文章编号: 1000 - 8152(2004)01 - 0045 - 09

混合 H₂/H_∞鲁棒控制器设计

王进华

(福州大学 电气工程系,福建 福州 350002)

摘要:在状态空间描述下,定义了混合 H_2/H_* 控制的完整信息、完整控制、干扰顺馈、输出估计这 4 种典型情况。在二次稳定意义上、讨论了混合 H_2/H_* 的性能指标,及这 4 种典型情况的混合 H_2/H_* 线性反馈控制器设计,给出了充分必要条件。在典型情况分析的基础上,研究一般意义上的混合 H_2/H_* 反馈控制器设计。 H_2 和 H_* 的干扰输入阵及性能评价函数各不相同时的混合 H_2/H_* 反馈控制器,与 H_2 和 H_* 控制器设计相似,归结为解两个 Riccati 方程。但这两个 Riccati 方程含有参数,最优解要通过搜索这两个参数得到。结果包含了单纯的 H_2 和 H_* 设计,可看作是 H_3 , H_* 和混合 H_3/H_* 的统一设计方法,最后通过一个简单的例子,说明了控制器设计方法的可行性。

关键词: 鲁棒控制;性能指标;不确定性;Hz/Hz/控制

中图分类号: TP13

文献标识码: A

Design of mixed H_2/H_{∞} controller

WANG Jin-hua

(Department of Electrical Engineering, Fuzhou University, Fujian Fuzhou 350002, China)

Abstract: In state space descriptions, four typical systems of mixed H-two/H-infinity control were defined. They are full information system, full control system, feedforward disturbance system and output estimation system. Their controllers were designed to optimize the performance based on a kind of quadratic stable. Mixed H-two/H-infinity control system was decomposed into an inner matrix and a mixed H-two/H-infinity output estimation system. The output feedback controller was deduced according to this decomposition. Mixed H-two/H-infinity controller delivered here are analog to H-two and H-infinity controller in that they have the same controller structure, the same number of Riccati equations and similar Riccati equations. The given controllers including the H-two and H-infinity cases, can be treated as unified controllers of H-two, H-infinity and mixed H-two/H-infinity control. Finally, a simple example was given to illustrate the proposed methods.

Key words: robust control; performance; uncertain; H_2/H_{∞} control

1 引言(Introduction)

优化控制理论中的两个最常用的指标是 H_2 和 H_∞ 范数,与此对应控制系统设计也有 H_2 和 H_∞ 方法.传统的 H_2 最优设计,其控制效果完全依赖于描述被控对象的数学模型的准确性.但是由于各种不确定因素的影响,要想获得精确的数学模型几乎是不可能的,从而影响了传统的 H_2 最优控制器在实际中的应用. H_∞ 问题自 20 世纪 80 年代中期兴起、至今仍是控制理论及应用研究的热点问题之一.但是 H_∞ 控制主要考虑系统的鲁棒稳定性,而系统的其他性能指标则未加关注,最终的控制系统性能仍难以满足要求.综合利用两种设计方法各自的优点,产生了应用混合 H_0/H_∞ 指标分析、设计控制系统的方

法, 且得到迅速发展.

有许多学者研究混合 H_2/H_∞ 性能问题,一般是通过各种方法(如通过 Lagrange 乘子法,将 H_∞ 约束下的 H_2 优化问题,转化为一个无约束的 H_2 优化问题,转化为一个无约束的 H_2 优化问题),提出一个辅助 H_2 指标. 该辅助代价函数是系统 H_2 范数的一个上界. 通过对辅助代价函数进行优化,来得到问题的解. 在文献[1]中,Bernstein 等研究了不确定系统,在满足一定的 H_∞ 约束下的 LQG 控制器问题. 即在系统 H_2 和 H_∞ 干扰输入阵相同时,设计控制器,使其 H_2 和 H_∞ 评价指标满足要求. 在文献[2,3]中,Zhou 等人研究了 Bernstein 等研究的对偶问题,即在系统 H_2 和 H_∞ 干扰输入阵不同时,设计控制器,使系统从外界干扰输入 w_1 到评价函数

收稿日期:2002-02-06; 收修改稿日期:2003-06-26.

基金项目:福建省科技创新基金项目;福州大学科技发展基金资助项目.

z 的传递函数的 H_{∞} 范数满足要求,且使评价函数 z的 Ho 范数极小. 文献[1,3]中的控制器设计, 需解 3 个耦合的 Riccati 和 Lyapunov 方程,计算非常复杂. 为简化设计,文献[4]中 Khargonekar 等通过研究,得 到了文献[1]问题的凸集优化方法,即3个耦合的 Riccati 和 Lyapunov 方程的解,可转化到凸集内优化 得到. Paganini 在文献[5]中研究了系统具有不确定 性时,H。性能指标的频域表达方式,并在文献[6] 中,给出了设计控制器的凸集方法.虽然 Paganini 主 要用频域的方法进行分析、综合,他也给出了状态空 间描述的控制器设计方法. Stoorvogel 在文献[8]中, 研究了系统在不确定性最恶劣时,Ha性能指标的分 析方法,并将其转化为文献[3]中的辅助代价函数法 进行系统综合. 而 Scherer 在文献[9]中研究了系统 对多个目标函数的控制器优化设计问题,即同时对 $d^{j} \rightarrow z^{j}$ 的传递函数阵 $T_{1}^{j} + T_{2}^{j}QT_{3}^{j}, j = 0, 1, \dots, k$ 进 行优化,其中有一个优化目标是 H。范数,所有这些 方法,在用状态空间来描述时,其控制器都可用 LMI 来参数化表达.

已有的结论大都是对 w_0 和 w_1 的输入矩阵相同[1],或者评价输出 z_0 和 z_1 相同[2~3],这与实际系统是有差别的.虽然在系统分析方面,有 w_0 和 w_1 , z_0 和 z_1 各不相同的成果,但未能用于系统综合方面.在进行系统综合时,要解耦合的 Riccati 和 Lyapunov方程,计算极为困难,目前未有有效的方法.化为凸集优化,也只是简化了问题的复杂性.另外, H_2 和 H_∞ 控制的控制器结构相似、Riccati 方程相近,有明显的对应关系.但在已有的混合 H_2/H_∞ 控制成果中,这种相似性没有体现.因此,本文希望通过研究能进一步揭示混合 H_2/H_∞ 控制与 H_2 和 H_∞ 控制的关系,进而得到一种能适应大多数实际对象、且方法相对简单的混合 H_2/H_∞ 控制器设计方法.

系统鲁棒稳定的 H_2 范数求解问题,可等价地转化为一种特定的鲁棒二次稳定问题.通过鲁棒二次稳定问题的解,求出系统 H_2 鲁棒性能指标的上确界.本文根据这样的 H_2 鲁棒性能指标,研究混合 H_2/H_∞ 线性反馈控制器设计问题.

2 问题描述(Problem formulation)

考虑图 1 所示的系统, G 为已知的线性、定常、有限维系统模型. Δ 为考虑系统建模过程中的线性化误差、低阶近似等不确定性及外界干扰造成的实际系统与系统模型 G 之间的误差. Δ 是系统的未知

部分,可能是非线性、时变的. *K* 是控制器. 为研究方便,假定系统模型如下:

$$G: \begin{cases} \dot{x} = Ax + B_0 w_0 + B_1 w_1 + B_2 u, \\ z_0 = C_0 x + D_{02} u, \\ z_1 = C_1 x + D_{12} u, \\ y = C_2 x + D_{20} w_0 + D_{21} w_1. \end{cases}$$
 (1)

其中: $x \in \mathbb{R}^n$ 为状态变量; $w_1 \in \mathbb{R}^m$ 为干扰系统的输出; $z_1 \in \mathbb{R}^n$ 为干扰系统的输入; $w_0 \in \mathbb{R}^n$ 为外界干扰输入, 是有单位强度的零均值正态白噪声; $z_0 \in \mathbb{R}^n$ 是控制输出; $y \in \mathbb{R}^n$ 为观测量; $u \in \mathbb{R}^n$ 为控制输入. A, B_0 , B_1 , B_2 , C_0 , C_1 , C_2 , D_{02} , D_{12} , D_{20} , D_{21} 是相应维数的常数矩阵.

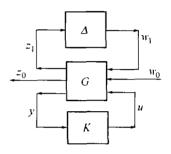


图 1 有扰动 Δ 和反馈的系统 G

Fig. 1 System G with disturbance Δ and feedback

所谓混合 H_2/H_∞ 的鲁棒控制器设计问题,主要是指图 1 系统在有界扰动 $\|\Delta\|_\infty \leq \gamma^{-1}$ 时,设计控制器,使系统鲁棒稳定,并使控制输出 z_0 的 H_2 范数最小.其中 H_2 和 H_∞ 范数,如文献[7]给出的定义.对上述系统,作如下假定:

- i) (A, B_0, C_0) 及 (A, B_1, C_1) 可稳定、可检测;
- ii) (A, B₂, C₂) 可稳定、可检测;
- iii) $D_{02}^{T}[C_{0} \quad D_{02}] = [0 \quad I] \not B \quad D_{12}^{T}[C_{1} \quad D_{12}]$ = $[0 \quad I];$
- iv) $D_{02}[B_0^{\mathsf{T}} D_{02}^{\mathsf{T}}] = [0 \ I] \not B D_{21}[B_1^{\mathsf{T}} D_{21}^{\mathsf{T}}]$ = $[0 \ I]$.

假定 i)、ii)是为了使混合 H_2/H_∞ 的鲁棒控制器设计问题对应的 Riccati 方程有正定解.假定 iii)、iv)是正交性假定,且保证 D_{02} 和 D_{20} 正则、满秩.系统描述(1)及上述假定并不影响讨论问题的一般性,更一般的系统描述,可通过变换转化为上述形式.为简化标记,将(1)式系统简记为

$$G(s) = \begin{bmatrix} A & B_0 & B_1 & B_2 \\ C_0 & 0 & 0 & D_{02} \\ C_1 & 0 & 0 & D_{12} \\ C_2 & D_{20} & D_{21} & 0 \end{bmatrix}$$

或

$$\begin{bmatrix} z_0 \\ z_1 \\ y \end{bmatrix} = \begin{bmatrix} A & B_0 & B_1 & B_2 \\ C_0 & 0 & 0 & D_{02} \\ C_1 & 0 & 0 & D_{12} \\ C_2 & D_{20} & D_{21} & 0 \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ u \end{bmatrix}.$$

对含有不确定性 Δ 的系统,直接求解其 z_0 的 H_2 范数是一个非常困难的任务.若系统鲁棒稳定,则其 z_0 的 H_2 范数有上界,因此在混合 H_2/H_∞ 问题中,常用这一上界来分析与综合系统.对此假定鲁棒稳定系统描述为

$$\begin{bmatrix} z_0 \\ z_1 \end{bmatrix} = \begin{bmatrix} A & B_0 & B_1 \\ C_0 & 0 & 0 \\ C_1 & 0 & 0 \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}. \tag{2}$$

其中: $\|G_{z_1u_1}\|_{\infty} = \gamma_0 < \gamma$,且 (A, B_0, C_0) , (A, B_1, C_1) 是可稳定、可检测的,则有如下引理.

引理 1 假定系统如式(2) 所示, 若对任意满足 $\|\Delta\|_{\infty} \le 1/\gamma$ 的 Δ , 对系统任意解的轨迹 x(t), 存在对称正定阵 P, 使得

$$x^{\mathrm{T}}(t)[A^{\mathrm{T}}P + PA]x(t) + 2x^{\mathrm{T}}(t)PB_{1}w_{1}(t) \leq - ||z_{0}(t)||^{2},$$
(3)

则有

$$\sup \| z_0(t) \|_2^2 \leq \operatorname{tr} (B_0^{\mathsf{T}} P B_0). \tag{4}$$

证 参照文献[3]定理1的证法,取 $V(x) = x^{T}Px$,利用其导数在系统解轨迹上的积分及系统鲁棒稳定,即可得证.

容易验证,若对任意满足 $\|\Delta\|_{\infty} \le 1/\gamma$ 的 Δ , 对系统任意解的轨迹 x(t), 有式(3)成立,则系统是渐近稳定的.式(3)也保证了系统的二次稳定性.根据引理 1,可将系统的性能指标取为

$$J = \inf \left\{ \operatorname{tr} \left(B_0^{\mathrm{T}} P B_0 \right) \right\}. \tag{5}$$

其中 P 满足式(3). 以后,将用 J 表示 z_0 的 H_2 性能指标.

引理 2 假定系统如式(2)所示,若对任意满足 $\|\Delta\|_{\infty} \le 1/\gamma$ 的 Δ ,对系统任意解的轨迹 x(t),存在对称正定阵 P 满足式(3) 的充分必要条件是 P 也是下式的解

$$A^{\mathrm{T}}P + PA + \alpha^{2} \gamma^{-2} PB_{1} B_{1}^{\mathrm{T}} P + \frac{1}{\alpha^{2}} C_{1}^{\mathrm{T}} C_{1} + C_{0}^{\mathrm{T}} C_{0} \leq 0.$$
(6)

其中, α 是一个实数.

证 很容易有由式(6)推得式(3),即引理充分性、必要性证明如下.式(3)等价于

$$x^{T}(t)[A^{T}P + PA + C_{0}^{T}C_{0}]x(t) \le -2x^{T}(t)PB_{1}w_{1}(t).$$

考虑到
$$w_1 = \Delta \cdot C_1 x$$
,上式可记成 $x^{\mathrm{T}}(t)[A^{\mathrm{T}}P + PA + C_0^{\mathrm{T}}C_0]x(t) \leq -2x^{\mathrm{T}}(t)PB_1\Delta \cdot C_1x(t) = -2\gamma^{-1}x^{\mathrm{T}}(t)PB_1\overline{\Delta} \cdot C_1x(t)$.

其中 $\Delta = \gamma \Delta$. 根据文献[8] 的定理 4.1 的证明过程中的论述,在 $\|\Delta\|_{\infty} \le 1$ 时,对任意的 $x \in \mathbb{Z}^n$,上式等价于

$$x^{\mathsf{T}}(t)[A^{\mathsf{T}}P + PA + C_0^{\mathsf{T}}C_0]x(t) \le -2\gamma^{-1} \|B_1^{\mathsf{T}}Px(t)\| \cdot \|C_1x(t)\|.$$

两边平方,可得

$$|x^{T}(t)[A^{T}P + PA + C_{0}^{T}C_{0}]x(t)|^{2} \geqslant 4\gamma^{-2}x^{T}(t)PB_{1}B_{1}^{T}Px(t) \cdot x^{T}(t)C_{1}^{T}C_{1}x(t) = [\alpha^{2}\gamma^{-2}x^{T}(t)PB_{1}B_{1}^{T}Px(t) + \alpha^{-2}x^{T}(t)C_{1}^{T}C_{1}x(t)]^{2} - [\alpha^{2}\gamma^{-2}x^{T}(t)PB_{1}B_{1}^{T}Px(t) - \alpha^{-2}x^{T}(t)C_{1}^{T}C_{1}x(t)]^{2} \geqslant [\alpha^{2}\gamma^{-2}x^{T}(t)PB_{1}B_{1}^{T}Px(t) + \alpha^{-2}x^{T}(t)C_{1}^{T}C_{1}x(t)]^{2}.$$
因对任意的 $x \in \mathbb{R}^{n}$, 上式成立,即可推得式(6).

3 典型系统定义(Definition of typical systems)

参照文献[7]中对 H_2 和 H_∞ 控制典型系统的描述,定义如下混合 H_2/H_∞ 的典型系统.

定义 1 完整信息, FI(full information)问题.

$$G(s) = \begin{bmatrix} A & B_0 & B_1 & B_2 \\ C_0 & 0 & 0 & D_{02} \\ C_1 & 0 & 0 & D_{12} \\ \begin{bmatrix} I \\ 0 \\ 0 \end{bmatrix} & \begin{bmatrix} 0 \\ I \\ 0 \end{bmatrix} & \begin{bmatrix} 0 \\ 0 \\ I \end{bmatrix} & 0 \end{bmatrix}$$

在这个问题中,所有状态和外界干扰都可以得到.本文仅考虑状态反馈,控制器并未用到干扰信号.另外系统满足如下假定:

- i) (A, B₀, C₀ 及(A, B₁, C₁) 可稳定、可检测;
- ii)(A,B₂)可稳定;
- iii) $D_{02}^{\mathsf{T}}[C_0 \quad D_{02}] = \begin{bmatrix} 0 & I \end{bmatrix}$ 及 $D_{12}^{\mathsf{T}}[C_1 \quad D_{12}] = \begin{bmatrix} 0 & I \end{bmatrix}$.

定义 2 完整控制,FC (full control)问题.

$$G(s) = \begin{bmatrix} A & B_0 & B_1 & \begin{bmatrix} I & 0 & 0 \end{bmatrix} \\ C_0 & 0 & 0 & \begin{bmatrix} 0 & I & 0 \end{bmatrix} \\ C_1 & 0 & 0 & \begin{bmatrix} 0 & 0 & I \end{bmatrix} \\ C_2 & D_{20} & D_{21} & 0 \end{bmatrix}.$$

在这个问题中,控制信号可以直接施加到所有 状态变量和控制输出.同样,本文也仅考虑对状态变 量进行控制.系统满足如下假定:

- i) (A, B_0, C_0) 及 (A, B_1, C_1) 可稳定、可检测;
- ii) (C2,A) 可检测;

iii)
$$D_{20}[B_0^T D_{20}^T] = [0 \ I] \not \triangleright D_{21}[B_1^T D_{21}^T]$$

= $[0 \ I]$.

定义 3 干扰顺馈, DF(disturbance feedforward) 问题.

$$G(s) = \begin{bmatrix} A & B_1 & B_1 & B_2 \\ C_0 & 0 & 0 & D_{02} \\ C_1 & 0 & 0 & D_{12} \\ C_2 & I & I & 0 \end{bmatrix}.$$

在这个问题中,假定干扰信号 w_0 , w_1 通过同样的途径作用到系统中,即 $B_0 = B_1$, $D_{20} = D_{21} = I$. 这个问题考虑的系统描述与文献[4]中研究问题的系统描述相似. 另外假定:

- i) (A, C_0) 及 (A, C_1) 可检测, $A = B_1C_2$ 是稳定的;
 - ii) (A, B₂) 可稳定;
- iii) $D_{02}^{\mathsf{T}}[C_0 \quad D_{02}] = \begin{bmatrix} 0 & I \end{bmatrix}$ 及 $D_{12}^{\mathsf{T}}[C_1 \quad D_{12}] = \begin{bmatrix} 0 & I \end{bmatrix}$.

定义 4 输出估计,OE (output estimation)问题.

$$G(s) = \begin{bmatrix} A & B_0 & B_1 & B_2 \\ C_1 & 0 & 0 & I \\ C_1 & 0 & 0 & I \\ C_2 & D_{20} & D_{21} & 0 \end{bmatrix}.$$

在这个问题中,假定针对 H_2 和 H_∞ 性能的控制输出信号 z_0 , z_1 相同,即 $C_0 = C_1$, $D_{02} = D_{12} = I$. 这个问题考虑的系统描述与文献[7]中研究问题的系统描述相似.另外假定:

- i) (A, B_0) 及 (A, B_1) 可稳定, $A B_2 C_1$ 是稳定的;
 - ii)(A,C₂)可检测;
- iii) $D_{20}[B_0^T D_{20}^T] = [0 I] 及 D_{21}[B_1^T D_{21}^T]$ = [0 I].

上述4种问题与 H_2 和 H_∞ 控制中的相应问题有明显的相似点,各问题的假定条件也相同.因此,上述4种问题在 H_2/H_∞ 控制中的重要性也与相似问题在 H_2 和 H_∞ 控制中的重要性相同.另外,上述问题中,很明显 FC、OE 问题是 FI,DF 问题的对偶问题.

4 典型系统的控制器(Controllers of typical systems)

本文今后将反复用到如下两个 Riccati 方程,其中 α , β 为实数.

$$R_{\alpha}(X) := A^{T}X + XA + \frac{\alpha^{2}}{\gamma^{2}}XB_{1}B_{1}^{T}X - \frac{\alpha^{2}}{1 + \alpha^{2}}XB_{2}B_{2}^{T}X + \frac{1}{\alpha^{2}}C_{1}^{T}C_{1} + C_{0}^{T}C_{0} = 0,$$

$$R_{\beta}(\gamma) := AY + YA^{T} + \frac{\beta^{2}}{\gamma^{2}}YC_{1}^{T}C_{1}Y - \frac{\beta^{2}}{1 + \beta^{2}}YC_{2}^{T}C_{2}Y + \frac{1}{\beta^{2}}B_{1}B_{1}^{T} + B_{0}B_{0}^{T} = 0.$$

定理 1(FI 问题) 存在线性状态反馈控制器,使得 $\|G_{z_1u_1}\|_{\infty} < \gamma$ 且使 z_0 的 H_2 性能指标最小的充分必要条件是存在数 α 使得 $R_{\alpha}(X) = 0$ 有对称正定解 X,则相应的最优反馈阵为

$$K = -\frac{\alpha^2}{1 + \alpha^2} B_2^{\mathrm{T}} X \tag{7}$$

及 z₀ 的 H₂ 性能指标为

$$J = \inf \left\{ \operatorname{tr} \left(B_0^{\mathsf{T}} X B_0 \right) \right\}. \tag{8}$$

证 由引理 1 和引理 2, 容易证明定理的充分性,必要性证明如下.

设最优的反馈增益阵为 K,由此构成的闭环系统为

$$\begin{bmatrix} z_0 \\ z_1 \end{bmatrix} = \begin{bmatrix} A + B_2 K & B_0 & B_1 \\ C_0 + D_{02} K & 0 & 0 \\ C_1 + D_{12} K & 0 & 0 \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}.$$

由引理 2, 若存在 α 使下式有对称正定解 X,

$$(A + B_2 K)^T X + X(A + B_2 K) + \alpha^2 \gamma^{-2} X B_1 B_1^T X +$$

$$\frac{1}{\alpha^2} (C_1 + D_{12}K)^{\mathrm{T}} (C_1 + D_{12}K) + (C_0 + D_{02}K)^{\mathrm{T}} (C_0 + D_{02}K) \le 0,$$
(9)

则有

$$J = \inf_{a} \operatorname{tr} \left(B_0^{\mathsf{T}} X B_0 \right).$$

将具有(9)式约束的 J 的极值问题,通过 Lagrange 乘子法转化为无约束的极值问题并对 K 求极值,即可解 得 K. 因为 $D_{02}^{T}[C_{0} D_{02}] = [0 I]$ 及 $D_{12}^{T}[C_{1} D_{12}] = [0 I]$,可解得最优时有如式(7)及

$$A^{\mathsf{T}}X + XA + \frac{\alpha^2}{\gamma^2} X B_1 B_1^{\mathsf{T}} X - \frac{\alpha^2}{1 + \alpha^2} X B_2 B_2^{\mathsf{T}} X + \frac{1}{\alpha^2} C_1^{\mathsf{T}} C_1 + C_0^{\mathsf{T}} C_0 \le 0.$$
 (10)

显然,使 J 最优的解矩阵 X, 应在式(10)取等号时得到.

定理 2(FC 问题) 存在线性反馈控制器,使得 $\|G_{z_1\nu_1}\|_{\infty} < \gamma$ 且使 z_0 的 H_2 性能指标最小的充分 必要条件是存在数 β 使得 $R_{\beta}(Y) = 0$ 有对称正定解 Y,则相应的最优反馈阵为

$$K = -\frac{\beta^2}{1 + \beta^2} Y C_2^{\rm T}$$
 (11)

及 z₀ 的 H₂ 性能指标为

$$J = \inf_{\beta} | \operatorname{tr} \left(C_0 Y C_0^{\mathsf{T}} \right) |. \tag{12}$$

证 根据对偶原理,由定理1即可得证.

定理 3(DF 问题) 存在线性反馈控制器,使得 $\|G_{z_1u_1}\|_{\infty} < \gamma$ 且使 z_0 的 H_2 性能指标最小的充分 必要条件是存在数 α 使得 $R_{\alpha}(X) = 0$ 有对称正定解 X,相应的最优反馈控制器为

$$K(s) = \begin{bmatrix} \frac{A+B_2K-B_1C_2}{K} & B_1 \\ 0 \end{bmatrix}.$$

其中: K 如式(7)所示, z_0 的 H_2 性能指标如式(8) 所示.

证 设有如下的 FI 和 DF 问题

$$\begin{cases}
G_{FI}(s) = \begin{bmatrix}
A & B_1 & B_1 & B_2 \\
C_0 & 0 & 0 & D_{02} \\
C_1 & 0 & 0 & D_{12} \\
\begin{bmatrix} I \\ 0 \\ 0 \end{bmatrix} & \begin{bmatrix} 0 \\ I \\ 0 \end{bmatrix} & \begin{bmatrix} 0 \\ 0 \\ I \end{bmatrix} & 0
\end{cases}, \\
G_{DF}(s) = \begin{bmatrix}
A & B_1 & B_1 & B_2 \\
C_0 & 0 & 0 & D_{02} \\
C_1 & 0 & 0 & D_{12} \\
C_2 & I & I & 0
\end{bmatrix}.
\end{cases} (13)$$

如果它们有控制器 K_{FI} 和 K_{DF} ,相应的闭环传递矩阵为 T_{FI} 和 T_{DF} . 构造 K_{DF} 如图 2 所示,其中

$$P_{\rm DF} = \begin{bmatrix} A - B_1 C_2 & B_1 & B_1 & B_2 \\ 0 & 0 & 0 & I \\ I & 0 & 0 & I \end{bmatrix}.$$

若将 K_{DF} 与 G_{DF} 构成闭环系统,用 x 表示 G_{DF} 的状态, x 表示 P_{DF} 的状态,则用 x 和误差 e: = x - x 表示的系统如下:

$$\begin{bmatrix} \dot{e} \\ \dot{\hat{x}} \\ z_0 \\ z_1 \\ \dot{\hat{y}} \end{bmatrix} = \begin{bmatrix} A - B_1 C_2 & 0 & 0 & 0 & 0 \\ \hline B_1 C_2 & A & B_1 & B_1 & B_2 \\ \hline C_0 & C_0 & 0 & 0 & D_{02} \\ C_1 & C_1 & 0 & 0 & D_{12} \\ \hline \begin{bmatrix} 0 \\ C_2 \end{bmatrix} & \begin{bmatrix} I \\ 0 \end{bmatrix} & \begin{bmatrix} 0 \\ I \end{bmatrix} & \begin{bmatrix} 0 \\ I \end{bmatrix} & 0 \end{bmatrix} \begin{bmatrix} e \\ \hat{x} \\ w_0 \\ w_1 \\ \dot{u} \end{bmatrix}.$$

由上式可知,状态 e 是不可控的. 因假定 $A = B_1C_2$ 是稳定的,所以系统存在反馈控制器使 $\|G_{z_1\nu_1}\|_{\infty}$ < γ 且使 $\|z_0\|_2$ 极小,等价于存在状态反馈控制器使上式右下分块系统(按实线分块)满足 $\|T_{z_1\nu_1}\|$ < γ 且 $\|z_0\|_2$ 极小. 因此, K_{DF} 使 G_{DF} 内部稳定的充分必要条件是 K_{FI} 使 G_{FI} 内部稳定,此时有 $T_{DF}=T_{FI}$.

根据上述 DF 问题的反馈控制器与 FI 问题的反馈控制器的关系,将定理 1 得到的 FI 问题的控制器应用到图 2,即可得出定理 3 的结果.

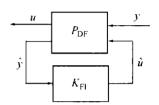


图 2 DF问题的反馈控制器 Fig. 2 Feedback controller of DF problem

定理 **4**(OE 问题) 存在线性反馈控制器,使得 $\|G_{z_1\nu_1}\|$ < γ 且使 z_0 的 H_2 性能指标最小的充分必 要条件是存在数 β 使得 $R_{\beta}(Y) = 0$ 有对称正定解 Y,相应的最优反馈控制器为

$$K(s) = \begin{bmatrix} A + KC_2 - B_2C_1 & K \\ C_1 & 0 \end{bmatrix}.$$

其中: K 如式(11) 所示, z_0 的 H_2 性能指标如式(12) 所示.

证 根据对偶原理,由定理3即可得证.

上述定理表明,对这几种特殊的问题,混合 H_2/H_∞ 控制器与 H_2 和 H_∞ 控制器的结构完全相同.但是在 H_2 和 H_∞ (给定 γ) 控制中,解出对应的 Riccati 方程,就可得到相应的反馈增益阵;而对混合 H_2 和 H_∞ 控制,必须搜索 Riccati 方程中的参数 α (或 β),才能得到最优的反馈控制律.

5 混合 H₂/H_∞控制系统的分解问题(Decomposition of mixed H₂/H_∞ control)

如果 传 递 函 数 矩 阵 $U(s) \in H_{\infty}$ 满 足 $U^{T}(-s)U(s) = I$,则称 U(s) 为内矩阵.如果传递 函数矩阵 U(s) 是内矩阵,那么,对任意 $P(s) \in H_{\infty}$, $X(s) \in H_{2}$,有 $\|U(s)P(s)\|_{\infty} = \|P(s)\|_{\infty}$ 及 $\|U(s)X(s)\|_{2} = \|X(s)\|_{2}$,即内矩阵有保范 特性.关于内矩阵有如下引理.

引理 $3^{[7]}$ 设 $U(s) = \{A, B, C, D\}$, D 列满 秩, (A, C) 可检测. 如果存在半正定阵使 $X \ge 0$ 使得

$$\begin{cases} XA + A^{\mathsf{T}}X + C^{\mathsf{T}}C = 0, \\ D^{\mathsf{T}}C + B^{\mathsf{T}}X = 0, \\ D^{\mathsf{T}}D = I, \end{cases}$$

则 A 为稳定阵且 U(s) 为内矩阵.

引理 4[7] 考虑图 3 反馈系统

$$P = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix} \in \mathbb{R} \mathbf{H}_{\infty}.$$

如果 P 是内矩阵,且 $P_{21}^{-1} \in \mathbb{P}H_{\infty}$, Q 是一个有理矩阵.那么,下列条件是等价的.

- i) 系统内部稳定且 $\|T_{zu}(s)\|_{\infty} < \gamma$;
- ii) $Q \in \mathbb{E}\mathrm{H}_{\infty} \perp \parallel Q \parallel_{\infty} < \gamma$.

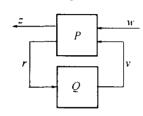


图 3 反馈系统

Fig. 3 Feedback system

下面讨论系统(1)在满足第一节的假定条件下的分解问题。

定理 5 设系统(1)满足相应假定条件,若存在 实数 α 及对称正定阵 X 使得 $R_{\alpha}(X) = 0$,则如下定义的传递函数阵是内矩阵:

$$P(s) = \begin{bmatrix} A_F & 0 & \frac{\alpha}{\gamma} B_1 & \frac{\alpha^2}{1+\alpha^2} B_2 & \frac{\alpha}{1+\alpha^2} B_2 \\ \hline C_{0F} & 0 & 0 & D_{02} & 0 \\ C_{1F}/\alpha & 0 & 0 & 0 & D_{12} \\ \hline 0 & I & 0 & 0 & 0 \\ -\frac{\alpha}{\gamma} B_1^\mathsf{T} X & 0 & I & 0 & 0 \end{bmatrix}.$$

其中: $A_F = A + B_2 F$, $C_{0F} = C_0 + D_{02} F$, $C_{1F} = C_1 + D_{12} F$,

$$F = -\frac{\alpha^2}{1 + \alpha^2} B_2^{\rm T} X. \tag{15}$$

证 直接验证 P(s) 满足引理 3 即可.

另一方面,若系统(1)满足定理 5,则可构造输出估计系统如下:

$$G_{OE}(s) = \begin{bmatrix} A_w & B_0 & B_1 & B_2 \\ -F & 0 & 0 & I \\ -F & 0 & 0 & I \\ C_2 & D_{20} & D_{21} & 0 \end{bmatrix}.$$
 (16)

其中 $A_w = A + \frac{\alpha^2}{\gamma^2} B_1 B_1^\mathsf{T} X$, 而 F 如式(15)所示,则有 $\left[w_0 \quad \frac{\gamma}{\alpha} w_1 \right], v^\mathsf{T} = \left[v_0 \quad v_1/\alpha \right],$ 则有

如下结论:

定理 6 若存在一个实数 α 及一个对称正定阵 X 使得 $R_{\alpha}(X) = 0$,则式(1) 系统可等价地表示为图 4 所示的组合系统,图中 P(s) 如式(14) 所示, G_{OE} 如式(16) 所示.

证 由于存在一个实数 α 及一个对称正定阵 X 使得 $R_{\alpha}(X)=0$,可以按式(14)、(16) 分别构造 P(s) 和 $G_{OE}(s)$.将 P(s) 和 $G_{OE}(s)$ 按图 4 连接起来,构成组合系统.记 P(s) 的状态变量为 x 而 $G_{OE}(s)$ 的状态变量为 x 则用 x 和 x 和 x 是 x 表示的组合系统为

$$\begin{bmatrix} \frac{\dot{e}}{\hat{x}} \\ z_0 \\ z_1 \\ y \end{bmatrix} = \begin{bmatrix} A_F + \frac{\alpha^2}{\gamma^2} B_1 B_1^T X & 0 & -B_0 & 0 & 0 \\ -\frac{\alpha^2}{\gamma^2} B_1 B_1^T X & A & B_0 & B_1 & B_2 \\ C_{0F} & C_0 & 0 & 0 & D_{02} \\ C_{1F} & C_1 & 0 & 0 & D_{12} \\ 0 & C_2 & D_{20} & D_{21} & 0 \end{bmatrix} \begin{bmatrix} \frac{e}{\hat{x}} \\ w_0 \\ w_1 \\ u \end{bmatrix}.$$
(17)

从式(17)可看出,状态变量 e 是不可控的,由于 Riccati 方程 $R_{\alpha}(X) = 0$ 有对称正定解 $X, A_F + \frac{\alpha^2}{\gamma^2} B_1 B_1^T X$ 是稳定阵,状态 e 将趋于零.因此组合系统等价于式(17)的右下分块系统,即系统(1).

6 混合 H₂/H_∞ 输出反馈控制器(Mixed H₂/H_∞ output feedback controller)

本节将在上面讨论的混合分解的基础上,给出 其输出反馈控制器的设计方法.系统描述如式(1), 且满足相应的假定.

定理 7 若存在一个实数及一个对称正定阵 X 使得 $R_a(X) = 0$,则下面的论述是等价的.

- 1) K(s) 是 G(s) 的混合 H_0/H_∞ 输出反馈控制器.
- 2) K(s) 是 $G_{OE}(s)$ 的混合 H_2/H_∞ 输出反馈控制器.

证 在定理条件下,G(s) 等价于图 4 所示的组合系统 混合 H_2/H_∞ 控制包括:保证从 w_1 的 z_1 的传递函数的无穷范数小于 γ ;保证控制输出 z_0 的 H_2 范数最优

首先论述其内部稳定性是等价的,由定理 5, P(s) 是内矩阵,将其分块为

$$\begin{bmatrix} z \\ r \end{bmatrix} = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix} \begin{bmatrix} w \\ v \end{bmatrix}.$$

其中: $z^{T} = \begin{bmatrix} z_{0} & z_{1}/\alpha \end{bmatrix}, r^{T} = \begin{bmatrix} r_{0} & \frac{\gamma}{\alpha}r_{1} \end{bmatrix}, w^{T} = \begin{bmatrix} w_{0} & \frac{\gamma}{\alpha}w_{1} \end{bmatrix}, v^{T} = \begin{bmatrix} v_{0} & v_{1}/\alpha \end{bmatrix},$ 则有

$$P_{21}^{-1} = \begin{bmatrix} A_F + \frac{\alpha^2}{\gamma^2} B_1 B_1^\mathsf{T} X & * \\ & * & * \end{bmatrix}.$$

如前所述, $A_F + \frac{\alpha^2}{\gamma^2} B_1 B_1^T X$ 是稳定阵,因而 $P_{21}^{-1} \in \mathbb{E} H_{\infty}$. 由引理 4 , G(s) 和 $G_{OE}(s)$ 的 H_{∞} 范数相同 . 记系统 G(s) 从 w_1 到 z_1 的传递函数为 $GT_{z_1u_1}$. 记系统 $G_{OE}(s)$ 从 r_1 到 v_1 的传递函数为 $G_{OE}T_{i_1r_1}$. 当考虑鲁棒稳定性时,可以令 $w_0 = 0$. 则由式(14),有 $r_0 = 0$; 由式(16),可得到 $v_0 = v_1$, 进而可知 $\|GT_{z_1u_1}\|_{\infty} < \gamma$ 是等价于 $\|G_{OE}T_{i_1r_1}\|_{\infty} < \gamma$.

上面证明了系统 G(s)与 $G_{OE}(s)$ 内部稳定是等价的,下面将进一步论证其评价输出的 H_2 范数的等价性.混合 H_2/H_∞ 控制问题可看作是在 $\|T_{z_1u_1}\|_\infty < \gamma$ 约束下,优化控制输出 z_2 的 H_2 范数.有约束条件的极值问题,可通过 Lagrange 乘子法转化为无条件的极值问题.设 Lagrange 乘子为 $1/\alpha^2$,则优化指标为

$$J_{z_0} = \| z_0 \|_2^2 + (\| z_1 \|_2^2 - \gamma^2 \| w_1 \|_2^2) / \alpha^2.$$

由定理 5 知 P(s) 内矩阵,内矩阵具有保范性,参照图 4 可得到

$$\| z_0 \|_2^2 + \frac{1}{\alpha^2} \| z_2 \|_2^2 + \| r_0 \|_2^2 + \frac{\gamma^2}{\alpha^2} \| r_1 \|_2^2 =$$

$$\| w_0 \|_2^2 + \frac{\gamma^2}{\alpha^2} \| w_1 \|_2^2 + \| v_0 \|_2^2 + \frac{1}{\alpha^2} \| v_1 \|_2^2.$$

$$\text{由于 } r_0 = w_0, \text{ 将上式重新排列, 可得}$$

$$\| z_0 \|_2^2 + (\| z_1 \|_2^2 - \gamma^2 \| w_1 \|_2^2) / \alpha^2 =$$

$$\| v_0 \|_2^2 + (\| v_1 \|_2^2 - \gamma^2 \| r_1 \|_2^2) / \alpha^2,$$

即

$$J_{z_0} = J_{v_0}.$$

上式说明 G(s) 和 $G_{OE}(s)$ 评价输出的 H_2 范数相等.

综上所述, K(s) 是 G(s) 的混合 H_2/H_∞ 输出反馈控制器,等价于 K(s) 是 $G_{OE}(s)$ 的混合 H_2/H_∞ 输出反馈控制器.

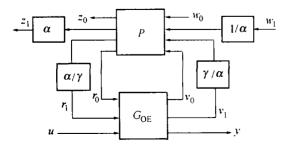


图 4 组合系统

Fig. 4 Combined system

定理 8 设系统(1)满足相应假定,则存在输出 反馈控制器 K(s) 使得 $\|T_{z_1u_1}\|_{\infty} < \gamma$ 且使控制输出 z_0 的 H_2 范数最优的充分必要条件是

i) 存在一个实数 α 和一个对称正定阵 X 使得 $A^{T}X + XA + \frac{\alpha^{2}}{\gamma^{2}}XB_{1}B_{1}^{T}X - \frac{\alpha^{2}}{1 + \alpha^{2}}XB_{2}B_{2}^{T}X + \frac{1}{\alpha^{2}}C_{1}^{T}C_{1} + C_{0}^{T}C_{0} = 0.$ (18)

ii) 存在一个实数 β 和一个对称正定阵 Y 使得 $A_w Y + Y A_w^T + \frac{\beta^2}{\gamma^2} Y F^T F Y - \frac{\beta^2}{1+\beta^2} Y C_2^T C_2 Y + \frac{1}{\beta^2} B_1 B_1^T + B_0 B_0^T = 0.$ (19)

iii) α , β 使得 $J = J_{\alpha} + J_{\beta}$ 达到极小. 此时,输出反馈控制器为

$$K(s) = \begin{bmatrix} A + \frac{\alpha^2}{\gamma^2} B_1 B_1^{\mathsf{T}} X + B_2 F + L C_2 & -L \\ F & 0 \end{bmatrix}.$$
(20)

其中

$$J_{\alpha} = \sup \| z(t) \|_{2}^{2} = \inf_{\alpha} \{ \operatorname{tr}(B_{0}^{T}XB_{0}) \},$$

$$J_{\beta} = \sup \| z(t) \|_{2}^{2} = \inf_{\beta} \{ \operatorname{tr}(FYF^{T}) \},$$

$$F = -\frac{\alpha^{2}}{1 + \alpha^{2}} B_{2}^{T}X, L = -\frac{\beta^{2}}{1 + \beta^{2}} YC_{2}^{T},$$

$$A_{w} = A + \frac{\alpha^{2}}{\gamma^{2}} B_{1} B_{1}^{T}X.$$

证 充分性.在定理条件 i)下,系统 G(s) 可按定理6分解为 P(s) 和 $G_{OE}(s)$,此时 G(s) 和 $G_{OE}(s)$ 的混合 H_2/H_∞ 输出反馈控制器相同(定理 7 的结论).根据系统的假定和定理条件 i), $G_{OE}(s)$ 满足定义 4 输出估计系统的假定.由定理 4,在定理条件 ii)下, $G_{OE}(s)$ 的混合 H_2/H_∞ 输出反馈控制器由式(20)给出,最优 H_2 的性能指标通过搜索参数 α 和 β 得到.

必要性.若系统存在混合 H_2/H_∞ 输出反馈控制器 K(s),则必存在混合 H_2/H_∞ 状态反馈控制器.即系统的完整信息问题有解,由定理 1,可得到定理条件 i).

在定理条件 i)下,由定理 6、定理 7、定理 4,可得到定理条件 ii),定理条件 iii)是显然的.

几点说明:

1)与 H₂和 H_∞的控制的情形相似,在混合 H₂/H_∞输出反馈控制中,状态反馈和状态估计有分离的结构,状态反馈增益阵由式(18)给出,状态估计的增

益阵由式(19)给出,但是在混合 H_2/H_∞ 输出反馈控制中,Riccati 方程是带有参数的,且状态反馈增益阵 F 出现在方程(19)中.

- 2) J_a 对应了系统在状态反馈时的混合 H_2/H_∞ 性能, J_a 对应了系统在状态估计时的混合 H_2/H_∞ 性能,因而, $J = J_a + J_a$ 是利用状态估计实现反馈控制时的混合 H_0/H_∞ 性能,
- 3) 由于 Riccati 方程(18)和(19)是带参数的,满足条件的控制器要通过搜索参数 α 和 β 得到.因为式(18)和(19)并不是完全耦合的,且 Riccati 方程(18)和(19)是参数 α 和 β 的凸函数,因此定理 8 给出的混合 H_2/H_{α} 输出反馈控制器设计方法比现有的方法简单.
- 4) 最优的控制器要通过搜索参数 α 和 β 得到,这是一个优化问题,本文不进一步讨论. 在后面的例子中,使用对分法进行优化的. 即首先对适当给定的 α ,可通过式(18) 解出相应的状态反馈增益阵 F,将其代人式(19),即可通过对分法调节参数 β ,得到优化的 J_{β} ;然后利用对分法,改变 α ,重复上述过程,直到 $J=J_{\alpha}+J_{\beta}$ 最优.
- 5) 定理 8 也包含了 H_2 和 H_∞ 控制的情形,即有下述两个性质:
- 性质 1 当 $\gamma \rightarrow \infty$ 时,定理 8 给出的混合 H_2/H_∞ 输出反馈控制器等于 LQG 输出反馈控制器.
- 性质 2 当最优的性能指标值 J 在 α , $\beta \rightarrow 0$ 得到时,定理 8 给出的混合 H_2/H_∞ 输出反馈控制器等于 H_∞ 输出反馈控制器.
- 6) 不论是对典型系统还是对一般的系统,本文给出的混合 H_2/H_∞ 控制器,都包含了 H_2 和 H_∞ 控制的情形,可以看作是混合 H_2/H_∞ , H_2 和 H_∞ 控制的统一形式.

7 举例(Example)

本节将给出一个简单的例子,说明本文的控制器设计方法,设系统模型如下:

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, B_0 = B_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, B_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix},$$

$$D_{12} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, C_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, C_0 = C_2 = \begin{bmatrix} 1 & 0 \end{bmatrix},$$

 $D_{02} = D_{20} = 1$, $D_{21} = [0 \ 1]$.

设计控制器使得 $\|\Delta\|_{\infty} \leq \gamma$ 且使 $\|z_0\|_2$ 最优.

这是一个简单的系统,容易算出当 $\gamma > \gamma_0 = \sqrt{2}$,其完整控制的 H_{∞} 控制问题有解.由式(13)可知,这也是存在混合 H_2/H_{∞} 输出反馈控制器的一个

条件,在本例中,取 $\gamma = 4$ 进行计算.根据定理 8 很容易得到其混合 H_2/H_∞ 输出反馈控制器.图 5 是 $\gamma = 4$ 时,性能指标 J 与参数 α 和 β 的关系曲线.为了作图方便,将 J > 300 一律取为 J = 300.最小的性能指标值在 $\alpha = 0.3751$ 和 $\beta = 0.6435$ 处得到.混合 H_2/H_∞ , H_2 和 H_∞ 输出反馈控制器的增益阵如表 1 所示.表中 $\|G_{z_1u_1}\|_\infty$ 是闭环系统 w_1 从 z_1 到的传递函数;而 $\|z_0\|_2^2$ 是闭环后中心系统(即不考虑系统的不确定性),评价输出 z_0 的 H_2 范数.3 种控制方式下的单位阶跃响应曲线如图 6 所示.在仿真过程中,不确定干扰按 $\Delta = c$ diag $\{\sin x_1, \sin x_2\}$ 作用到系统中.仿真时取的不同的值,见图 6 所示.

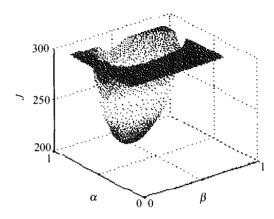


图 5 指标 J 与 α 和 β 的关系

Fig. 5 Relationship of performance J to α and β 计算及仿真结果表明:

- 1) 闭环系统从 w_1 到 z_1 的传递函数的无穷范数 $\| G_{z_1w_1} \|_{\infty}$, H_{∞} 控制器比 H_2 控制器的小, 而混合 H_2/H_{∞} 控制器的更小. 这表明这三种控制器按表 1 从上到下的顺序, 对系统中的不确定性越来越不敏感, 即其鲁棒性越来越好.
- 2) 闭环后中心系统的 $\|z_0\|_2^2$, 按表 1 从上到下的顺序, 是越来越大, 这表明系统鲁棒性的提高, 是牺牲了中心系统二次型性能.
- 3) 中心系统的二次型性能变差,并不表示在有不确定性时,其 H_2 性能也一定会变差. 由图 6 可看出,在不确定性达到一定程度时,按表 1 从上到下的顺序,系统的混合 H_2/H_∞ 性能是越来越好的. 这表明混合 H_2/H_∞ 控制的 H_2 评价指标 $\|z_0\|_2^2$,随不确定性的变化较小,即 $\|z_0\|_2^2$ 与 $\|\Delta\|_\infty$ 的关系曲线,用混合 H_2/H_∞ 控制器要比其他两种控制器平缓.
- 4) 按表 1 从上到下的顺序,从综合性能来看是越来越好的.但性能的提高是通过增加控制器增益得到的.由表 1 可看出, H₂, H_∞、混合 H₂/H_∞控制的

反馈增益阵逐次增大,特别是 L 阵,其变化更明显.

5) 对系统控制而言,控制成本与控制性能总是问题的两个对立面.混合 H₂/H_x 控制可得到较好的综合控制性能,但控制器增益较大.在实际系统控制中,大增益会带来许多其他方面的问题,如大增益系统不易实现、易带来非线性问题.因此,在实际系统控制中,采用何种控制器,应根据实际需要来确定,不能一味追求某一方面的性能.

通过计算也表明,本文给出的混合 H_2/H_* 输出反馈控制器设计方法是有效的.

表 1 控制器的增益阵

Table 1 Gain matrix of controller

	F	L^{Γ}	$G_{z_1u_1}$. \mathbf{x}	$z_0\parallel \frac{2}{2}$
H_2	[1.0000,1.4142]	[1.4142,1.0000]	5.3493	2.8284
H _∞	[1.1429,1.8952]	[3.9799,3.2000]	3.7115	15.8763
H_2/H_{∞}	[1.1604,1.8831]	[6.8938,5.8910]	3.4218	62.6194

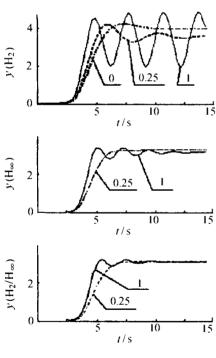


图 6 系统的响应曲线

Fig. 6 Curve of system response

8 结论(Conclusions)

文中给出了 4 种混合 H_2/H_∞ 控制的典型系统,这 4 种典型系统是 H_2 和 H_∞ 控制典型系统的推广.这 4 种典型系统的控制器设计,也与 H_2 和 H_∞ 控制相似,仅需解一个 Riccati 方程.但是这个 Riccati 方程带有参数,求解过程需要对这个参数寻优.

混合 H₂/H_∞控制系统,可分解为一个内矩阵与一个输出估计系统.混合 H₂/H_∞输出反馈控制器,可通过这种分解,由典型系统的控制器设计方法得到.混合 H₂/H_∞输出反馈控制器也有状态反馈与输出估计的分离结构,其参数化控制器表达式可通过解两个带参数的 Riccati 方程得到.不论是对典型系统还是对输出反馈系统,本文给出的混合 H₂/H_∞控制器,随着参数的变化,包含了 H₂ 和 H_∞控制的情形,可看作是 H₂,H_∞和混合 H₂/H_∞控制器设计方法相对简单、易行.简化了现有的混合 H₂/H_∞控制器设计方法.

参考文献(References):

- [1] BERNSTEIN D S, HADDAD W M. LQG control with an H_∞ performance bound: a Riccati equation approach [J]. *IEEE Trans on Automatic Control*, 1989, 34(3):293 305.
- [2] ZHOU K, GLOVER K, BODENHEIMER B, et al. Mixed H₂ and H₂ performance objectives I: robust performance analysis [J]. IEEE Trans on Automatic Control, 1994, 39(8); 1564 1574.
- [3] DOYLE J, ZHOU K, GLOVER K, et al. Mixed H₂ and H₂ performance objectives ∏: robust performance analysis [J]. IEEE Trans on Automatic Control, 1994, 39(8);1575 – 1587.
- [4] KHARGONEKAR P P, ROTEA M A. Mixed H₂/H_∞ control: a convex optimization approach [J]. *IEEE Trans on Automatic Control*, 1991, 36 (7):824-837.
- [5] PAGANINI F. Frequency domain conditions for robust H₂ performance
 [J]. IEEE Trans on Automatic Control, 1999,44(1);38 49.
- [6] PAGANINI F. Convex methods for robust H₂ analysis of continuous-times systems [J]. *IEEE Trans on Automatic Control*, 1999,44(2):239 – 252.
- [7] DOYLE J C, GLOVER K, KHARGONEKAR P P, et al. Francis, state-space solutions to standard H₂ and H₂ control problems [J]. *IEEE Trans on Automatic Control*, 1989,34(8):831 847.
- [8] STOORVOGEL A A. The robust H₂ control problem: a worst case design [J]. IEEE Trans on Automatic Control, 1993, 38(9):1358 – 1370.
- [9] SCHERER C W. Multi-objective H₂/H_∞ control [J]. *IEEE Trans on Automatic Control*, 1995,40(6):1054 1062.
- [10] 申铁龙.H_{*}控制理论及应用[M].北京:清华大学出版社,1996:1 295
 - (SHEN Tielong. H_x. Control Theory and Its Application [M]. Beijing: Tsinghua University Press, 1996.)

作者简介:

王进华 (1963 一),男,副教授.2001 年毕业于西北工业大学自动控制系,获工学博士学位.主要研究方向:非线性系统, H_{∞} 控制,鲁棒控制. E-mail:jinhua-wang@263.net.