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Optimal financing and dividend control of
a corporation with transaction costs
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Abstract: In the financial markets corporations have to pay for the fixed and proportional eransaction costs when distributing
dividends and issuing external equity. But no discussions have been found on the optimal financing and dividends policy influenced
by both the fixed and proportional transaction costs. To address this inadequacy, an optimal control problem is discussed using
stochastic impulse control theory to determine the optimal policy. First the associated Hamilton-Jacobi-Bellman(HJB) equation is
given, then its continuously differentiable solution is constructed. From the solution and generalized 13 Lenuma, the optimal financ-
ing and dividends policy is derived. Finally the economic interpretations are presented to illustrate the applications of the results, and
comparisons are made with existing literacures .
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1 Introduction

In corporate finance a basic problem is to find the
optimal financing and dividend pay-out policy for a
corporation, whose objective is to maximize the net
expecting all the discounted dividends to be distributed to
its  shareholders. Several +-3]
continuous time model in which the liquid capital of a

authors! considered  a
firm evolved like an arithmetic Brownian motion, and
their problern was to find the balance between high return
and the probability of going bankruptcy. The problem was
addressed with singular stochastic control method if
transaction costs were not considered. It was shown that
the irm pays no dividend untl its liquid assets reach a
certain level and then pays for everything in excess of this
level as dividends. But when fixed and proportional costs
existed, it became an impulse control problem, and the
optimal policy was to put the assets down to a certain level
whenever it reached the other upper level and the
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difference between the two levels would be dividends . .

51 when

Another case was considered by Sethi and Taksar-
the firm can issue external equity. In [5] they proved
there exists a two-fold continuously differentiable value
function in the case where the coefficients are not
constant, but only proportional transaction costs of new
equity issuing were considered in their model.

This paper reformulates the Sethi-Taksar model by
considering fixed and proportional costs when the firm
pays dividends or issues new equity . Since there is no debt
in this model and the company can issue external equity,
bankruptcy s not possible in this case, which means the
time horizon will be infinite. The value function and its
related optimal policy are given explicitly in a stochastic
impulse control framework .

2 Model

Consider a probability space (2, F,F,,P) with a
standard Brownian motion W(¢) adapted to the filtration
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F,. The value of the liquid assets of the company at time
t is denoted by X(¢) when there is no jump to the state
of assets. The dynamics of X (¢) is given by

dX (1) = a(X(t))de + o (X(£))dW(s).

Here the retum function is denoted by a(+),so0a(x)
represents the mean reum when X(t) = x. The
assumptions of a ( +) and 6(+) are made the same as in
Sethi and Taksat'®) . We assume a(+) to be concave and
differentiable with a(0) = 0,4’ (0) = Aanda'(®) <
A, where A which is the
stockholder’ s required rate of retum. The function a(-)

is the cost of capital,

is an increasing, differentiable function satisfying ¢(0) =
0,6’ (0) > 0and 6 (x) < Mx for some M > 0. For the
fact that transaction costs exist, paying dividends and
issuing new equity will not be on the same moment. Thus
we can describe the two actions by one control variable. A
policy consists of a sequence of stopping times | zq, 7,
-+ and a sequence of random variables | yg, y1,**{ such
that
PO=rtp<1y< "—>®)=1,
y;, € F,i fori =0,1,-,

where 7; is the time when the controller enforces a jump
to the state of the assets, with y; the size of the jump.
Then the assets value satisfies

{dX(t) = a(X(2))dt + o(X(£))dW (1) - d¥Y(z),
Xo = x - yo,
(1)
where
Y(e) = 2y (2)
and Xo = xis the size of the ﬁrm’s initial assets. When

y; is positive, the action means the company is paying
dividends at the moment z;, and y; is negative if external
equity is issued. The policy {(z;,y;)| is said to be
admissible if
P.(X(t) =

Oforall t =0) =1, (3)

Ex(z | yi | e*%) < o forevery x € R. (4)
i=0

In this article there exist fixed and proportional
transaction costs which are associated with each dividend
pay-out and equity issuing; for instance, some costs like
taxes and commissions. The transaction cost scheme is as
K when the firm
pays y; as dividends, and they have to pay ¢ | y; | + Q out

follows . Shareholders can only get ry; —

to meet the amount of | y; | as new equity to the firm,
where0 < r < 1,¢ > 1,and K,Q > 0. Set
ry - K, if y >0,
Fly) = {0, if y =0, (5)
cy - Q, ify <O

and the index function for any admissible policy 7(+) =
1 (7, y:)1 is defined by

J(x(+)) = E.2 e f(y). (6)
i=0
Then,we define the value function as
v(x) = supJ. (7).

w(+)
3 Hamilton-Jacobi-Bellman equation

Theorem 1  Suppose the value function v( ) is

continuous. Then, for every x € =, in the sense of
viscosity solutions as in Yong and Zhou!®'it satisfies the

following I—I]B equation
o (x) 0" (x) +a(x)v'(x)-2u(x),

igg%v(x—3)+f(3)§—v(x)§ =0. (7)

Proof The theorem is a direct corollary of
Proposition 4.4 in Tang and Yong”‘f"’l(’ﬂ .

Heuristically from HJB (7), we consider the following
quasi-variational inequalities:

Eaz(x)v"(x)+a(x)v'(x)—/1v(x)s'0 for every x €=,

nqax{

(8)

v(x) = v(y)+f(x—y) for every x € % and y =0.
(9)

Theorem 2  Suppose v(*): (- ®,0) = = is

continuous differentiable with bounded derivatives, and
the second derivatives are continuous at all but a finite
number of points. If v(+) is a solution of the QVI
(8),(9), then for any admissible policy 7(+),v(x) =
J(m(+)).
Proof

even when v(+) is not twice continuously differentiable,

It is well known that [ formula remains valid

provided that it has an absolutely continuous derivative v’
and v" is chosen as any density of v’. The proof can be
found in Rogers and David'®) . For any admissible policy
{(r;,yi) 1, X, is a semimartingale, so we get

e (X,) =

v( Xg) + Jt(— e‘A’Av(XS))ds +

fo “hy (X_)dX, + 2[ e (X)a*(X,)ds +

Dl

O<csgt

v(Xy) +J "ML X,)ds +Je s (X)) v (X)dW,

20 e (X)) - o(X. )],

0<qsz

fo(X,) = v(X,2) - (X, = X,_)o' (X))}

+

o ()" (%) + a(x)v'(x)

where Iv(x) =
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Av( x). Taking expectation on both sides and letting ¢ —

©, we get

v(x) zo(x) - Ex(Xp) - EX[J:e‘“Lv(Xs)dSJ +

ELD e i(o(X, Du(X, )] =

=1

ELY e (u(X, ) - o(X. )] =

E[> e (X, - X.)] =

i=0

E.LD ey ]. (10)

i=0

Thus the proof is complete.

4 Explicit solution of the quasi-variation-
al inequalities(QVI)

To find a solution to (8),(9), heuristically we assume
there exist two barrier points / and S as defined n what
follows:

I = supix | v(x) = suplv(x +€) — ce = Ql},

e>0

S = inflx | v(x) = iug?v(x -8) +r8 - Kil.
Then we define
A= S—é\*, B = 1+é*,
where 8§ * ,e " satisfies
v(8) = v(S-8")+r8" - K,
o(I) = v(I+e”)=c” - Q.
Next we consider the following free boundary problem:

Laz(x)v"(x)+a(x)v'(x)—/\v(x) =0, I<x<S,

2
(11)
v(x) = v(BY-¢c(B-2x)-0, x < I, (12)
v(x) = v(A) + r(x - A)-K, x> S (13)
subject to the boundary conditions
v(A) = v (S) =r, (14)
v (I) = v(B) = c, (15)

v(8S) = v(A) + r(S-A4) - K, (16)
vo(I) = v(B) - c(B-1)- Q. (17)
As will be proved later, finding a solution to the free
boundary problem (11) ~ (17) is in essence equivalent to
find a solution to (8),(9).
Suppose a solution »(x) to {(11) ~ (17) is found.
Differentiating (11) we see that w(x) = v'(x) satisfies
the following equations

%oz(x)w"(x) +(alx) +o(x)o’(x))w' (x) +

(a'(x) -Nw(x) =0, I <x< S, (18)
w(A) = w(S) = r, (19)
w(l) = w(B) = ¢, (20)
Jj(r - w(x))dx = K, 21

B
j (w(x - c)dx = Q. (22)
!
Next we solve the free boundary problem (18) ~ (22)

for w(x) and construct v( x) via w(x).

Theorem 3 There exists a continuously differentiable
function w{ x) on [ 1, S] satisfying (18) ~ (22).

Here the shooting method in ordinary differential
equations is applied to prove this theorem. That means,
first we curn the boundary value problem into an initial
value problem with some unknown coefhicients, then we
show there indeed exist such coefficients to meet the
boundary conditions. Now the proof of the theorem is
made in several stages.

Let x° > 0 be such that ' (x*) = A and denote
“land ¥ = {x:x > 27 . Ob-
viously @' () = A whenx € ® anda’'(x) < A when x
€ v.

Propeosition 1

(18), then w(x) can not have a local minimum in

@ =1r:0<x <2

If w(x) is a positive solution to

@\ {x" | oralocal maximum in ¥.

Proof Suppose w attains a local minimum at x -
®\ix*). Then w'(x) = 0 and w'(x) = 0. Since
(a'(x) =) >Owhenz € ®\ {2 {andw(x) >0
due to our assumption, we see that (18) can not be
satisfied. The proof of the second part of this proposition
is similar.

Next we choose m,n such that m > c¢and0 < n <
r, then focus on the following free boundary problem:

%az(x)u)"(x) +(a(x) +o(x)a (x))w (x) +

(a'(x) -MNw(x) =0, L<x< H, (23)
w(l) = m, w (L) =0, (24)
w(H) = n, w(H) =0, (25)

where L and H are unknown boundary points.

Proposition 2 If w(x) is a solution to (23) ~ (25)
on (0,e],e > 0, such that w0 +) > 1, then
limw(x) = .

10

Proposition 3  There exists a twice continuously
differentiable function w(x),0 < L < x < H, such that
w' (x) <« O0on (L,H] and (23) ~ (25) hold.

The proof of Proposition 2 and Proposition 3 can be
found in Sethi and Taksar!>'PP) Here the boundary
values are different from those in that paper but the same
method can be applied. Proposition 4 shows that when
m, n are given, there exist two positive boundary points L
and H such that w( x) is monotonically decreasing from m
ton on [L,H]. Thus we find the points B and A on
[L,H] satisfying w(B) = cand w(A) = r.

Proposition 4  Suppose w(x) is the solution to
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(23) ~ (25) found in Proposition 3, then w(x) can be
extended to [I,L] and [ H,S] such that w(I) = ¢,
w(S) = rwhere0 < I < L < H< §S.

Proof  From the basic extensibility theorem for
ordinary differential equations, we can extend w( x) to the
right neighborhood of H. In view of (18) and the
definition of ¥, for every x in the right neighborhood of
H, w' (x) > 0. If there exists ¥ > H such that w’ (%) <
0, we will find a local maximum in the right domain of
H, which is impossible due to Proposition 1.1t is easy to
see that w(x) — © when x — o ; otherwise (18) can
not be satisfied. Therefore, there exists S > H such that
w(S) = rand w(x) is strictly convex and monotonically
increasing on [H,S]. The proof of the other part of this
proposition is similar and Proposition 3 shows that 7 is
positive and w(x) is strictly concave and monotonically
increasing on [1,L]. Thus the proof is complete .

Proof of Theorem 3 As was shown above, there
exists a continuous solution w,, ,(x) to (23) on [7,S]
satisfying the following boundary conditions:

w(l) = w(B) = ¢, w(L) = m, (26)
w(A) = w(S) =r, w(H) = n, (27)
where we denote I(m,n),B(m,n),A(m,n),S(m,

n)alI,B,A,S for convenience. Set

F(m,n) = j:(r - wp.a(x))dx — K, (28)

B
G(m,n) Q—L(wm.n(x) —c)dx. (29)

Using the theorem of continuous dependence of
Wy, ,(x) onmand n, we see that F(m,n),G(m,n)
are continuous functions. By virtue of Proposition 5 and
(18),we see that A — S uniformly as n — r. Therefore,
for K > O there exists 7 ( K) < rsuch that F(m,7(K))
Then, from the
theorem of continuous dependence on imtial values, for
T = 2K/r, there exists $(T) > O such that w,, 5 (x)
< r/2 holds uniformly for any m > con(H,H+ T].
Then we have

F(m,8(T)) > rT2-K =0.

Now let n € [8(K),7(K)]. The argument is similar to
prove that there exist m < ¢(Q) < P(Q) such that
G(P(Q),n) <0and G(¢(Q),n) > 0hold uniformly
for any n € [8(K),7F(K)] with a little difference that
the continuous dependence theorem 1s applied on
1/w(x) to prove the existence of P( (). Then define D
=[e(Q),P(0)] x [6(K),7(K)] and we get

F(m,8(K)) >0, F(m,7(K)) <0, (30)

G(é(Q),n) >0, G{(P(Z),n) <O (31)
are true for every (m,n) € D,

< 0 holds uniformly for any m > c.

Define
M] = mg.XG(mvn>7 m; = ml)inG(m)n)v (32)

M, = mng(m,n), m, = mgnF(m,n) (33)

and from (30),(31) we have M, M5 > O and m,, m,
< 0. Then put

{5; =d({G(m,n) >0, Im = P(O)1), (34)
! =d(iG(m,n) < 0, Im = ¢(Q)1),
{gg = d({F(m,n) > 0f,1g = F(K)}), (35)
5 = d({F(m.n) < 0i,in = 8(K)1)
£ =mini]§Il _€'$,sv=mm.]§, — “; (36)
1 2 M

where d( A, B) is the Euclidean distance between the sets
A and B.
Define a map I':(m,n) — (m,n) as follows:

m=m+¢e6G(m,n), (37)
n=n+eF(mn). (38)
IfG(m,n) = 0, then
(s mg s m+e M < m+M1]f[ P(Q).
(39)
IfG(m,n) < 0, then
t(Q)< m+m1 )< m+em < m< m< P(Q).
(40)
Now we get ¢(Q) < m < P(Q) and from the same
method we see that 6(K) < i < 7(K). So 'is a

continuous self~-map of the compact and convex set D. By
Brouwer fixed-point theorem, there exists a fixed point
(m”,n") € Dsuch thaa ’'(m™ ,n") =
That means

F(m*,n") =0, G(m",n") = 0.
(r) which satisfies

(m™,n").

Hence we have found a w,,*

w(l) = w(B) = ¢, w(L) =
w(A) = w(S) = r, w(H) =
Lb(r— wy, o (x))dx = K,
| o 2 (2) = ) = g

This completes the proof of Theorem 3.

5 Verification theorem and construction
of the optimal molicy

In this secdon that the solution v{x) to the free
boundary problem (11) ~ (17) will be shown to satisfy
the QVI (8),(9) . Then we construct an optimal policy
viae(x).

Theoremd4 Ifw,* ,*(x),I,B,L,A,H and S are


http://www.cqvip.com

No.6 ZHANG Lei et al: Optimal financing and dividend control of a corporation with transaction costs 899

a solution to the free boundary problem (18) ~ (22)
found in Theorem 3, then the function is defined as fol-

lows
v(B) = ¢(B - x) - Q, x <1,
alL)m” (* . .
U(x): A + | Wnoon (})dy, IT<x< S,
L

v(A) + r(x - A) - K, x> S
(41)
is a solution to the QVI (8),(9).

Proof Since v'(x) = w,,” ., {(x)on[/,5]) and w
satisfies (19),(20), we see that v is subject to v (A) =
v (8) = r,v(I) = ¢(B) = ¢c. Asaresult, v' (1) is
continuous at the points / and S. Then,

(I -) =v(BYy-c(B-1)-0Q =

x i
a(L)m” +Jw,n“,,‘(x)dx+
A L

LB(wm‘,,.'(x) ~c)dx - Q = o(]),

(S +) =v(A)+ r(x - A)-K =
all)m’ +ijm‘,,,*(x)dx +

A
jj(r - wy," s (2))dx = K = v(8S).

Consequently, v(x) is continuously differentiable. From
the construction process it follows that there exists a
constant C on [ 7, S] such that

%az(x)u"(x) +alx)v'(x) = Av(x) = C.
(42)
Set x = L, then substitute w’,” ,"(L) = 0 and
w, " (L) = m” into the left side of (42),we have

a(L)m”
A

Thus the inequality (8) is tight on [ I, B],
Forany vy < x,

S x
K = L[r - wl(s)]ds ;J [r~ w(s)]ds
since (4, 8) is themaximalinterve-ll where w(s) < r.
Ify > x,
B ¥
Q= L lw(s) - c]ds ;J lw(s) = clds
since (I, B) is the maximal interval where w{s) > c.

Thus the inequality (9) is valid. Next we need to verify
the validity of (8) forx < Jandx > S. Ifx < I, then

alL)m™ - 2 =0=C.

%az(x)v"(x) +alx)v(x) - Av(x) =
a(x)c = A(v(B) = ¢(B-x) - Q) =
- cjl(a'(y) - Ady + cal(l) = Aw(]) =

' 1,
_ CJ (a'(y) = 2)dy - Ea“(x)v"(l +) <0

since a’(y) = Aforally < x" and o" (1 +) > O.
Ifx > S, then

%az(x)u”(x) +alx)v(x) - aw(x)
alx)r = A(v(8) = rS + rx) =
rj:(a'(y) - A)dy + ra(S) - Av(S)

[ (@) - 0y - L0 (s ) <0
5

since a’(y) < A foraly > x" and /"(S =) > 0.

Hence, we have
max| 5 o*() ¢ (1) +a(x)e’ (x) =20 (),
§igiu(x—3)+f(3)§—v(x)§ <0 (43)
for every x € *. Forx € [I1.8],
%az(x)v”(x) +alx)v'(x) = Av(x) = 0.

Ifx < I,letd = x — B, then
v(B) + c(x = B) - Q0 = v(x).
Ifx > S,lecd = x — A, then
v(A) + (x = A) ~ K = v(x).
Therefore, v(x) satisfies the QVI (8),(9) and the proof
is complete.
Now define the strategy |(#,,7;)! in the following

way:

0, I<x<S, (44)
x - A,
£f9 = 0,and fori =1,

£, = inflt > ¢, - 1:X(¢ =) = Tor S}, (45)
I-B, if X(#,-) = 1,
{S—A, if X(2;, =) = 8§,
where X (- ) is the controlled diffusion process defined as
follows
{df((t) = a(X(1))de + o(X(£))dW(t) - d¥(2),
f(o = x - Po.

x-B, x <1,
70={

x=S.

==

Ji = (46)

(47)

Theorem 5 Suppose that v(x) is the function (41)

and #(+) = {(#,,9,),i = 2| is the policy defined
above. Then # (+) is the optimal control; that is

v(x) = L(#(+)). (48)

Proof Making the same calculations as in the proof of

Theorem 2, we get
Ele"w(X)] =

A l A
Ew(Xy) + Ex[Joe‘Ava(Xs)ds] +
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EL> e i(o(X,) - w(X. 2] (49)

In view of (45) ~(47), X, € [I,S]. Since v{x) is
subject to*(11), the integrand in the first integral in the
right-hand side of (49) vanishes. Thus (49) can be
rewritten as

v(x) - ELle (X)) =
v(x) - Ev(Xg + E.[ S e_’\t'(v()‘(r,_)v(xfr))] =

Ex[ze_”z(v(f(,_) - (XN ] =
Ex[Se_M'f(j'i)]'
st

By virtue of (47), v(X,) is bounded by v(S).
Therefore, taking the limit as t — %, we get
v(x) = B[ e f(50)].

t=0

Hence the proof is complete.

Let us conclude this section by providing an economic
interpretation of the optimal policy {(#,,7, ). If the
initial value x is below I, we need to issue new equity as
much as B - x immediately at t = 0. If x is above the
upper assets level S, the dividends pay-out amount to
% — A should be distributed at time zero. Then, the
conclusion is that the firm pays no dividend and brings in
external equity when its reserve drops below [ with the
amount B — I. When the reserve exceeds S, the firm
pays S — A in dividends, and no external equity is raised.
Next we make a comparison with the result obtained by
Sethi and Taksar'®).In our context, the value function
v(x) is not concave any more, and it is not twice

continuously differentiable at / and §. From the proof of

Theorem 3, we see that when fixed transaction costs Q —>
0,m"* —>¢(Q)—>c, then we have /— B, When ¢ =
0,K = 0, the model tums out to be a singular stochastic
control problem. In this case, the problem in [5] is the
limit situation when ¢ —> 0, K — Q0 and r = 1 in our

model .
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