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Tuning of a modified Smith predictor for processes with time delay
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Abstract: A modified Smith predictor proposed in Majhi and Atherto (1999) is shown to be equivalent to a modified in-
ternal model control (IMC) structure, and then a three-stage design method is proposed for the Smith predictor. To achieve
compromise between disturbance rejection and stability robustness, a robust control method is used to tune the feedback-loop
controller. Design for some typical integrating and unstable processes with time delay shows that the proposed method can
achieve good compromise between setpoint tracking, disturbance rejection and stability robustness.
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1 Introduction

It is well-known that the Smith predictor is an effec-
tive control structure for processes with long time delay.
However, due to intemnal stability issue, it cannot be ap-
plied to unstable processes. Many efforts have been
made to extend the Smith predictor to unstable and inte-
grating processes, €, g.,[1,2]. Astrom, Hang and
Lim!?! proposed a modified Smith predictors for control-
ling processes with an integrator and long dead-time.
But a number of tuning parameters is required. Matausek
and Micic*>) proposed a deadtime compensator (DTC)
structure which reduced the number of tuning parameters
to three.

For unstable processes with time delay, another modi-
fied Smith predictor structure (Fig. 1) was proposed in
(6], and a method based on the direct method was used
to tune the three controllers. A common character of
these structures is that the design of setpoint tracking and
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disturbance rejection can be done separately. It is also
noted that the DTC structure in [5] is a special case of
that in [6]. The latter can be applied to both integrating
and unstable processes.

Fig. 1 Modified Smith predictor
In this paper we show that the modified Smith predic-
tor proposed in [6] is equivalent to a modified internal
model control (IMC) structure (Fig.2), so the setpoint
tracking can be tuned by the well-known IMC tuning

method!”) . To achieve compromise between disturbance
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rejection and stability robustness, we propose a method
to tune the feedback-loop controller. By combining two
tuning methods, good setpoint tracking, good distur-
bance rejection and good stability robustness can be
achieved for the Smith predictor.

Fig. 2 Modified IMC structure

2 Modified Smith predictor
For the modified Smith predictor shown in Fig.1, we
have

_ PK,(1 + P* e ®K))r .
Y = (0+P Ko+ P K) (14 PKy) +(P—P* &%) K;

(1+P*"Ko+ P*K; - P*e®K))(Pdy + dy)
(1+P* Ko+ P* K))(1+ PKy) +(P-P* e ®)K,’

(1)
If the model is perfect, i.e., P = P" e ®, then
y =

PK] r (

P*e %K, )Pd1+dg
1+P* Ky + P'K1+

T1+P* Ko+ P* K] 14PK;
(2)

Now consider input-output relation in the modified

IMC structure shown in Fig.2, where the symbols have

the same meanings as those in Fig.1, except now @, K,

and K, are controllers to be tuned. We have

y =

PQ(1+P" e ®K,)r+(1+ P Ko—P" ¢ ®Q)(Pdy +d,)

(14 P* Kp)(14+ PKy) +(P-P* %) Q

(3)
If the model is perfect, then

yo—12 ., (1- P*eQ )Pd1+ d;
T 14+ P*K, 1+P*Ky] 1+ PKy°
(4)
Let
(5)
Obviously if

K,
1+ Gk’
then the two structures are equivalent, and the input-out-
put relation is simplified to

Q= (6)

Pdy + d
y = GQr+(l-GQ)—-—l;PK22. (7)

The equi\'/alence is not surprising. For stable processes
the relation has already been known, €. g.,in the book
of Morari and Zafiriou!”) .
3 Controller tuning

By Eq.(7), the setpoint tracking is not related to K,
so the setpoint tracking can be designed independently.
By the analysis in the previous section, @ can be de-
signed as an IMC controller for the stabilized model G.
We note that an IMC controller inverts the invertible part
of G*, thus if K, does not introduce additional right-
half-plane (RHP) zeros, its effect will be canceled by
Q. So K, can be chosen arbitrarily as long as it stabilizes
the delay-free part and does not introduce RHP zeros. If
the process is (marginally) stable, then it can be set to
zero. It is just for intemal stability of the structure. The
final performance of the system does not depend on it.

Once K; and @ are chosen, the other degree of free-
dom provided by K, can be used to improve the distur-
bance rejection of the closed loop system. Note that the
transfer functions from d,(d,) to vy is

T, = (1-6Q) 7 +PPK2’

T, = (1-6GQ)y +lPK2'
If P is unstable, clearly the response from d, to y will be
unstable without K,. To have good disturbance rejec-
tion, K, should stabilize the plant P and minimize the
norms of Ty and T, . Moreover, we require that the
performance can be achieved robustly. Since model un-
certainty usually occurs at high frequency and 1 - GQ =~ 1
at high frequency (since it is the sensitivity function of
an IMC structure without K;), so robustness of the
closed-1loop system depends mainly on K,. Now we need
to consider the following problem:
inf 1+ Pska) ' |l 9
where P, is an uncertainty model of the plant.
Suppose the uncertainty is a multiplicative one,i.e.,
Py = P(1 + Ag), (10)

(8)



http://www.cqvip.com

No.2 TAN Wen: Tuning of a modified Smith predictor for processes with time delay 299

then
(1 + PsKy)™ ! =
(1+ PKy)™' = (1 + PKy) ' PAg -
(1+K,(1+ PKy) "' PAs) 'K, (14 PKy) 1. (11)
Define a new uncertainty structure
Ap 0O
a=% As], (12)
where Ap is an imaginary block. By the main-loop theo-
rem!®!, robust performance defined in Eq. (9) is equiva-
lent to
igf#A(M), (13)

where
(1+PK)"'  (1+PK)'P
"T K0+ PK)T K(1 + PRy)MPL

(14)

This is a #-synthesis problem. It can be solved by D-K

iteration. However, the procedure is complex. We can

use a constant scale to compute the upper-bound of the

structured singular value!®!, i, e. , to solve the following

problem:
» [l 0 ]M[l 0] (15)
xlz..\z 0 as! 0 A,

Here A, can be thought of as a weighting between stabili-
ty robustness and performance. Frequency-based scaling
can also be used, but it will increase the order of the fi-
nal controller. It can be shown that the problem in
Eq.(15) is equivalent to a loop-shaping H.. design pro-
cedure!®) with W, = 1 and W, = A,.

In summary, we propose the following three-stage
controller design procedure for the modified Smith pre-
dictor.

1) Delay-free part stabilizer. A controller Ky is chosen
to stabilize the delay-free part of the model,i.e., P*.
For stable and integrating processes K, can be chosen as
zero.

2) Setpoint tracking. A controller Q is designed as an
IMC controller for the stabilized model G. Then
Q2

T1-6"Q°

3) Load disturbance rejection and robustness. A loop
shaping H., controller K, is designed to robustly stabilize
the original delayed process P.

K,

It is well-known that an IMC controller has one tuning
parameter. It is easy to find out that in the proposed
method we have essentially two tuning parameters: one
for tuning the IMC controller, or K; ; and the other (1,)
for tuning K,. Detailed tuning procedure for some typi-
cal processes with time delay are illustrated in the next
section .

4 Tuning for typical processes with time
delay
4.1 An integrating process with time delay
For the integrating process

P(S): k

B -6
s(es + D (16)
K, can be chosen as zero, and the IMC controller Q can

_ s§r5+12 . .
be chosen as @ = E(Aes + 12 where A, is a tuning

parameter. Then

Q s +1
K, = = .
'T1-670 " ks +21) (7)

K, can be designed by solving H., problem (15) with A,
chosen to make the infimum equal 2.5 for a compromise
between robustness and disturbance attenuation. Using a
curve fitting approach, we get the following tuning for-
mula for K;:

Kz = Kc(l + T,,S),

1
K = (1 33850/z s 0. 4855k 18

T. = (0.40136 + 0.56917).
4.2 A process with an integrator and time de-
lay
For the process

P(s) = ‘fe'o’, (19)

Ky can also be chosen as zero, and the IMC controller Q
can be chosen as Q =m‘m
92 _1

T1-6"Q R
For this process if we choose A, = 1.8/7, we get the
following tuning formula for K5 :

_0.7851 _1 +0.50s

K (20)

k=g T+0.005165° (21)
or we can approximate it with a PD controller with
Ky = 23811, 0.400965). (22)
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4.3 First-order unstable processes with time

delay
For this process
_ k —0s
P(s) = St (23)
The delay-free part of the process is P* = Ts’i 1 So
. k
G(s)=rs'-1+kKo' (24)

If Ky is chosen to be larger than 1/k, then G* will be

stable. For simplicity, we choose Ky = %, which

makes G* (s) = — 1.NowanIlVlCcontrollerQcan
be chosen as @ = z(—;‘:ﬁl—l—)and
Q.. 1
K, = ¢ o- kA,(l + z's)' (25)

Now we need to design K. It is known that the stabi-
lizing proportional gain for a first-order delayed unstable
process is bounded both below and above. We take the
average value of the two bounds as the desired normal-
ized loop gain (A;) and solve problem in Eq. (15)
against the normalized delay. We can also approximate
the optimal controller with a PD controller. Using a
curve fitting approach, we get the following tuning for-
mula for K, for a first-order unstable process with time
delay:

K, = K(T.s +1), (26)
where
%(0.58331' +0.746) , if /7 < 0.7,
e = %(0-49907 +0.694), if0.7 < 6/7 < 1.5,
(27)
T, = (0.4266/7 - 0.014) 7. (28)
5 Examples

Example 1 Consider a process with transfer func-
tion
P(s) = %e'a", (29)

where § = 5. The controller setting for the modified
Smith predictor tuned by the proposed method (A; = 1)
is shown in Table 1. So are settings tuned in [6] and

[1].

Table 1 Controller setting for Example 1

Ky K, K;
Proposed 0 1 0.157(1 +2.2055)
(5] 0 0.6 01448 122
[6] 4131 010453 o108

The setpoint and load disturbance responses are shown
in Fig.3(a). We see that the proposed controller setting
has the best load response and the setpoint response is
faster than that for [6] but slower than that for [1].
However, the setting in [1] is too aggressive as shown
in Fig.3(b) where the delay has 10% uncertainty. The
proposed setting has the best compromise between load
disturbance rejection and stability robustness.
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Fig. 3 Responses for Example 1

Example 2 Consider a process with transfer function
P(s) =

60 70 80

TG (30)

The controller setting for the modified Smith predictor
tuned by the proposed method (A, = 1) is shown in
Table 2. So is the setting tuned in [6].
Table 2 Controller settings for Example 2
K K, K,
Proposed 2 10(1+1/10s) 1.812(1+1.99s)
(1] 13.468 1+1/0.1s 1.414
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The setpoint and load disturbance responses for nomi-
nal delay and delay increased by 10% are shown in
Fig.4. We see that the proposed controller setting has
better load disturbance rejection than that by [6], since
in the latter case Kj is just a static gain.
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Fig. 4 Responses for Example 2
6 Conclusions

A tuning method for a modified Smith predictor for
integrating and unstable processes with time delay was
proposed in this paper. Essentially two parameters are
needed to tune the controller setting: one is responsible
for the setpoint tracking, and the other for load distur-
bance rejection and stability robustness. The design
for some typical processes with time delay shows that the

proposed method can achieve good compromise between
time domain performance and stability robustness.
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