TR ER L B
Control Theory & Applications

Vol.20 No.2
Apr. 2003

soHB2Hm
2003 4£ 4 A

Article ID: 1000 - 8152(2003)02 - 0283 - 06

Robust stability for singular systems
with Frobenius norm-bounded uncertainties
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Abstract: This paper is to discuss the problems of stability and robust stabilization for singular systems with Frobenius
nom-bounded uncertainties. The necessary and sufficient conditions of generalized quadratical stability, which guarantees that
the uncertain singular system is stable, regular and impulse-free for all admissible uncertainties, can be obtained by solving an
algebraic Riccati inequality or an algebraic Riccati equation. Furthermore, the design method of robustly stabilizing state feed-
back controller can be constructed in tenms of the solution of a certain matrix equation. A numerical example is given illustrating
the effectiveness of the proposed approach.
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1 Introduction

Singular systems ( sometimes referred to as descriptor
systems, differential-algebraic-equation or semi-state
systems) describe a broad class of systems, which are
not only of theoretical interest but also of great practical
significance. In recent years, much work has been fo-
cused on analysis and design techniques for singular sys-
tems (see [2,3], and references therein) . Many of the
standard design techniques for non-singular systems have
been extended to singular systems. But it is well known
that a common feature of robust stability for singular
systems is that robust stability, regularity and impulse-
free should be considered at the same time, while the
latter two do not occur in the state-space systems. So a
singular system has a more complicated structure. Mean-
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while, even if the nominal singular systems are regular
and impulse-free, a slight change of system matrices
may result in impulse modes and destroy regularity of a
singular system{*>). Recently some work dealing with
the problems of robust stability analysis and robust con-
trol for uncertain singular systems has appeared in the lit-
erature (see, [1,6 ~10]).

On the other hand, the robust problems ( stability,
stabilization and control) have been extensively investi-
gated for systems with uncertainties bounded by 2-norm
or the maximum singular value (see [11],and reference
therein) . But there are few results on the uncertain sin-
gular systems with Frobenius nomm-bounded uncertain-
ties. The Frobenius norm is better than 2-norm, howev-
er, as a measure of uncertainties in some cases. Let us
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consider the following uncertaintiest 12 ;

1 0 1 0

Ay = [ , Ay = [ ]
00 01

Obviously, || A, Il F(=+42) > Il Ay ll p(= 1). How-

ever the maximum singular values of the uncertainties A

and A, are the same ( =1).

Motivated by notions of quadratic stability, Xu and
Yang proposed the notions of generalized quadratic sta-
bility for uncertain singular systems with time-varying
uncertainties and obtained some results of analyzing un-
certain singular systems[l]. In this paper, we study the
problems of stability and robust stabilization for singular
systems with Fobenius norm-bounded uncertainties. By
using the notions in [ 1], we propose necessary and suf-
ficient conditions for the generalized quadratic stability
which guarantees that the uncertain singular system is
stable, regular and impulse-free for all admissible uncer-
tainties by solving an algebraic Riccati inequality or an
algebraic Riccati equation, and obtain a sufficient condi-
tion for the existence of the state feedback controller in
terms of an algebraic Riccati equation. The main results
in this paper can be viewed as extensions of what has
been derived in [12].

2 Problem statement and definitions

Consider the following linear singular systems with
Frobenius nomm-bounded uncertainties

E:(t) = (A +AA)x(t) + (B + AB)u(t) =

(A+ HAWE)x(t) + (B + HA()E)u(t) =

r

(A + Z Z’:H,A,,E,,,)x(t) +

i=1l j=1

(B+ 3 D HA E)u(t), (1)

i=1 j=1

where x(t) € R" is the state variable, u(¢) € R™is the
control input, £ € R™*", andrank £ = r<n. A, Bare
known real constant matrices of appropriate dimensions.
HA(t)E,,HA(t)E, (e.g. the admissible uncertainties
AA,AB) are real time-varying matrices representing pa-
rameter uncertainties with

H=[H H, - H],

Ea = [E'lra Ega ETb]Tv
Eb = [E'{b E'{b E:{b]Tv

being known real constant matrices of appropriate dimen-
sions, and

An(e) Aple)
Azl(t) Azz(t)

Als(t)

A2s(t)

A(t) = (2)

Arl(t) Ar2(t) An(t)
is an unknown real time-varying matrix satisfying the
following inequality:

2 llanl?<1. (3)

i=1 j=1

Let us denote A(z) and A;(¢) by A and A, respective-
ly. Using the Frobenius norm, Ineq.(3) can be denoted

by | Ay | 5 < 1, where Ay is given as

Fanh WAl I 4 |
a1 Al 4, |l
A : : :
Faall I asl [y
(4)
Remark 1 When each block uncertainty 4; is a

scalar 8;;, (3) is equal to the following Frobenius norm-
bound condition:

S s Iz < 1.

i=1 j=1
Hence (3) is a gejnera]ization of the Frobenius nomm-
bound condition.

Remark 2 In many papers, the uncertain matrix
A(t) satisfies ATA < 1. In this paper, the Frobenius
norm of the uncertainty A(¢t) is defined as

Il All p = (Trace ATA)V2.

Without loss of generality, we assume that the matrix £
in system (1) has the following special form as in [1]
o[5)

0 0
where I, is an r x r identity matrix. In fact, E can al-
ways be brought to this form by a coordinate transforma-
tion
(Q1EQ;, 01(A + AA(1)) Q2, Q1( By + ABy(1))),
where (; and (), are non-singular matrices with n x n di-
mensions.

Before presenting the main results, we introduce the
following definitions'!! .

Definition 1 The uncertain singular system is said
to be robustly stable if the unforced singular system [ set-

ting u(t) = 0] is stable, regular, and impulse free for
all admissible uncertainties.
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Definition 2 The uncertain singular system is said
to be generalized quadratically stable if there exist con-
stant matrices P € R"*" and Q € R™*" with QT = Q,
Q > O so that the unforced singular system [ setting
u(t) = 0] satisfies

Ag(e)P + PTAy < - Q, (5)
for all admissible uncertainty AA (), where Ao(¢) = A
+ AA(¢), and P takes the form
P, 0
O
P, P,
with P, € R, P, € R("_r)’”, j R(n—r)x(n—r) and
Pl = P,,P, > 0, P, is invertible.
3 Main results

At first, we will show that generalized quadratic sta-
bility of uncertain singular system implies the robust sta-
bility of system (1).

Theorem 1 If the uncertain singular system (1) is
generalized quadratically stable, it must be robustly sta-
ble.

Similar to the proof of Proposition 1 in [11], we can
easily gain the result above.

Lemma 1''*)  Given matrices
H = [Hl H2 Hr]!
Ea = [Ela E?.a Esa.]

being known real constant matrices of appropriate dimen-
sions, and A;(i = 1,2,-**,r,j = 1,2, s) satisfying
(3), then for all vectors x and positive-definite matrices
P, the equation

ax (D325 "PHAjEyx) =

it
Nayl <1 55 4

J x7( 2 PHHIP)xx"( 2 ELE.)x (7

holds.
It is noted that (7) can be denoted by

max (xTPHAEx) = v x"PHH  Pxx E"Ex .

Iyl <t
If each Aj;is a 1 x 1 matrix for all ;,;, we have the fol-

lowing corollary.
Corollary 1 For all + € R"

| max l(xTPHAEx) =+ 5" PHH" Pxx"EEx
NI Fs
(8)

holds.
Using the above Lemma, we can prove the following

theorem.

Theorem 2 The uncertain singular system (setting
u(t) = 0) with the uncertainties of (3) is generalized
quadratically stable if and only if there exists a matrix P
satisfying the inequality

AP + P"A + PY(> HHT)P + D ELE, < 0,

i=1 j=1

(9)

P = [2 ;)3], (10)

with Py € R™", P, € RO, Py € R(#~"x(3-1 ang
Pl = P\, P, > 0, P; is invertible.
Proof Sufficiency: Assume that there exists a ma-
trix P with the form of (6) satisfying (9). Let
Ao(t) = A + AA(2) =

where

A+ HAE, = A + ZrEH,'AyEﬁ,

i=1 j=1
and by using Lemma 1, there is

xT{(A + 2 EHLA,IEJ“)TP +

i=1 j=1

P(A + 21 ZHiAijEja)}x =
s
sT{ATP + PTA +
21 Z(PTH,-A,;E,-,, + EJATHIP) % <
i=1 j=
s"{ATP + PTA +
max (EEPTHiA,-jEja)}x =

Naylpst o

sT(A™P + PTA)x +

2\/ (X5 PTHHP) xx"™( D) ELE,) =
i=1

i=1

On the other hand,

2 \/ &7 25 PTHHP) 35" ( D ELE,) » <
j=1

i=1

AP HHT)P + D ELE,]x.
i=1 i=1
From the condition Ineq. (9), the following inequality
can be obtained
5" [AG(e)P + PTAx(2)]x <
x"[ATP + PTA +

PY (O HHD)P + D ELE,]x < 0.
i=1 j=1
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Let

Q= -[ATP+PTA+PT(LHHT)P+Z ELE,

i=1

it is casy to show that Q > O and Ineq.(S) holds, i.e.,
the uncertain singular system is generalized quadratically
stable.

Necessity : Assume that the uncertain singular system
is generalized quadratically stable. Then there exists a
matrix P, with the form (6) and a positive definite sym-
metric matrix ¢ such that the following inequality

AZ(t) Py + PTAo(t) <- Q
holds.

Let U = ATP, + PTA, there is

2TI(A + ZZHA

i=1 j=

PI(A + ZZHA Ex)lx =

i=1 j=

'.;)Tpl +

Ux + 7(2 ZxTPTH AjEgx) < 0

i=1l j=
for all non-zero vectors x € R" and all admissible uncer-

tainty AA(t) with Frobenius norm-bounded, and fur-
thermore we have

2TUx +2 max_ (ZZxTP,HA Ex) < 0.

laylp<t 53 12

That is

2TUx < -2 max (sz PIH,AjEux),

Tayl et 577 501

hence it follows that

(«TUx)? > 4[ max (E ExTPTHA pr]z

N"Fsl i=1 j=1

By using Lemma 1, there is

(xTUx)? > 4x7( E PTHHTP,) xx"( E ETE )x.

i=1

From Lemma 4 in [13],
positive constant A such that

it follows that there exists a

A(ATP, + PTA) + A PT(O HHT)P, +

i=1
I
i=1

Definite P =

E,] < 0.
AP,, then we obtain that

ATP + PTA + PY(DHHT)P] + D ELE, < 0.
1=1 Jj=1

This ends the proof.
Remark 3  Under the theorem condition, the uncer-
tain singular system (1) is robustly stable.

In the case when E = 1, system (1) becomes a nor-
mal system, i.e.,
£(t) = (A +A4)x(t) + (B +AB)u(t) =

(A + HA(2)E,)x(t) + (B + HA(t) Ey)u(t) =

(A + 2 EH,AyEp)x(t) +

i=1 j=1

(B+ZZHA

Eg)u(t). (11)

We have the following result.

Corollary 2 The uncertain system (11) (setting
u(t) = 0) with the uncertainties of (3) is quadratically
stable if and only if there exists a positive definite sym-
metric matrix P satisfying the inequality

ATP &+ P"A + PY(D HHY)P + D, ELE, < O.
Jj=1

i=1
(12)

Remark 4 Note that Corollary 2 is the same as
Theorem 1 in [12], thus our result can be viewed as
generalizations of some results for normal systems with
Frobenius norm-bounded uncertainties .

Similar to the proof of Theorem 2, it is easy to obtain
the following result.

Theorem 3 The uncertain singular system is gener-
alized quadratically stable if and only if there exists a
matrix P with the foom (6) and a positive definite sym-
metric matrix @ satisfying the equality

ATP + PTA + PY(OVHHT)P +

i=1
DIELE,+Q =0. (13)
j=1
In the wlst of this section we consider the problem of
robust stabilization for singular system with Frobenius
norm-bounded uncertainties. Let the state feedback con-
troller be
u(t) = Kx(t), (14)
then we can obtain the closed-loop system from(1)and
(14) as
Ex(t) = A.x(¢), (15)
where
A(t) =A + AA(t) + (B + AB)K =
A+ BK + HA(t)(E, + EK) =

A+ BK + ZZH,-A (E, + EzK).
(16)
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Definition 3 The uncertain singular system is said
to be robustly stabilizable if there exists a linear state
feedback controller u(t) = Kx(t),K € R™", such
that the closed-loop system is robustly stable. In this
case, u(t) = Kx(t) is called a robust state feedback
controller for system (1) .

Theorem 4 If E, is row full rank and there exists a
matrix P with the form (6) and a positive definite sym-
metric matrix ( satisfying the equality

[A - B(EJE,)'EJE,]"P +
P'[A - B(EYE,)'EGE,] +
SP"[HH" - B(E}E,)'B"]P +

SEN I - E(EE)ETIE, + @ = 0. (17)

Then the closed-loop system is robustly stable and a ro-
bust state feedback controller z(¢) = Kx(t) can be giv-
en by

1

u(t) = - 8CETE,)(B'P + L

ELE,)x(t).

(18)

Proof Suppose that there exists scalar & > O and a

positive definite matrix Q such that (17) holds and the

state feedback controller satisfies (18). On the other
hand, noting that

lalls = (raT™a)” = 232,4%),

where A (A) stands for the eigenvahlle of the matrix A
and from || A || % < 1, we can claim that ATA < I (see
[14]). By using Fact(A. [) in [15],

AT(t)P + PTA.(2t) =

[A+ BK + HA(1)(E, + EK)]'P +

P"[A + BK + HA(1)(E, + EK)] =

(A+ BK)"P + PT(A + BK) +

[HA(t)(E, + E,K)]"P +

PTHA(t)(E, + E,K)] <

(A + BK)"P + P"(A + BK) + OPTHH'P +

S (Ea+ EK(E, + EK) =

AP + PTA + SPTHH'P + éEEE,, + K"(B"P +
1
)

1

BET,Eb)K =

%EEE,,) + K"LETEL K 4 (P"B +

1

A™P + PTA + SPTHH'P + EET.E,, + (PB +

SETE)[ - 8(EIE)(B'P + —é—EIE,,)] -

[A - B(EIE,)EVE,]"P +

P'[A - B(EYE,)'EVE,] +

SP"[HH" - B(E}E,)'B™]P +

SENI - E(E3E)ELIE, =

-Q0<0.
Therefore, the closed-loop system is generalized
quadratically stable, e. g. robustly stable. This com-
pletes the proof of the theorem .
4 A numerical example
Consider the system(1). Let

(1 0 0 1.5 2.2 1.4
E=101 0:|, A= |:2.5 1.5 2.7},

L0 0 O 1.2 1.4 1.8

0.7 0.9

(1.5 1 0.8 1 0.6
B=|12 08|,E,=| 0 0.3 0.5],

0.4 0.7 0.6

0.5 0.2 0.5 0.9
E,=| 0.2 03|, H=|0.7 0.3 0.6:|.

-0.3 0.3

0.6 0.8 0.7

Choosing & = 1 and using Theorem 4, we obtained that
there exists a matrix P with the form (6) and a positive
definite symmetric matrix Q
[1.0155 0.6923 0
P =|0.6923 1.2945 0 :l,
L0.0997 1.9473
[17.1333 12, 6660]

- 0.4717
16.2951

Q =116.2951 16.7614 11.7491

L12.6660 11.7491 9.9529

such that Eq. (17) holds. The corresponding robust state

feedback controller is

uw(t) = - 8(EE,)(B™P + %E’{E,,)x(t) -

- 0.4664
-9.2211

- 5.8335
- 6.9579

5 Conclusions
In this paper, we deal with the problems of stability
and robust stabilization for singular systems with Frobe-
nius norm-bounded uncertainties. Our main contribution

- 5.6967

63846 ]x(t).

consists of necessary and sufficient conditions of general-
ized quadratically stability for uncertain singular sys-
tems. The proposed robust stabilization controller can be
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obtained by solving algebraic Riccati equation. The main
results can be seen as the extensions of some existing re-
sults on uncertain normal systems to uncertain singular
systems.
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