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Hypothesis-test based genetic algorithm for
stochastic optimization problems
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Abstract: To effectively solve the stochastic optimization problenis with non-deterministic and multi-modal properties.a class
of hypothesis-test based genetic algorithm is proposed. The algorithm performs reasomable estimation by multiple evaluations,
searches the design space effectively via genetic operators,and enhances the searching ability and population diversity by hypothesis
test to overcome premature convergence . Based on typical stochastic functional and combinatorial optimization problems, the effects
of hypothesis test, performance estimation number and magnitude of noise on the performance of the approach are studied, and the
effectiveness and robustness of the proposed approach are demonstrated.
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1 Introduction

Generally speaking, stochastic optimization problems can
be described as follows:

moinJ(é)) = mginE[L(ﬁ,E)], (D

where @ is decision solution, & represents the stochastic
effects of the system, L(@,&) and J(§) are the sample
performance and its expected value is .

Stochastic optimization problems are often structureless,
non-deterministic, and short of objective function
explicitly known, so that the performance evaluaton is
done only by simulation. Meanwhile, the search space is
often huge and there are many local optimum so that it is
very hard to achieve global optimum. Currently, the study
on stochastic optimization or simulation optimization has
been a hot topic in the international academic fields''!
especially the research on designing effective and robust
algorithms. In years, intelligent optimization
algorithms have gained wide attention in both theoretical
and engineering fields'®), but much for deterministic

algorithm (GA) is a kind of

recent

problems. Genetic
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optimization algorithm based on the principles inspired by
natural evolution phenomena, which has been widely and
successfully applied in many fields'®!, but it is very prone
to be premature. Aiming at the non-deterministic property

of stochastic optimization problem, Bayer[4]

proposed
some theoretical issues to study evolutionary algorithirs in
noisy environment . From the statistics viewpoint, a class of
general GA based on hypothesis test is proposed in this
paper, which applies hypothesis test based on mean value
comparison to enhance population diversity so as to avoid
premature convergence and improve the effectiveness of
search space exploration via genetic operators. Based on

functional and
problems, the effects of hypothesis test, performance

stochastic combinatorial  optimization

estimation number and noise magnitude on performance
are studied, and the effectiveness and robustness of the
proposed algorithm are demonstrated.

2 Hypothesis test

Hypothesis test is an important statistical method that is
used to make test for predefined hypothesis using experi-
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ment data®’. To make hypothesis test for different
solutions when optimizing the stochastic problem, it often
needs multiple independent simulations to provide suitable
performance estimation for decision solutions. If n;
independent simulations are carded out for solution §;,
then its unbiased estimated mean value J; and variance s2

can be calculated as follows:

J(6) = N L(6,.8)/n,, (2)

i=1

Ji

3? _\__I[L(G[,E)—]i]z/(n[—l), (3)
j=t
Considering two different solutions ¢, and 6,, whose

1]

estimated performances J(6;) and J(6,) are two
independent random variables. According to the law of
large number and central limit theorem, the estimation
J(6,) subjects to N(J;,s%/n;) when n; approaches to
© Suppose J(6,) ~ N(uy,01) and J(6;) ~ N(pa,
%), where the unbiased estimation values of y,, y, and
53,53 are given by Eq.(2) and Eq. (3),and let the null
hypothesis Hybe “g2; = g»" and the alternative hypothesis
Hybe“up 5 .

If 07 and 6% are known, then the critical region of Hy is

described as follows:

|]1 - ]2| = Zun 0'21/711 + d%/nz =7, (4)
where « is the evidence level with the meaning that
$(z,0) = 1 - ar’2.

If 6% and o3 are unknown and n,, n, are large enough
(say 50) , then the critical region of Hy can be simplified as
follows;

ijl - ]2| = 2o s%/nl + s%/nz =z, (35)

where s? = E[L(@l,f) -1 J*(n - 1)and 53 =

Z[L(Gz,f) - ._]2]2/(712 — 1) are the unbiased
=1

estimation of o7 and o3 respectively .

Ifo? = 05 = ¢* and o2 is unknown, then the critical
region of Hy is described as follows:

|-]l - ]2. =

ta/z(lll + Ny — 2) .

«/[(nl — 1)8% + (n2 — l)s%]/(nl + n, —2) .

Vn o+ ny)/(nng) = . (6)

Thus, if |J(91)—j(02)| < r, i.e. the nul
hypothesis holds, then it can be regarded that the

performances of these solutions are not significantly

different from each other in statistical sense ; otherwise they

are indeed different. Furthermore, for stochastc
minimization problem it is assumed that @, is better than
g9,if J(9,) - J(8,) = z, while 0, is better than 0, if

=

J(8,) = J(8,) < - r. In addition, for specific problem

=

it often supposes that the theoretical performance variances

5], so the hypothesis test can

of all solutions are the same
be made according to Eq. (6) . For multi-modal stochastic
optinuzation problems, a companson under pure
hypothesis test can often be trapped into local optima, so
that it motivates us to combine the hypothesis test with

the effective search ability of GA.
3 Hypothesis-test based genetic algorithm

Based on the idea of hypothesis test, after all new
solutions are generated by genetic operators for stochastic
optimization problems, they will be firstly ordered accord-
ing to their estimated mean performances from the best to
the worst,and the first solution will be put into the next
population. Then, one by one from the second solution to
the last solution, the current solution is compared wath its
nearest former solution not discarded. If there s no
significant difference between their performances (say null
hypothesis holds), then the current solution will be
discarded to avoid repeated search; otherwise reserve the
solution and put it nto next population. After finishing
such companson-based hypothesis test, all those discarded
solutions will be replaced by new solutions randomly
generated, which will be put into next population to
enhance diversity to some extent. Thus, a hypothesis-test
based GA (HTGA) for stochastic optimization problem is
proposed as follows.

Step 0 Given parameters such as population size P, ,
mutation probability P,,, let k = 0.

Step1 Randomly generate initial population P(0),
and estimate the performance J; and variance s? of each
solution with multiple ( n times) independent simulations .

Step 2 Let the best solution of P( k) be 8 with the
estimated performance J* and vanance s% . If the
stopping condition 1s satisfied, then output the best
solution and its performances, otherwise go on to the steps
below .

Step 3 Order all the solutions of P(k) by J, < J»
s <t

Step 4 Repeat P,/2 tmes genetic operators ( includ-
ing selection, crossover, and mutation) for P(k) to get a

temporary populadon P'(k), and estimate the
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performance J| and variance s of every new solution by
multiple independent simulations . ]
Step 5 Order all the solutions of P'{ k) by J§ < J5

< - < J% , and denote the resulted solutions by &5, 85,

"+, 0p respectively. Let m = 1,j = 2, and put 6§} into
P(k + 1) and denote it as 0,,.

Step 6 Perform the hypothesis test for 8 with 8,
which is in P(k + 1). If the null hypothesis holds,i.e.
Eq.(6) does not hold, then §; is discarded from P'(k);
Otherwise, 6, is put into P(k + 1) and denoted as 6,,, ,
andletm = m + 1.

Step 7

Otherwise randomly generate p, — m new solutions and

Ifj < P thenlet; = j + 1 and go to Step 6;

put them into P(k + 1), and replace the worst solution
of P(k + 1) by the best solution of P(k), letk = k +
1, then go to Step 2.

It can be seen from the above procedure that, firstly the
algonithm inherits the fundamental framework and
operators of GA to keep the generality and effective
optimization ability. Secondly, for stochastic optimization
problems the statistical
performance can enhance the population diversity, avoid

hypothesis test based on
the repeated search, and reasonably deal with the random
factor to some extent. Besides, the elitist strategy in Step 7
guarantees the reservation of best solution found so far.
Next we will demonstrate the effectiveness and robustness
of HTGA by simulation based on stochastic functional and
flow shop problems.

4 Numerical simulation and analysis

4.1 Study on stochastic functional optimization

Considering the following two-dimensional random
Rosenbrock function:

L(xy,%5,8) =

100( 23— x5)% 4+ (1- %)%+ 7€, | %1, 22| < 2.048,

(7)
where 7 denotes noise magnitude, & is random noise
subjected to N(0,1). Theoretically, the optimal solution
of J(xy,%5) = E[L(x;,%,,&)]is (1,1) with the best
petformance 0.

Firstly, apply the simple elitist GA without hypothesis
test (random selection, arithmetic crossover and Gaussian
mutation )2, and performance estimation is based on only
one simulaton (n = 1). Let» = 0.01, P, = 30,p,, =
0.1, and maximum generation be 150, the distribution
diagram of the resulted solutions of 20 independent runs is
illustrated in Fig.1. Secondly, use 10 independent

simulations for performance estimation (n = 10), others
are the same as stated above and the hypothesis test is still
not applied, the distribution diagram of resuited solutions
of 20 independent runs is illustrated in Fig.2.
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Fig. 1 Results of GA without hypothesis test (n = 1)
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Fig. 2 Results of GA without hypothesis test (n = 10)

Then, we study the HTGA (n = 10) with other
parameters as before, the distribution diagram of the
resulted solutions of 20 independent runs is illustrated in
Fig.3. If the noise magnitude increases to 0.05, the
distribution diagrams of the resulted solutions of 20
independent runs with n = 10and n = 20 are illustrated
in Fig.4 and Fig.5
performances of 20 independent runs of classic GA and
HTGA under different noise magnitude are listed in Table
1, where [, denotes the theoretically expected optimal

respectively. In addition, the

value, L(x") and J{x" ) denote the average estimated
performance and the average expected performance of the

resulted solutions ( evaluation without noise) respectively .
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Fig. 3 Results of HTGA(n = 10,7 = 0.01)
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Fig. 4 Resuls of HTGA (n = 10,7 = 0.05) Fig. 5 Resuls of HTGA (r = 20,7 = 0.05)
Table 1 Comparison between classic GA and HTGA for stochastic functional optimization
without HT n =1 without HT n =10 HTGA n=10 HTGA n=20
7 T F, T 3 3 T ¥ F *
L(x") J(x") L(x™) J(x™) L(x™) J(x™) L(x") J(x™)  Juin
7 =0.01 -0.0168 0.0160 -0.0046  0.0059 - 0.0078 0.0013 -0.0057 0. 0008
0
7 =0.05 -0.0381 0. 0621 -0.0293 0.0244 -0.0390  0.0078 -0.0303 0.0033

Firstly it can be concluded from the simulation results
that more accurate estimation and better optimization
quality can be achieved by increasing the evaluation
number for stochastic optimization problem especially
when noise magnitude is large (see the comparisons
between Fig.1 and Fig.2, Fig.4 and Fig.5) . Secondly it
can be concluded that it can enhance the population
diversity and reserve the best solution by incorporating the
hypothesis test into the search procedure. This is helpful to
avoid repeated search, premature convergence and being
trapped in local minimum so that better and more robust
performance can be achieved (see the comparison
between Fig.2 and Fig.3,and Table 1) .

4.2 Study on stochastic combinatorial optimiza-
tion

Flow shop is a class of NP-hard combinatonal
optimization problem with strong engineering back-

671 Due to the existence of non-deterministic

ground[
factor, it is of more practicable significance to study
stochastic scheduling problems, where flow shop problem
with random processing time is a typical one!®’ . Here,
flow shop problem with random processing time
uniformly distributed is considered. Let p; ; be the

processing time of job ¢ in machine j, which is subjected

to uniform distribution U((1 - ) P; ;, (1 + ) P;;),
where P; ; is the expected processing time, and 7 is noise
magnitude. We select three benchmarks from [9] for
performance testing, namely Rec07 (20 jobs, 10
machines) , Recl19 (30 jobs, 10 machines), and Rec25
(30 jobs, 15 machines) whose processing data are used as
P; ;. Let 7 = 0.15 and makespan (6] be the objective
for the following simulation.

Because of the complexity of flow shop solving, local
search ability of GA may be weakened to some extent by
incorporating hypothesis test to enhance the population
diversity. To. compromise the exploration and local
exploitation ability, in HTGA such a process is repeated
that the hypothesis-test based search is consecutively
applied for M generations after classic GA is continuously
applied for N generations. The statistical simulation results
of HTGA and classic GA (say SGA below) each with 20
independent runs for every instance are shown in Table 2
(LOX crossover”’ , SWAP mutation'”’, P, = 60, Pm =
0.1, inidal population randomly generated, maximum
generation is 850, n = 20, M = 100, N = 30). In Table
2, J(x ) denotes the best performance evaluated with
expected processing time among 20 resulted solutions, and
others are the same as before.

Table 2 Comparison between classic GA and HIGA for stochastic combinatorial optimization problemn

SGA HTGA
problem Jowin ~ - _ N
L(x™) J(x™) J(x™) L(x™) J(x*)  J(x™)
Rec 07 1566 1577.7 1596.9 1584 1568.2 1584.3 1566
Rec 19 2003 2152.6 2171.2 2141 2135.7 2152.7 2115
Rec 25 2513 2611.0 2629 .5 2588 2591.1 2608.9 2565
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It is shown from Table 2 that the average estimated
performance, average expected performance and best
expected performance of HTGA are obviously better than
those of classic GA without hypothesis test when solving
flow shop with random processing time, even with the
same evaluation replications. Moreover, the robustness of
HTGA is demonstrated since the expected performance of
the resulted solution is very close to the theoretically
optimal value. So, once again it is shown that by suitably
into GA, HTGA is

powerfully able to solve complex stochastic combinatorial

good

incorporating hypothesis  test

optimuzation problem in order to achieve

optimization quality and robust performance.
5 Conclusion

This paper proposed a hypothesis-test based GA to solve
stochastic optimization problems with non-deterministic
and mult-modal properties. By applying performance
estimation and hypothesis test based on multiple
simulations, it can enhance population divemity and
decrease repeated search so as to be helpful for GA to
effectively solve stochastic problems. The effectiveness and
robustness of the proposed algonithm have been
demonstrated by simulation results based on stochastic
functional and combinatorial optimization. The future
work is to theoretically study the convergence property,
design adaptive mechanism for parameters, and apply for

other complex scheduling problems.
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