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Abstract: A robust adaptive controller with L,-gain is derived for a class of cascaded non-minimum phase nonlinear systems
with unknown parameters and disturbances. A recursive Lyapunov-based design approach was developed to construct the controller
explicitly so as to avoid solving Hamilton-Jacobi-Isaacs inequality. The state feedback controller guaranteed that the closed system
was input-to-state stable and the L,-gain from the disturbance input to the controlled output was not larger than a prescribed value
for all admissible parameter uncertainties. In the end, a simulation example was given to demonstrate the controller’s feasibility .
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1 Introduction

In the past decade, robust and adaptive control has
been an active research area and many remarkable results
have been obtained for a class of uncertain nonlinear
systems ( see [1~5]). The problem of Hy control of
general nonlinear systems has been addressed by [ 5] using
the notion of dissipativity, but the results in [5] involve
solving Hamilton-Jacobi-Isaacs inequality, which imposes
a formidable difficulty. The problem of H. control has
been solved without the need of solving HJI inequality for
a class of uncertain cascaded nonlinear system in the litera-
ture [ 1], the problem of parameter estimate was not
discussed yet. Although robust adaptive control problem
has been investigated for a class of uncertain nonlinear
systems in the literature [2], L,-gain from the distur-
bance input to the controlled output was not considered.
Robust adaptive control with L, gain has been addressed
for a class of special systems by [4]. Nevertheless, very
few researches have been reported on designing nonlinear
H, adaptive controller without the need of sovling

Hamilton-Jacobi-Isaacs (HJI) for a class of non-minimum
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phase nonlinear systems .

In the present paper, motivated by [4], based on the
literatures [ 1,2], a state feedback He adaptive controller
1s derived for a class of non-minimum phase nonlinear
systems by integrating H, control with adaptive control
approach and using recursive Lyapunov-based approach,
which avoids the difficulty of solving HJI inequality. The
controller guarantees that the closed system is input-to-
state stable and the L)-gain from the disturbance mput to
the controlled output is not larger than a prescribed value
for all admissible parameter uncertainties .

2 Problem presentation

Consider the uncertain cascaded nonlinear system
t = #(C»xl),
2 = xpy + fi(%) + 078,(z) + pi(§. %) w,
lsign-1,
ino= u+ fi(2) + 07,(5) + pa(8,5,)w,
z = ho(§,%,) + do(§.%,)w,
(1)
where, %, = (%1, %,)T € R(i = 1,2,**,n) and
£ € R is the state. u € R is the control input, § € R
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1s an unknown constant parameter vector, w & %’ is the
disturbance input and w € L& [0, %) U L,[0,%),z €
=™ is the controllable output, gz, #;, p;, hg, dg are
known smooth real function vectors, f; is a known
smooth real function, i = 1,2,-,n, with £;(0) = 0,
‘U(0,0) = 0,¢,(0) = O,hO(O,O) = 0

Assume that the system (1) satisfies the following
assumptions .

Assumption 1 For the {-subsystem, there exist a
smooth real-valued function ag( {) with ag(0) = Oand a
real-valued function Vo( {), which is smooth and positive
definite, such that

(V30 u(8,a0(8)) <=~ BiVo(§)s B >0, (2)

Bllgl? < Vo(8), B2 >0, (3)
for some positive real numbers 3 and 3.

Assumption 2 There exists a positive real number
Y4, such that do( ¢, %,) in equation (1)satisfies

| do( ¢, %,) | < Yip» V[CT,DZ,T,]T & R 7,

Lemma 1 The nonlinear system & = f(x,u) is
input-to-state stable if and only if there exist K, function
k;(+),i = 1,--,4, and a smooth function V(x) such
that the following conditions hold for any x € X" and u
€ Lo[0,2): '

(=) < Vix) < k(N ),

VA f(x,u) <= k(I ) + kIl wll),
where f:R" x R” — R" is continuously differentiable and
£(0,0) = 0.

This paper addresses the following control problem:

Given any ¥ > }’do , design a state feedback controller

9 = ,(8,0,%,), v =u(9,¢,%,), 9 € R,
(4)

where 9 is the estmate of §, for the closed-loop system
composed of equaton (1) and (4) such that the
following design specifications hold for any admissible
uncertainty 0

(S;) Stability: The resulting closed-loop system is
input-to state stable;

(S;) L,-gain performance: For some real-valued
function g9: R™ x B* x &'~ R with €4(0,0,0) = 0, the
following integrator inequality holds,

J: ) z()dr <

72J: wi (D w(r)dr + €6( o> Zno» o) »

for all w € L,[0, ®) and any initial condition [ {3 ,% o>
o]t € R**%t! where 8 = 9 - 6.7 is a positive
constant specifying attenuation level.

Notation R, is the set of nonnegative real numbers,

R" is an n-dimension real vector space, | | is the
Euclidean vector norm, and L,[0, ) and L,[0, %)

denote the spaces of square integrable and uniformly
bounded functions on [0, ® ), respectively. a; = a;(,
%,,0), is the virtual control law, #;,p, and p denote
$:(%,),p,(¢,%), and x({,x;) respectively, i = 0,
en.

3 Design of robust adaptive controller

The design steps of robust adaptive controller are as
follows:

Step 1 Lettingey = %, — @g,€3 = 22 — Q) then
we have £ (&, x,) = u(§,a9) + £(¢,e;)e; (the exis-
tence of iz is followed by the smooth property of i« ). For
convenience, letting pg = p(§,a0), . = u(§,ey),
Eq. (1) subsystem can be transformed into

§ = po + pey,
. T . (5)
ey = €2+(11+f1+0¢1+p1w—(10.
According to Assumption 1, we have
(IVo/9E) o < - PiVolE). (6)

In addition, note that by using equaton (1) and
completing the squares, it can be easily obtained that

lzl2-7ilwl?®<

hol 1 + (1/75) dodglhg -

w'[ 7} - )1 - dodolw <

(14 (737D TN o 12 = E 1w 12, (7)
where ¥, > Va0 Y4, is as defined in Assumption 2, and
Yo and 5’1 are positive real numbers such that 5’% = )’f -
)’8 - )’%0. In the case where dy = 0, we have Y4, = 0,

Y1 = 7y and Yo becomes redundant,

Since the transformation e; = x; — ag is a diffeomor-
phism, there exists a positive-definite function H (Z,e;)
such that

[1+ (7%{0/7(2))] | Ro(C,x) 112 < H(E,e1). (8)
Also, since H(0,0) = 0, then H({,e;) can be decom-
posed as

H(L,e)) = Ho(§) + Hi(L,el)ey, (9)
where Hp(¢) = Ho(¢,0), and Hy(0) = 0,H,(0,0)
= 0.

Next, considering Vo( &) is radially unbounded and
positive definite, there exists a class of Ko function ko(+)
such that

Ho(g) + (172) | ¢ 11% < ko Vo(E)). (10
Define a storage function candidate V, for the system of
equation (6)

Vi = (1/81) Sl Vo ©)) + (1/2) e} +

(1/72)(8 - O)'I~'(9 - 6), (11)

where I' > 0 is the design parameter matrix, O is the esti-
mate of §, 3}, is the constant in Assumption 1, So( Vo) is
the following class K, function:

dko(t)
Sol Vo) = Vo sup, g,

2V, ,
+JV ko(1)dr. (12)
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Observe that the function So( Vo) satisfies''
S()( Vo) = ko( Vo) y Vo(dSO( Vo)/dVO) = So( Vo)

(13)
Considering equation (5),(6),(11) and(13), the time
derivative of V| satisfies
vy -1 dSol Vo) %(y + fiey) +
B dvy  ag T Em
erey + (8- 0)Tr'd <
- So( Vo) + ¢(C.e)er + er{er + ay + f1 +
9Té, + pyw — (/I p)
(8 - )T NI - 7)) - op(8 - )8, (14)
where oy is a design parameter,
t; = I'(ey$) - o),
1 dSe( Vo) aVo _
pltie) = 5 iy, ot -
By using equations (7), (8), (9), (10),(13) and
(14) ,we have
Vie lzl12-7llwl?<
—a2N el =2l wll? + elar + ex +
Hi o+ ¢+ fi+ 087 - (9ap/)u] +
eiprw + (9 - N1 (9 - 7)) - 0g(8 - O)TS.
(15)
Also, there exists a bounding BPI(L’,xl) such that || py |
< 8, - By completing the square for inequality (15),
inequality (15) yields
Vit llzl2-7llwl?<
— (2l el?+ela;+ex+ Hi+ ¢+
fi+ 8" - (9ag/A0) p + (1/871) €163 ) +

(8- 60T Ud -1, -al9-6)T3. (16)
Now choose a virtual control law a; as
@ =- [~
L 2
(Dag/ ) p + (17471) €183 1. (17)
Substituting equation (17) into (16), we have
V1+ ||z||2—)’1 ||W||2

— Vitereat(8-0)TT(9-7,)+(1/2)5076.
(18)

ey + Hi+ o+ fi+ 978, -

where
v =% Lgl?+ ’é‘e? + (00/22 (7)) (8 -
e'r-'(v -6y,

AM(F‘I) is maximum eigenvalue of 1.
Step 2 By letting e3 = x3 — @y, we have
€y = Ay —a; =
ey +ar+ fo+ 079 + prw -
(3a, /%) (%2 + f1 + 079, + prw) -
(a8 p - (9a,/39)8 =
es + ap + fo — (3a,/38)9 +

67(8, - (9a1/3x,)$;) + pow, (19)
where

jz = f2- (da;1/9x) (2, +f1) - (9a)/98) ¢,

p2 = (p2 - (Ja1/3%,)py).

Define a storage function candidate as V, = V; +
(1/2)€3. By using (18) and(19),we have
Ve lz12-7llwll?<
—Vi+eea-3llwll?2+ (8- (9 -1)+
(1/2)0070 + eres + exlaz + fo - (7a,/39)8 +
9T(¢2 - (8a1/9x1)¢1) + I_?zw], (20)
where 5’% = )’% - )’%, Y, is a positive constant large than
Y.

Also since there exists a smooth upper bound function
5, (C,xz,ﬁ) such that || po || < , by completing
the squares for inequality (20) mequahty (20) yields

Vot lz012-7llwl?<

_Viteses+[(9-0)"T" - e;(9a,/39) (8 -13) +

eslas + fo + e + 97($, - (3a,/3x,)8)) -
(3a,/39) 1, + (1/45’%)623%2] + (12)e876, (21)
where
r, = ) + D($y - (Bar/3x,) 1) e,.
Choose virtual control law a5 as
ay = - [(172)e; + fo + ) + 9 ($y - (9a1/9%,)8y) -
(9a,/38) 73 + (1/473) €267 . (22)
Substituting equation {22) into (21), we have
Vot lzl12-Hlwl?<
Vo + eges + (1/2)0 870 + [(8 - O -

62(3a1/30)1(19 -7,), (23)
where
Vo =(172) [ g ll2+ (1/2) e} + (1/2) €5 +
(6528 ma( TS = )T - 6).
Stepi Lete;,; = %, — a1l < j<i-1).

Define a storage function candidate as
i-1
Vi = (1781 8o( Vo) + 25 (1/2) €] +
=1
(12) (9 -0 '-(8-0). (24)

Assume that according to the above recursive design ap-
proach we have designed virtual control laws «; and esti-
mate functions 7;,(l < j < @ - 1), by choosing ¥, < 72
< ** < Y.y, such that the time derivative of V;_, along
equation (1) satisfies

Via+ lzl2-7iallwl?<
- ‘VL L+ ere + (172)0870 + [(9 - 6)'T7' -
Z (90,7090 1(9 - 7i1), (25)
where |
Vi =(172) g+ 2(1/2)% +
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(69/2A (TN = T (S - 6).
Define
V.= Vi, + (1/2)€2. (26)
Note that the variable e; satisfies the following equation:

-1
é = e+ a; + fi + 0($; - S(aai~l/axj)¢1) -
j=|

(aai_l/(7z9)z9 +[_)iw, (27)

where

o= =L 2 G 5 () + D001,

-1
Di = pi - E(aai_l/axj)pj.

j=1
By choosing 7; > 7;_;, letting 5’% =7:- 7%_1 and using
Egs. (25),(26)and(27) ,we have

Vo lzl12- 7 llwl? <

- )i—l + €€, t+ (1/2)055T9 - 5’% || w || 24
-2

[(9-0)TT" = D0 e, 1(0a;/d9) (9 — i) +
j=1

ei[,ai +fi + €1 + 9T(¢i -

1=
> (3ai/ax)8) - (da,1/39)0 + pw].  (28)
j=1

Also, since there exists a bounding function 8, (¢, %, 9)

such that || Pi | < 0, » by completing squares for the
right side of inequality (28), inequality (28) yields

Vie Iz -7illwll?<

V. tee + (172)6 "0+ (9-6)"' -

-1

Z€J+l(aaj/819):|(l9 - Ti) + e,-[ai +ji + €_] —

i=1

-2
(Bai_l/(?&)ri + (&T - Ze]+l(3aj/9xj)F)(95L -
s=1

—

i-

(Ja;_1/9%) ;) + (1/871) e 1, (29)

—

j =
where

i-1
T = T + [‘(¢, - Z(aai_l/axj)¢j)ei~

i=1
Choose the virtual control law a; as
a; == [(1/2)e; + e,y + fi = (Fa;_/38)t; -
i-2
(97 = 2] €,1(9a;/20)T) + (#; -
J=1

-1

> a1 /9%) @) (147 ed? 1. (30)

j=1
Substituting Eq. (30) into (29), we have
Vit lz1?2=-7illwl?<
— Vit egi + (1/2)06"0 + [(8 - )'T' -

iej+1(3aj/80)](& -7, (31)

where

V=2 el e D2+

j=1
(06/2A e (T~ - )T (0 - 6).
Stepn Define V, = V,_| + (1/2)¢e2 and choose
the control input u as )
u=-[(1/2)e, + e, + f, = (Ja,_/38)t, -

(97 - 25 ,1(2a;/9)T)
j=1

(3, = 3 (Gar 1 /2%)8) + (1472) 6% ]

j=1
(32)
By letting i = n in equation (29) and substituting Eq.
(32) into Eq. (29), we have
Vow 212 -7 lwll? <
-V, + (1/2)of"0 + [(9 - )T -

n-1

Sej+l(aaj/819)](19 - 7)), (33)

i=1
where

V, =(1/2) ¢l *+ i(l/z)e,h

i=1
(69220 (T"N(S - )T (9 - ).
Choose the adaptive control law as

n-|
0 = th = toy + I(#, = 2 (Fa,_1/3%) $)e,.

j=1
(34)
Substituting Eq. (34) into Eq.(33), we have
Vet 1zl17 =72 lwll? <- Vo + (172) 0870
(35)
In view of the definition of V,,, V, is a radially unbounded
and positive definite C! function. Evidently, there exist
class K, functions k(<) and ky( <) such that V, satisfies
the fist inequality of Lemma 1. In additon, letting
(172)65 = Y2 andw = [w", 8"]T, Eq. (35) yields
Vis-lzI?=Vo+ rallwll®  (36)
According to the known condition, w € Lo [0,o). If
regarding w as the general input for the closed-loop
system, then Eq. (36) satisfies the second inequality of
Lemma 1. Hence, in view of Lemma 1, this implies that
the closed-loop system is input-to-state stable for all
admissible uncertainties.
Choosing an appropriate positive constant gy satisfying

200 < V,, Bq.(35) yields

Vor lzI2-7llwl?<0. (37)
Integrating both sides of Eq.(37) and noting that V, (&,
e, 0 =0(y[che",0T]T € R "), it follows that
J 2Tzdr < )’ZJO wlwdr + eol C(O),e(O),@(O)),

0

(38)

where


http://www.cqvip.com

No.5

ZHU Yong-hong et al: Robust H-infinity adaptive control for uncertain cascaded nonlinear system

335

Y = 7 e(t) = [e“...,en:tT’

e0( £(0),€(0),6(0)) = V,(£(0),e(0),6(0)).

In view of Egs. (36) and (38), the closed-loop system
composed of Egs. (1), (32)and(34)satisfies design speci-
fications ( S;) and (S,). According to the above proof,
we have the following theorem:

Theorem 1 Under Assumption 1 and 2, there exists
a state feedback adaptive controller such that the closed-
loop system composed of Eqs. (1), (32)and(34) satisfies
design specifications (S;) and (S;) for all admuissible
uncertainties .

Remark 1

V,, there exits a gy such that %UBBTH <V, if(172) | ¢ II?

In fact, according to the definition of

+ E (1/2)6? > 0, then inequality (37) holds. Hence,
j=1

In simulation, we can choose an approprate positive

constant gy such that all error states of the closed-loop

system converge to zero or the neighborhood of zero.
4 Simulation example

Consider the three-dimensional nonlinear system
2;’ == 2:’ + x%’

%) = x2 + x7 + Osin x,,

(39)

u+ w,

L[

Choose {-subsystem storage function Vo(¢) = (1/2)¢ 2,

Xy =

z =

state x.x,

-6

01 2 3 4567 8910
t's
Fig. 1 State x) and x;.
14
12+
g 08
5 06}
5 04¢f
=9
0.2
0

005115 2 253354 455
1/s

Fig 3. Performance index J{t).

5 Conclusion

In the present paper, a state feedback H, adaptive con-

Assumption 1 is satisfied with ag({) = 0,8, = 2and 3,
= 0.5. Moreover, Assumption 2 is satisfied with }’do =

J2. Therefore Assumption 1,2 hold and thus, we will
apply the above approach to design the state feedback con-
troller. Choosing Yo = 1, 7, = 2and ¥, = 3, we can

1.5’2 :@,8,,] = 0and5‘,,2 = 1. In view of
the above design approach, we can obtain the virtual

obtain ‘)7, =

control law ay, control input u and adaptive law 3 = 7,
as follows
ay = — (3.5%; + 27 +3.50%, + 5.258%x, + Osinx,),

u=—[0.55ey+2, +fr+ Tasinx; — Isinx;(Ja,/Jx,),
9 = 1, = I'xisinx; — I'sinxye,(da,/9%,) - oy,
where

fr = (3.5, + 15.758%x)(~ § + 7)) -

(day /%) (22 + x%),

oy = 275 = 18.
In simulation, parameter I' = 1,0 = 0.1, disturbance
inputw = sin (4¢)exp (- 0.1¢), initial states was set to
1, i.e. £(0) = x,(0) = x,(0) = x,(0) = 8(0) = 1,

performance index

1) = 1] wle)wledde 09

was calculated. Note that J(¢) < 3. In view of simula-
tion Figs. 1,2 and 3, it implies that the closed-loop
system satisfies design specifications (S,) and (S,) for all
admissible uncertaindes, Fig. 4 is the control input.
Hence, the controller designed is feasible and effective.

4.5

S — o oW
O WU AN WU A

parameter 3

=1

0 02040608 1 12141618 2
ts

Fig. 2 Parameter estimate ) .

50 T T -
B

~50
-100
-150 ¢
-200 |
-250

control input u

0051 15 2 25 3 354 455
t's
Fig. 4 Control input u.
troller is derved for a class of cascaded nonlinear systems

with unknown parameter and disturbance by integrating
H, control with adaptive control approach. The controller


http://www.cqvip.com

536

Control Theory & Applications

Vol.21]

guarantees that the closed system is input-to-state stable and
the L,-gain-from the disturbance input to the controlled
output is not larger than a prescribed value for all admissible
parameter uncertainties. Simulation results demonstrate that
the controller designed by the above approach is feasible
and effective.
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