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Abstract: The process of feedback design is necessarily performed in the presence of hard constraints upon properties of
the closed-loop system. This paper gives the time domain integral constraints of the feedback control systems tracking error that
arise from the presence of stable zeros on or near the jw-axis, which shows that for a linear time invariant system, in order to
guarantee the stability of the closed-loop system, the time domain integral constraints must be satisfied by the tracking error.
The presence of stable zeros near or on the jw-axis shows that there is trade offs between the tracking error and the settling time .
For fixed settling time, this paper gives an effective lower bound on the infinite norm of the tracking error, which shows that
when the absolute value of the stable zero on the jw-axis becomes small, the lower bound becomes large. The constraints are il-
lustrated by an example.
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1 Introduction

There are always basic limitations on the achievable
performance involved with the feedback control of any
physical plant. These limitations come from several
sources. Bode developed the fundamental work on struc-
tural limitations in the control of linear time invariant
systems. In [1,2] the waterbed effect for non-mini-
mum-phase plant are given, which shows that if the sys-
tem gain is pushed down on one frequency range, it
pops up somewhere else. [2] also derives the area for-
mula, which applies minimum and non-minimum phase
plants. [3,4] extend the corresponding work to multi-
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variable systems and to discrete time systems. [ 5]
shows that the performance and robust stability properties
are limited by the presence of RHP poles and zeros for
SISO system. [6] explores the time-domain integral
constraints to show that slow stable poles place con-
straints on the settling time of the closed-loop systems.
[7] is based on unit step response and shows that funda-
mental limitations arise from the presence of stable zeros
near or on the jw-axis. [8] treats multivariable systems
by using singular values and the theory of subharmonic
functions; Refinements of these results have also been
presented in [9]. [2] converts the multivariable probl-
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em into a scalar one by pre- and post-multiplying the
sensitivity function by vectors or by use of determi-
nants'>). A similar idea appears in the work of [10]
which uses directions associated with poles and zeros of
the system resulting in a directional study of trade-offs.
[3] develops integral constraints on sensitivity vectors
for multivariable feedback systems due to either unstable
poles or non-minimum-phase zeros of the plant; the use
of these integral constraints give the inherent trade-offs
in sensitivity reduction and the cost of decoupling.

The aim of the present paper is to continue the re-
search of [7], and extend the corresponding result to
multivariable feedback systems. This paper shows the
effect of stable zeros near or on the jw-axis for MIMO
feedback control systems tracking problem. Time do-
main integral constraints of the feedback control system
tracking error is developed, which shows stable zeros
near or on the jw-axis and implies a lower bound on the
achievable settling time of the feedback control systems.
An example is given to explain the results of this paper.
2 Preliminaries

We consider the linear time invariant feedback control
systems shown in Fig.1. The symbols in Fig.1 have the
following meaning. P(s) is the n x m matrix of proper
rational plant transfer function; C(s) is the m x n ma-
trix of proper rational controller transfer function ;
u(t),e(t), and y(t) are, respectively, the m -tuple
vectors of reference, error signal, and plant output.

20—}~

Fig. |

Feedback control systems

Suppose the plant and the controller are described by
coprime fractional representations (over the ring of prop-
er stable matrices of transfer functions)!'!}

P = D;i'Np = NpD3!, (1)

C = NeDE' = DE'Ne. (2)
Further, we assume that C is chosen so that the closed
loop is internally stable (i.e. the matrix NcNp + DcDp
and NpN¢ + DpD¢ are unimodular) . Then the sensitivity
function and the complementary sensitivity function are
defined, respectively, by

S(s) = D¢(DpDc + NeNe)~'Dp (3)
and
T(s) = I-S(s) =
(I+PC)'PC = P(I+ CP)7'C =
Np(DcDp + NcNp)~'Ne.
The L norm defined by
NANZ =1 £0) ) osssupesos (4)
where | f(t) | is the m-tuple vector Euclidean norm.
When the plant P is stable, the set of all compensators
that stabilize P is given in [11] by
S(P) ={C:C = QU -PQ), (5
where (0 is a proper, causal stable transfer function
matrix.

3 Time-domain constraints of the feed-
back systems for zeros on or near jo-
axis

Lemma 1 Suppose the plant P has zeros at — ¢ +
jwo(o = 0,wp = 0), then there exists a right coprime
factorization ( Np, Dp) such that Np(- ¢ + jwp) = O.
Further there exists nonzero nommalized complex vector §
such that £'Np(= 6 + jwp) = 0and £"Np(- 0 - jwo)
= 0. ‘

Proof Suppose the plant P has rank r . The first
part can be found in the proof of Theorem 4.1.49 of
[11], where
Np = M~'diag (a;(s), ax(s),*, a,(5),0,--,0),

(6)
M is a unimodular matrix, a;(i = 1,**-,r) are the nu-
merators of the diagonal entries of the Smith-McMillan
form for the plant P satisfying a; | a;,, (over the ring of
polynomials) . Hence a, = O contains all of the zeros of
the plant P(s) . Now let
£'(s) = (0,,1,+,00M, (7)
then
£'(s)Np(s) = (0,,a,(s),>--,0).  (8)

Hence
€ = (6(- 0 +jwo))/(I £(~ o + jawo) I)

satisfy the requirements.

Theorem 1 Consider the feedback control system
shown in Fig. 1. Suppose the following two conditions
hold: i) The plant P(s) has at least one pair of zeros on
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or near the jw-axis at — ¢ + jwg(o = O,wp = 0);
ii) All poles of the closed-loop system have real parts
less than — a(a > 0,a > ).

Under these conditions the following integral con-
straints hold on the error signal e(t) of the tracking
problem shown in Fig.1

G'J-:e("‘j“’o)'e(t)dt = &'U(- o + jwp), (9)

GTI:e(°+j“0)'e(t)dt = £"U(- o - jwp). (10)

Proof The Laplace transform of the tracking error
e(t) = u(t) - y(1).
Satisfies
E(s) = (I - T(s)U(s). (11)
According to the intemal theorem, in order to tracking
the signal ©(t), the tracking error e(t) satisfies
lime(t) = lli_g)lsE(s) =

l,i-g)ls(l - T(s)HU(s) = 0.
So s = Ois not a pole of (11). Hence, by Assumption
ii), s = 0 lies inside the region of convergence of the
transform

j:e-“e(t)d; (- TG)HUG).  (12)

Because of T(- ¢ + jwp) = 0, sets = —  + jwp and
left multiplying by £ *, by Lemma 1 Eq. (12) gives

G‘I:e("”""o)‘e(z)dt - £'U(= o + jap). (13)

Set s = — g — jwp and left multiplying by £7, by Lemma
1 Eq. (12) gives

sTj:ewwo)'e(t)dt = EU(= o - jwp). (14)

4 Lower boundson | e ™

Definition 1 Define the settling time of the system

to be

t, = inf {r: [l e(e) | £0.02, V1> ¢}.(15)
In order to simplify the expression, let ¢ = O under this
condition, we have the following:

Corollary 1 Consider the feedback control system
shown in Fig. 1. Assume that the plant has zeros at ¢
=+ jwp, and the settling time is ¢,, then the tracking
error’ s infinite norm has the following lower bound

”e":?\/;ax{lelljt(.]wﬁ)I,IG*U(t_JwO)I}.
' (16)

Proof From Definition 1 and Eqgs. (13) and (14),
using Schwarz inequality we immediately get the re-
quired inequalities.

Because the actual inputs are unit step, unit ramp, u-
nit accelerate and their linear combinations, their corre-
sponding Laplace transforms are 1/s,1/s%,1/s%, and
their linear combinations. Hence the lower bounds show
that for fixed ¢, , as wy becomes small, the lower bounds

on |l ell " become arbitrarily large. Which means that
under this condition, it would be very difficult to get a
desired settling time.

5 Example
Consider the plant
10052 + 1 s +3
P(s) - (s +1)? (s +1(s +2) ,
100s2 + 1 s +4
(s +1)(s +2) (s +2)?

P(s) has zeros at +0.1j, the corresponding normalized
complex vector £ in Lemma 1 is given by £* = (-0.55
-0.07j,0.83 +0.07j) . In order to find a compensator
C that stabilize P and also track a step reference signal,
according to (5), we have

S(s) = (I+ PC)™' = I- PQ.
Let S(0) = 0, we have

o = () )i = ot - por

The simulation response of e;(¢) and e,( ¢ ) are shown in
Fig.2 and Fig.3. where
E (s) = (20153 + 4045 - s)/(s(s + 1)*(s +2)),
E,(s) = (20153 + 4035%)/(s(s + 1)(s + 2)%).
By (16), the lower bound satisfies
lel . =1.25.
Numerical integrations yield
¢ [e(1)
(-0.55-0.07j,0.83+0.07j)f'e‘°-‘l( dt =
0 ex(1)

(- 0.55-0.07j,0.83 + 0.07j) -
8 .
Le-"-'l(zose-' - 204te™! - Se~¥)ds

=z

8 .
f oe-°- L(_ 202e* + 4032 + 21e72*)dst

. . -10;
~0.11-2.8j~(~0.55 —0.07,0.83+0. 07j)( .

-10j
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Hence (13) is satisfied.
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