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Synthesis of Petri nets controller for discrete event systems
based on finite capacity places - Part 2
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Abstract: The basic idea behind FCP ( finite capacity places) method has been introduced in Part 1. In this sequel, the
synthesis algorithm of Petri net controller for DES to enforce the general case of the constraint is presented and the maximal per-
missiveness of FCP method is proved. In addition, the reported example of AGV (automated guided vehicles) coordination sys-
tem is used to illustrate the advantages and characteristics of FCP method.
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1 Introduction

In [1], several algorithms of synthesizing PN con-
troller to enforce their corresponding special form of lin-
ear inequality constraint have been introduced. In this
sequel, the general algorithms are developed, in which
the algorithms in [1] are included. The maximal per-
missiveness of the FCP method is also proved. The ad-
vantages and the characteristics of the method are illus-
trated by the AGV coordination system example .

In this paper the notation and terminology of [1] will
be used freely.
2 The general case

In [1], the plant we treated is an ordinary Petri nets
and the coefficients of the constrained places are Boolean
variable. In this section, we will investigate the con-
troller synthests method when the plant is a generalized
PN and the coefficients of the constrained places may be
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any integers. Besides, the assumption that the con-
strained places have no common input and/or output
places is also removed. The principal idea we utilized in
the procedure of the controller design is still the tech-
nique of complementary place.
2.1 ‘Less than or equal to’ constraint

This case is expressed in the same form as Ineq. (1)
in [1], which is rewritten in the following:

jli#i < b, (1)
1=1

where the coefficient {; may be any integer and the con-
strained places may have common input and/or output
transitions.

Given the constraint (1), the desired controller can be
synthesized by using following algorithm.

Algorithm 3

1) Evaluate the related sets C,,°C,, C,°, CC,,°C e
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and C°pyre-; -

2) For each ¢t € °C,,.., draw an arc between the
controller place p. and the transition ¢, the weight func-
tion w of the arc satisfies

w=lwl (2)

and

R

w = Zw(t,p,-)xl,-, (3)

i=1
where p; € ¢°, p; € C, and | w | denotes the absolute
value of w. fw > 0(w < 0), let p, be the input (out-
put) place of ¢ and if w = 0, there is no arc between p,
and ¢ at all.

3) For each t. € C°pyp.s, draw an arc between the
controller place p. and the transition ¢, the weight func-
tion w of the arc satisfies

w=|wl (4)

and

R

w = ZW(P,‘,t)Xl,', (5)

i=1
where p; €t and p; € C,. fw > 0 (w < 0), let p,
be the output (input) place of t and if w =0, there is
no arc between p. and ¢ at all.

4) For each t € CC,, draw an arc between the con-
troller place p. and the transition ¢, the weight function w
of the arc satisfies

w=|wl (6)

and

R

w = iw(pi,t) X l,’ - ZW(t,P]) X l]1 (7)

i=1 =1
where p; € ,p; € 1°, p; and p; é C, fw>0(w<0),
let p. be the output (input) place of ¢ and if w = O,
there is no arc between p. and ¢ at all.
5) According to the following equation, calculate the
initial marking of p., that is,

Mo(p.) = b - 21.'#;'0- (8)

Remark 1 Algorithm 1 of [ 1] is the special cases
of Algorithm 3. Algorithm 1 is designed for the case
-when the plant is an ordinary plant and the coefficient /;
is a Boolean variable, thus w is equal to 1 both in Step 2
and Step 3 in Algorithm 3. Besides, w in Step 4 equals
0 since we assumed the constrained places had no com-

mon input or output transitions in Algorithm 1.

2.2 ‘Greater than or equal to’ constraint
This case is expressed in the same form as Ineq. (12)
in [1), which is rewritten in the following:

2l = by ©)
where the coefficient /; may be any integer.

Given the constraint (9), the desired controller can be
synthesized by using the following algorithm.

Algorithm 4

1) Evaluate the related sets C,,°C, , C,°, CC;,°C ure-s
and C° e -

2) For each t € °Cly., draw an arc between the
controller place p. and the transition ¢, the weight func-
tion w of the arc satisfies

w=|wl (10)
and

R

w = Zw(t1pi) X li1 (11)

i=1

where p; € t°and p; € C,. fw > 0 (w < 0), let p,
be the output (input) place of ¢t and if w = 0, there is
no arc between p. and ¢ at all.

3) For each t € C°,p.;, draw an arc between the
controller place p. and the transition ¢, the weight func-
tion w of the arc satisfies

w=)wl (12)

and

R

w = Zw(p,-,t)xl,', (13)

i=1
where p; € tandp; € C,. fw > 0 (w < 0), let p,
be the input (output) place of ¢ and if w = 0, there is
no arc between p. and ¢ at all.

4) For each t € CC,, draw an arc between the con-
troller place p. and the transition ¢, the weight function
w of the arc satisfies

w=|wl (14)
and

R R

w = ZW(pi,t) x I; - Zw(Pj,t) X lj1(15)

i=1 j=1
where p; € °t,p; € 1°,p; andpjle C,.fow>0(w<
0), let p. be the input (output) place of t and if w = 0,
there is no arc between p, and ¢ at all.
5) According to the following equation, calculate the
initial marking of p., that is,

Mo(p.) = _i Lipeg - b. (16)
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Remark 2  Algorithm 4 can be reduced to Algorithm 2
of [1] when the specified conditions are satisfied.
3 Maximal permissiveness

In this section, we will prove that the synthesis
method is the maximally permissive control policy for
the linear inequality. The results obtained by Yamalidou
et al. [2] will be used in the following proof.

For simplicity, we only consider the constraint (1) in
[1] and the corresponding Algorithm 1 presented in
(1]. The notations such as D,,, D, and D used here have
the same meanings as that in 2], i.e., D,,D, and D
represent the incidence matrices of the plant, the con-
troller net and the controlled net, respectively. D, is an
n x m matrix, with n being the number of places and m
the number of transitions of the plant. D, is an m-di-

mensional row vector and

D= [ ”] :
D,

We assume that there are s(s < n) entries in the con-
strained place set C, and these constrained places are de-
noted by p,(1 < v < s). It is always possible because
we can denote the plant net again to satisfy the above as-
sumption if its places are not denoted like this. We also
assumne that the common constrained transition set CC,,
pure output constrained transition set C°pyp.; and pure in-
put constrained transition set °C .., have i,j and k en-
tries, respectively. These transitions are denoted by ¢, (1
sw<iht(i+lszsgi+jandg(i+j+1<

==

y
place p, may have a couple of pure output and pure input

< i +j+ k), respectively. Because the constrained

==

constrained transitions, we also assume the place p, have

r,(l <r, <j)and h,(1 < h, < k) pure output and

pure input constrained transitions, respectively, where r,
and A, satisfy the following equations, respectively

zj)r,, =7 17)

and

ihv = k. (18)

With the above assumptions, the incidence matrix D,
of the plant is then has form of (19), where l = n - s.

Before we start to explain the matrix D, , we denote it
with partitioned matrix, that is,

D,
D, = [Dz] ’

Dy = [Dy Dy Dy Dyl

where Dy, Dy, Di3and Dyyare s x i,5 x j,s x k and

s x (m - i - j — k) matrices, respectively, and D; is
an(n - s) x m matrix. Dy, represents the connection
between the constrained places and the common con-
strained transitions. Recall the assumption in Section 3.1
of [1] that there are no common input and common out-
put transitions of constrained places, so the entries in ev-
ery column are all zero except for two having the value
of 1 and - 1. Note that the two non-zero entries may be
any arbitrary entries in the column. Again as the as-
sumption, the only non-zero entry in the columns of Dy,
and Dy, is also equal to — 1 or 1. Note that the non-zero
entries are placed together in each row due to the inten-
tional index of the related transitions. It is easy to know
that Dy, is a zero-matrix since there is no arc between the
constrained places and the transitions £,(i + j + k + 1 <
z < m). The entries denoted with * in D, have no re-

lation with our problem.

Ay ——————— r— ey
ri1 1 -1 - =1 0 - 0
-1 0 0 0 :
0. i i :
D - : 0 : 0 0
L 0 -1 0 0 -1 -1

hl ha

I -1 0O - 00 01 1

0 0 :

: : s

0 0

0 0 1 1 0 0
*
I
D

(19)
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According to the Algorithm 1 in [1], we have the
matrix

D, =
i i k m—i=j—k
[O - 0 1 - 1 -1 -~ -1 0 .- 0].
3 n—-3
Note that D, =- [1 - 1 0 -+ 0l x D,.
Then, we point out that the column vector
s n-3
=01 -1 0 - 0 1]

is the place invariant of the controlled system because the
following equation holds

D
T D = T [ P]:O,
x X x X D‘__

where 0 is an m-dimensional zero-vector. Note that the
support P(x) of the place invariant x is

Plz) =lp=pllgsi<s,i ENLU {pc},

(20)
i.e., the entries of the P(x) are the constrained places
and the controller place.

It was said in [2] that the place invariants of the un-
controlled plant are also invariants of the controlled plant
for any Petri net control scheme that only adds places
and arcs in order to control the plant. For FCP method,
assume x, is a place invariant of the uncontrolled plant,
then

x;',‘ xD, =0

and
T T DP
(5 01x D =[] 0lx|’]=0

hold, i.e., x, is also a place invariant of the controlled
plant, The place invariant numbers of the uncontrolled
and controlled plant are n-rank D, and n + 1-rank D, i.
€., n + 1 -rank D, , respectively. Thus the above vector
x is the only place invariant of the controlled systems as
a result of the control law based on the concept of finite
capacity places. Finally, since there are no new or un-
expected invariants forced on the controlled system as a
result of the control algorithm, which is the same as P-
invariant'?), we can draw a conclusion that the control
method presented in this paper is maximally permissive.

Remark 3 The above proof procedure on Algorithm
1in [1] can be applied to the other algorithms. What
needs to be modified is the incidence matrix of the con-

trolled system D that is composed of D, and D, .
4 Examples

In this section, the example of AGV coordination sys-
tem is used to illustrate the FCP method. The example
originally appeared in [3] and has been studied inten-
sively in the area of DES [2, 4, 5]. We consider the
example here so that the characteristics and the advan-
tages of FCP of various methods can be better illustrat-
ed. For more examples, the reader may refer to [6].

The AGV example is about a flexible manufacturing
cell, in which there are three workstations, two part-re-
ceiving stations, and one completed parts station. In this
example, five AGV’ s transport material between pairs
of stations pass through zones shared by other AGV’s.
The shared zones are shown as shaded regions in the PN
model of Fig. 113}, The flow of tokens that model the
part and the vehicles represents the evolution of the actu-
al state of the system. Our aim is to design a maximally
permissive controller to ensure that at the most one vehi-
cle is permitted in each zone at any time.

The control objective can be written as the follow-

ing constraints
Z#i <1, (21a)
i€z,
Dim<l, (21b)
i€z,
Z M= 1, (210)
iEZ3
Dim<l, (21d)
i€z

where Z;(j = 1,2,3,4) is the set of indices of places
which make up zone j.

For constraint (21a), it has the form of inequality
(1) in [1]. So the Algorithm 1 can be used to design
the controller. The constrained places are p;, p,, p3 and
pa, that is, C, = {pi,pa,p3,ps}. The corresponding
input and output constrained transition sets are: °C, =
{ta,t3,t6, 23} and C,° = {¢1,14,t5,17}, respectively,
and two equations °C .-, = °C, and C°p., = C,° hold
since CC, = ¢. Then, we draw the arcs as shown in
Fig.1 between the transitions in °C e, and C°,., and
the controller place €. We know that the initial marking
of C, is 1 according to equation (7) in [1]:

b—zl,-,uiz b= (py + pa+ ps + pg) = 1.

i=1
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The other controller places C;(i = 2,3,4) associated
to the comresponding constraints in (21) can be synthe-
sized with the same algorithm and the detailed procedure
is omitted. The entire controlled PN constituted with the
original plant and the additional controller net is illustrat-
ed in Fig.1.

The controlled net obtained using FCP method is iden-
tical to that of Yamalidou et al based on P-invariant'?} .
But it seems that FCP method is simpler than P-invari-
ant method. We think that FCP method has advantage
over the one of P-invariant because the incidence matrix

input parts station 7
1

s O

workstation 2

\\ .
. workstation 3
.‘\ I

completed
parts Station

OO
o

Fig. 1 The controlled PN of AGV system
One may argue that P-invariant method only involves
one incidence matrix while the FCP method peeds to
evaluate several place and transition sets. But the evalu-
ation of these sets is rather easy and the entries involved
in the sets are far fewer than that in the incidence matrix
though there are several sets needed to be evaluated. The
constrained place set C, is already known and we define
such a set just for the sake of convenience of descrip-

and the operation on it, which play an important role in
the calculation of P-invariant, can be avoided by FCP
method . The advantage is obvious when the uncontrolled
system is large and complex and thus the incidence ma-
trix has high dimension and a large number of entries.
Consider the AGV example again. The PN illustrated in
Fig. 2 has 64 places and 53 transitions and consequently
its incidence matrix is a 64 x 53-dimension matrix and
has more than 3000 entries. The computation of the ma-
trix itself as well as the operation on it is hard and prone
to make mistake.

input parts station

workstation |

workstation 2

workstation 3
—

completed
parts Station

Fig.2 The PN graph of AGV example
tion. The sets of °C,, C,°and CC,, can be obtained via
observing the nodes (places and transitions) connection
of the net, and °Cpu.., and C°pye., are evaluated
through a simple operation of set subtraction. Further-
more, few nodes are involved in the set evaluation. For
the AGV example, the control objective is written as
four similar linear inequality constraints. Every con-
straint has four constrained places and these places have
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four input and four output transitions, respectively, i.
e., each of the sets of C,,°C, and C,° has four entries.
The equations °C .., = °C,, and C°p, = C,° hold in
this example since the set CC, is null. So there are only
20 entries (4 places and 16 transitions) for one constraint
and 80 for all the constraints involved in the evaluation
process. Note that we have to evaluate more than 3000
entries in order to compute the incidence matrix by using
P-invariant method. We note that the larger and the
more complex the plant is, the higher dimension the in-
cidence matrix has, and the more obvious the advantage
of FCP method is.

5 Conclusions

This paper has discussed the FCP method of synthe-
sizing PN controller for DES with general case of linear
inequality defined on the place marking. It has been
proved in this paper that the control law determined by
FCP method is maximally permissive. The example
shows that the result obtained via FCP method is the
same as the one obtained by using P-invariant method.
However, FCP method has again a considerable im-
provement in overcoming the obstacle of computational
complexity due to the avoidance of incidence matrix and
the operation on it. Still, it is not easy to obtain the de-
sired controller by exploiting P-invariant method when
the plant is a large system, whose incidence matrix has a
high dimension. This is illustrated sufficiently by the
AGYV example.

The presented synthesis method possesses all the char-
acteristics of the method based on P-invariant. First,
the design of the controller need no state enumeration,
so the computational complexity of controller synthesis
can be greatly reduced. Second, the control logic of this
approach is included as part of the controlled net, that
is, the controller net and the plant form a closed loop.
Third, the method can be applied to the DES modeled
by any generalized and untimed Petri nets.

FCP method is capable of dealing with nets with un-
controllable transitions in some cases. We note that there
is no necessity to modify the FCP method itself when it
is applied to the system in which some transitions are

uncontrollable or unobservable. What is needed to do is
seek an equivalent constraint set, e.g., cat and mouth
problem!®!. FCP method is also applicable to the con-
straints involving firing vector elements only if the con-
straints can be transformed into the linear making in-
equality constraint. It can be expected that in the future
research, efforts will be made to find an efficient method
of constraint transformation.
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