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Integral constraints based on stable pole-zero
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Abstract: This paper developed time domain integral constraints on error response for SISO feedback control systems caused
by nominal plant’s near cancellation of stable pole-zero near the jw-axis. These integral constraints should be satisfied by any
feedback control systems. These integral constraints give new insight into the inherent trade-offs. It will result in the settling time
longer or the infinite norm of the error response larger when there are near cancellations of stable pole-zero near the jw-axis.
Hence, when feedback control systems are designed, it is necessary to avoid the compcnsator’ s poles and zeros nearly cancelling the
nominal”s zeros and poles (even if these poles and zeros are stable) .
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1 Introduction

There are always basic limitations on the achievable
performance involved in the feedback control of any
physical plant. These limitations arise from several sources.
Bode developed the fundamentali work on structural
limitations in the control of linear time invarant
systems. In [1,2]the waterbed effect for non-minimum-
phase plant were given, which showed that if the system
gain is pushed down on one frequency range,it pops up
somewhere else.[2]also derived the area formula, which
applies minimum and non-minimum phase plants.[3,4]
extend the corresponding work to multivariable systems
and to discrete time systems. [ 5] showed that performance
and robust stability properties are limited by the presence
of RHP poles and zeros for SISO system.[ 6] exploreed
time-domain integral constraints to show that slow stable
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poles place constraints on the setting time of the
closed-loop systems,[7]based on unit step response
showed that fundamental limitatons arse from the
presence of stable zeros near or on the jw-axis. [ 8 Jtreated
multvariable systems by use singular values and the theory
of subharmonic functions. Refinements of these results
have also been presented in [9].[2]converted the
multivariable problem into a scalar one by pre-and
post-multiplying the sensitivity function by vectors or by
use of determinantst®) . A similar idea was advanced in the
work of [ 10] which used directions associated with poles
and zeros of the system resulting in a directional study of
trade-offs . [ 3 ] developed integral constraints on sensitivity
vectors for multivariable feedback systems due to either
unstable poles or non-minimum-phase zeros of the plant;
By use of these integral constraints!® the inherent

trade-offs in sensitivity reduction and the cost of decoup-
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ling were given. [ 11]and[ 12 ]extended the corresponding
result in [7]to general tracking problem in SISO and
MIMO feedback systems,showed that the fundamental
limitations arise from the presence of stable zeros near or
on the jw-axis. [ 2 ]showed that the near cancellation of
unstable poles and zeros leads the feedback systems to loss
of internal stability .

The aim of the present paper is to continue the research
line of [11], and extend the corresponding result to near
stable pole-zero cancellation. This paper shows the effect
of near stable pole-zero cancellation near tie jw-axis for
scalar feedback control systems tracking problem. Time
domain integral constraints of the feedback control system
tracking error are developed which shows near stable
pole-zero cancellation near on the jw-axis imply a lower
bound on the achievable settling time of the feedback
control systems . One example explains the results of this

paper .
2 Preliminaries

‘We consider the linear time-invarant feedback control
systems shown in Fig.1.The symbols in Fig.1 have the
following meaning. p(s) is the proper ratonal plant
transfer function; ¢{s) is the proper rational controller
transfer  function; u(¢),e(t), and y(t) are,
respectively , the reference, error signal, and plant output.

+
LTEC . 2 .

Fig. 1

Feedback control systems

Suppose the plant and the controller are descnibed by
coprime fractional representations ( over the ring of proper

stable transfer functions)[ 13]
np n,
p = d y C = dc . (1)

»
Further, we assume that ¢ is chosen so that the closed loop
is intemnally stable (i.e. m,n, + d,d, is analytic over the
right-half plane) . Then the sensitivity function and the
complementary sensitivity function are defined, respective-
ly, by
S§(s) = (14 pe)!' = dcdp(dcdp + ncn‘,,)'l (2)
and
T(s)=1-S(s)=(1+pc)'pc= n.n,(d.d, +nn,)"".
(3)
The Lo norm defined by
Il e =1 F(8) ess auprso- (4)
When the plant p(s) is stable, the set of all compensators
that stabilize the plant p(s) is given in [ 13] by

S(p) = le:c = q(1 - pg)~'}. (5)
Where ¢ is a proper, causal stable transfer function .
3 Time-domain constraints of the feed-
back systems for near stable pole-zero
cancellation

Theorem 1
shown in Fig. 1. Suppose the following two conditions

Consider the feedback control system

hold: 1) The plant p(s) has at least one pair of near
stable pole-zero cancellation near the jw-axis at — (o =+

!6,’)1)@01 yﬁzy)md—a:jwo(a;O,wO;O,

181],182) <« v/ 6 + wd); ii) Al poles of the closed-
loop system have real parts less than — a{a > 0,a > o)

Under these integral
constraints hold on the error signal e(z) of the tracking

conditions the following

problem shown in Fig.1:

Jm(e(a—jwo)t _ oo 8 D= | 2100y (1) dy =

0

U(—a+jw0), (6)
r(emjwo)t _ oo [ Deitope 1100 (1) ds =

0

U(- 0 - jwo). (7

Proof The Laplace transform of the tracking error
e(t) = u(t) - y(t),
satisfying
E(s) = (1 - T(s))U(s). (8)
According to the internal theorem,in order to track the

signal u(¢), the tracking error e (¢) satisfying
lim e(t):lixgsE(s):anols(l - T(s)U(s)=0.

™~ +x §

Sos = 0is not a pole of (8) . Hence, by assumption 1i),

s = 0 lies inside the region of convergence of the
transform

[ emetar = - 16N UG). @
Because of T( - 0 % jwg) = 0, set s = - 6 + juwg

equation (9) gives

J‘O e(a’ijwo)le(t)dt = U(_. g % on). (10)

Sets:—(atfalf)tj(wotf32|)inequation(9),
because of T( - (¢ + fﬁlf) + j(wg * [8,1)) =1
equation (9) gives

[ etz 8 Dsitens 12 ne( yae = 0. (1)
0

Subtracting (11) from (10),we get the integral
constraints (6) and (7).

From the integral constraints (6) and (7) we can infer
that when the zeros approach the jw-axis, in order to
satisfy the equations (6) and (7), e(¢) will change
signs . That is, the feedback will appear overshoot .
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Corollary 1  Consider the feedback control system
shown in Fig.1, under the assumption of Theorem 1, sup-

pose that | 8| = %,32 = 0, then the following integral
constraints hold

J:(l - ei(%‘I )e™ (coswqgt ) e(t)dt

U(- 0 + jwg) + U(= 06 - jayg)
: NGt
Jm(l—ei ¥ =
0
U(- 0 + jwg) = U(= 6 - jay)
7 . (13)

Proof Using the relation that

1 -
cosagt = 3 (e 4 eR0l),

. 1 : :
sinwgt = ?j(e“%‘ — e 9t)

and set | 8,] = %,32 = 0in (6),(7),we get the time

domain constraints (12) and (13) .

4 Lower boundson | e .

Definition 1 Define the exact settling time of the
system to be
t, = inflz: 1 e(t) I=0,¥¢t > zf. (14)

Corollary 2  Consider the feedback control system
shown in Fig. I. Under the assumption of Theorem [, and

assume that the exact settling time ¢, satisfying wot, <

2 I
&y = - %,32 = 0, then the tracking error’s infinite
norm has the following lower bound:
lel =
ot
((1 - e F)e™)" -
{cuo | U(= 0 + jwy) + U(~ o —on)
ax
2sinwgt,
wo | U(= 0 = jay) - U= 5 + juwy) f}
2(1 - coswgt,) )
(15)

Proof From Definidon 1 and the equations

. 7,
(lZ),(lS),payingattentionl _ek sl-e%,e" <

e”:, and wyt, 2 » we get the following inequalities:

o sincwgt,

e(l-e%) el o Twp

L U(- 0 + jwg) + Ul- 5 - jwy) |
2 k]

2 I - t
el - ) el o~
@Wo

| U(- 06 - jawp) - U(= 6 + jwg) |
2 .
Hence, the inequality (15) holds.
Because the actual inputs are unit step, unit ramp, unit

accelerate and  their  linear  combinations, their
corresponding Laplace transforms are 1/s5,1/ s2,1/5%, and
their linear combinations.{ 11] shows that for fixed t, as
wq becomes small, the lower bounds on || e || & become

arbitrarily large. Compare the inequality (15) with the
corresponding result in {117, it shows that because the

ot
existence of the factor (1 — e % ), the existence of near
stable pole-zero cancellation near the jw-axis deteriorate
the feedback properties.

5 Example

100s% + 2205 + 101
10052 + 2205 + 122°

0.1j.

Consider the plant p(s)

p(s )haszerosat—l+0 1j, polesat—lo_

order to find a compensator ¢ that stabilize p and also track
a step reference signal,let ¢ = a, according to (2) and
(5), we have

S(s) =(T+pe)' =T-pg=1-ap.
Let S(0) = 0, we have o = %%, by (5),the
compensator is given by ¢(s) = ¢(1 - pg)~'.

The simulation response of e(t) is shown in

Fig.2.where
2100s + 2180
E = = - .
() = SOV =~ {10052 + 22205 + 12322
From the Fig.2,we can see, although the zeros do not

near the jw-axis, the feedback system shows long tracking
time due to the near poles-zeros cancellation .
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Fig. 2 Impulse response of E(s)
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