalized mutual ex-
clusion constraint (GMEC) in the framework of Petri
netst®! . GMEC is a special case of linear inequality con-
straint discussed in this paper when the coefficient /; is
confined to nonnegative integer. The specification of
GMEC can be enforced by a set of places called moni-
tors in [6].

The new method for synthesizing Petri nets controller
introduced in this paper is based on the concept of finite
capacity places'” ) and is named FCP method. The in-
equality (1) can be regarded as the capacity constraint
forced upon the related places, and consequently the
plant can be treated as a finite capacity Petri nets. Thus
the transformation technique from finite capacity Petri
nets to an infinite one can be utilized to design the con-
troller.

2 Finite capacity Petri nets

Usually, it is assumed that each place in a Petri net
can accommodate an unlimited number of tokens. To
model many physical systems, it is natural to consider
an upper limit to the number of tokens that each place
can hold. Such a Petri net is named finite Petri net!”"%),

Definition 1 In a finite capacity Petri net, each
place p has an associated capacity Cap (p), the maxi-
mum number of tokens that p can hold at any time.

An enabled input transition of a place p with capacity
Cap (p) has the possibility of firing when the firing of
this transition does not result in a number of tokens in p
which exceeds this capacity .

Using the technique of complementary place, the
transformation of a finite capacity Petri pet into an infi-
nite one is rather simple. For the detailed transformation
procedure, the reader may refer to [7, 8].

In the following, we will describe how finite capacity
places can be used to synthesize a DES controller.

3 Controller synthesis using finite capac-

ity places
The plant discussed in this paper may be generalized
Petri net or just an ordinary one. For simplicity, we
firsiiy consider the ordinary Petri nets. What is more, in
this paper we restrict the coefficient /; in (1) to a
Boolean variable and the constraint contains the place p;
when the value is true. However the synthesis method

given in this paper can also be applied to the general
case where the plant is modeled by generalized Petri nets
and the constraint efficient is not confined to Boolean
variable,

3.1 The Simplest case

When the coefficient /; in (1) is a Boolean variable,
this case was studied as unweighted GMEC in [6] and
was referred as set condition in [4]. Assumen = 3, b
=2and [;(i = 1,2,3) is true in the Ineq. (1), the
constraint means that the total number of the tokens in
the places p;, p, and p3 cannot exceed 2.

" Now let us consider a more special case. Assume only
one coefficient in the constraint (1), for instance, I5 is
true, then the inequality has the form below:

u3< b. (2)
‘We notice that constraint (2) has the exact mean as the
finite capacity Petri nets. The maximum number that
place p3 can hold at any time is 5. This is also the con-
trol objective that the controller wants to force the plant
to obey. we can utilize the transformation technique of
finite capacity Petri nets to design the controller.

For the convenience of description, we make the fol-
lowing definitions before presenting the detailed steps of
the controller design.

Definition 2 The place in the constraint Ineq. (1)
is named constrained place. The entire constrained
places constitute constrained place set, denoted by C,,
that is

Co=1p=pil Dllpisbforl; 00 (3)
i=1

Definition 3 The set of input transitions for the en-
tire constrained place set C, is said to be input con-
strained transition set, denoted by °C,, that is

°C, = {t 1t €% forp € C,f, (4)
where the notation °p means the input transitions of p.

Similarly, we have the definition of output con-
strained transition set:

Definition 4 The set of output transitions for the
entire constrained place set C, is said to be output con-
strained transition set, denoted by C,°, that is

CP°={t|t€p°forp€Cp}, (5)
where the notation p° means the output transitions of p.
Definition 5 The set of transitions denoted by CC,
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is said to be common constrained transition set, if its el-
ement ¢ satisfies

t€°C, N C°, (6)
that is, some input places and output ones of the transi-
tion in the CC, are all constrained places.

Definition 6 Given the input constrained transition
set °C,, the set °Cpy—, = °C, — CC, is said to be pure
input constrained transition set.

Definition 7 Given the output constrained transition
set C,°, the set C°pyre—, = €% — CC, is said to be pure
output constrained transition set.

The constraint of the type (1) can be regarded as the
enforcement of finite capacity on all the places in the set
C,. Then the plant can be regarded as a finite capacity
Petri net. The sum of tokens in each place in the set C,
cannot exceed b at any time. We can regard all the ele-
ments in C, as one place when we synthesize the desired
controller that satisfies the constraint (1) .

With the above definitions, the design method of the
controller conforming to the constraint (1) is summa-
rized as the following Algorithm 1.

Algorithm 1

1) For the constraint (1), evaluate the constrained
place set C,, the input constrained transition set°C, , the
output constrained transition set C,°, the common con-
strained transition set CC,, the pure input constrained
transition set °C ..., and the pure output constrained
transition set C°pyr.; -

2) For each ¢t € °Cpye.,, draw an arc from the con-
troller place p, to this transition, that is, let p, be an in-
put place of the transition ¢.

3) For each t € C° ., draw an arc from this transi-
tion to the controller place p,, that is, let p, be an output
place of the transition ¢.

4) According to the following Eq. (7), calculate the
initial marking of p,., that is

Mo(p) = b - Zli/‘im (7)
=1
and the following equation is always satisfied
M(p.) = b - 25 L. (8)
i=1

This can be deduced from the connective relation
(Step 2 and Step 3) between controller and the plant. If

the constrained places get (lose) tokens, the controller is
sure to lose (get) the same amount of tokens.

The controller designed using above method enforces
the plant to obey the given constraint (1) . The transition
t € °Cpye-; can enable and fire if and only if the con-
troller is marked according to the enable rule of transi-
tions. The fact that the controller is marked implies the
constraint inequality holding, which can be deduced
from Eq. (8) directly. From (8), there is -

Do lui = b - M(p,), (9)
i=1
and because M(p.) = 0, there is
Dl < b (10)
i=1

When the enabling transition ¢ € °C,., fires, the total
token number of constrained places increases while the
controller lose the same amount of tokens. When the
Ineq. (1) acquires the maximum b, the controller has no
token and the transitions in °C .., are disabled. This is
the role that the controller should play. With the firing

of the transitions in C° the controller gets tokens

pure- 3
and there is again possibility for the firing of the transi-
tions in °Clye.; -

In Algorithm 1, the case when the constrained places
have common input and/or common output transitions is
not considered. This case will be discussed in [9].
Without making any special specifications, in this paper
we assume there are no common input and/or common
output transitions of constrained places.

As an example consider the Petri net of Fig. 1[1],
which is acyclic and nonsafe. Its initial marking is z,o
={u1 p2 p3 pal* =300 3] Our control ob-
jective is to ensure that the places p; and p3 never contain
more than one token at any time, i.e., the constraint
should satisfy

M2+ p3 < 1 (11)
We regard the place p, and p; as one place and its maxi-
mum capacity is 1. Thus the plant may be treated as a
finite capacity Petri net. First, we evaluate various sets
needed in the design procedure. In this example, we
have C, = {p2,p3t, °C, = {t1, 02,83, 851, G0 = Hta,
ty,tal, CC, = {13,031 ,°Cpures = {t1,t5} and C° pure-t

= {t4}. Then we draw arcs between the transitions in
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°Cpure- and C°,, and the controller place p.. The tran-
sitions in °C .., are the end of the arcs and the one in
C° pure-¢ 18 the beginning of the arcs. By (7), the initial
marking of p, is calculated as follows:

#pczb_;zw,:l.

Fig. 1 Plant graph for the example of Section 3.1
The plant with the addition of a controller p, is shown
in Fig. 2. The arcs between the plant and p, are illus-
trated with dashed lines, and the controller place itself is
also distinguished from the places in the plant by thicker
circle.

Fig. 2 The plant of Fig.1 with the addition of a controller

We have the same controller as the one in [1], but
our method need not consider the entire plant net, be-
cause the incidence matrix and its operation are not used
here. What we deal with in this method is only the
places and its input and output transitions related to the
constraints. Thus, our method is simpler and more effi-
cient in computation. When the plant is a large system,
the advantage of this design method is more obvious,
which will be illustrated in the example in [9].
3.2 The case of ‘greater than or equal to’ con-

straint

This case is corresponding to the one studied in'Sec-

tion 3.1 and is referred to as

Dily = b. (12)
i=1
Note that [; is still a Boolean variable, and the other no-

tations have the same meaning as that in the Ineq. (1) .
Similarly, the constraint of the type (12) can still be

regarded as the enforcement of finite capacity on all the
places in the set C,. But the meaning of ‘finite capaci-
ty’ is different from that in Section 3.1, where the max-
imum capacity that the places in the set C, can hold.
What is indicated here is that the minimum capacity that
the entire constrained places should hold in the evolution
of the plant at any time. Consequently, the plant can
still be regarded as a finite capacity Petri nets. The sum
of tokens in each place in the set C, must exceed or
equal to b at any time. What should we do is synthesize
the expected controller to achieve the objective.

The design steps of the controller with given constraint
(12) are summarized as the following Algorithm.

Algorithm 2

1) This step is the same as the one in Algorithm 1;
that is, for the constraint (12), evaluate the sets C,,
°Cp, Cp° CCy,°Crure-r and C°pype ;.

2) For each ¢ € °C ., draw an arc from this transi-
tion to the controlier place p, ; that is, let p, be an output
place of the transition :.

3) For each t € C°ppe.,, draw an arc from the con-
troller place p, to this transition; that is, let p, be an in-
put place of the transition ¢.

4) According to the following equation, calculate the
initial marking of p., that is

Mo(p) = 23 lpo - b, (13)
i=1
and the following equation is always satisfied
M(p.) = 2l - b. (14)
i=t

By (14), we know the controller enforces the plant to
obey the given constraint (12). From (14),

>l = b+ M(p.). (15)

In addition, M(p.) = 0, thus the following equation
holds

,Z; Ly = b. (16)

This is the Ineq. (12). When the total token number of

constrained places acquires the minimum b, the con-

troller has no token and the transitions in C°p,., are dis-
abled.

Consider the Petri net of Fig. 1 again, but its initial

making is o = [p g gz opd" =
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[3 0 1 3]"now. For clarity, we draw the Petri net
of Fig. 1 in Fig. 3 again. The control goal is to ensure
that there always exists at least one token in the places p,
and p; at any time, i.e. the constraint should satisfy

pr+ p3 =1, (17)
We regard the places p; and p; as one place and its mini-
mum capacity is 1.

Py

3

I3
Fig. 3 Plant graph for the example of the Section 3.2

By Algorithm 2, the controlled system shown in
Fig.4 can be obtained.

Fig. 4 The plant of Fig.3 with the addition of a controller
4 Conclusions

In this paper we present a new method named FCP
method for synthesizing Petri nets controller for discrete
event systems. The basic idea behind FCP method is to
regard the constraint as places with finite capacity. The
desired controller can be obtained by adding a comple-
mentary place of the constrained places. This method is
stimulated by the transformation technique from finite
capacity Petri nets to an infinite one. But their connec-
tions between the original net (plant) and the comple-
mentary place (controller place) are different since the
constrained places are usually the linear combination of
places and not a single place. The principle of the con-
nection between the plant and the controller place pre-
vents the sum of tokens in constrained places from exce-
eding the given number.

In the sequel paper [9], the general case of the con-
straint shall be considered and the maximal permissive-
ness of FCP method shall be proved. In addition, we
shall consider the example of AGV (automated guided

vehicles) coordination system in the literature to illus-
trate the advantages and characteristics of RCP method.
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