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Pose and motion estimation from monocular vision
based on IEKF,DD1 and DD2 filters
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Abstract: A solution to relative pose and motion estimation between two reference coordinates that used two-dimensional
(2D) intensity images from a single camera was desirable for real-time applications. The difficulty in performing this measurement
was that the process of projecting three-dimensional (3D) object features to 2D images was a nonlinear transformation. The system
of pose and motion estimation which is based on the monocular vision was defined as a nonlinear stochastic model. The system used
the iterated extended Kalman filker (IEKE) , the first-order Stirling’s interpolation filter (DD1) and the second-order Stirling” s in-
terpolation filter (DD2) respectively as nonlinear state estimators to estimate pose and motion . The method has been implemented
with simulated data based on three kinds of different estimator respectively to show the relative advantages of each kind estimator,
and the simulation result has shown that the performance of DD1 and DD2 is superior to [EKF.
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1 Imntroduction

The estimation of relative 3D position and orientation
as well as relative motion between two reference frames is
an important problem in robotic guidance, manipulation,
assembly and in other areas such as photogrammetry,
tracking, object recognition, and camera calibration!! ~6 .
Most measurement techniques for pose estimation are
image-based and can be classified into two major cate-
gories. These categories are point-based and model-based
methods using higher-order geometric primitives. Each
type involves acquiring an image and processing that image
to arrive at a value for the pose. Methods of point-based
were the first to be studied and, as a result, have been more
extensively developed than model-based method!”"® . Line
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features are present in many cases to a great extent and less
sensitive to noise than point features!®) . They may be
more visible than points under a wider range of lighting
and environmental conditions. Also, straightforward tech~
niques such as the Hough transformation and line fitting to
edges are available to extract the lines from the images''®!
To describe the relatve translation and rotation between
two coordinates, the usual way is by means of homoge-
neous transformation matrix!! ~3] . Chen!™! , who intro-
duced the screw theory in the hand-eye calibration, is the
first simultaneous consideration of rotation and translation
in a geometric way. Daniilidis ") uses dual quaternions
that provide a means to represent both rotation and trans-
lation in a unified notation for hand-eye calibration.
When it comes to state estimation for nonlinear systems,
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a series of estimators have been proposed over time, which
for the most part are nonlinear extensions of the celebrated
Kalman filter (KF). Up to now the extended Kalman
filter (EKF) has unquestionably been the dominating state
estimation technique[ 13.14] The EKF is based on first-or-
der Taylor approximation of state transiion and observa-
tion equations about the state trajectory. The Taylor lin-
earization provides an insuﬂiciéfltly accurate representation

in many cases. Nargaard[ 13

] proposed a new set of estima-
tors, namely, DD1 and DD2, which are based on polyno-
mial approximations of the nonlinear transformations ob-
tained with a particular multidimensional extension of Stir-
ling’ s interpolation formula. The DDI filter is based on
first-order approximations and the DD2 filter is based on
second-order approximations ( The selection of interval
length, d, was discussed in N@rgaardm]) . Conceptually,
the principle underlying the DD1 and DD?2 filters resem-
bles that of the EKF and its higher-order relatves, the
main difference is that matrices of divided difference re-
place matrix products of Jacobians and Cholesky factors of

covariance matrices! 17]

. Moreover, in contrast to Taylor’s
formula no derivatives are needed in the interpolation for-
mula, only function evaluations.

The problem proposed in this paper is to locate an ob-
ject and measure its relative motion in three dimensions
given a sequence of 2D images of the object whose posi-
tion and orientation are known relative to a base reference
frame. The 3D transformation is modeled as a nonlinear
stochastic system that uses the IEKF, DD1 and DD2 re-
spectively as the estimator, and the 3D transformation uses
a screw representation based on dual quatermons . Previous
solutions have used point-based image features in estimat-
ing the pose and motion. This paper uses image line fea-
tures instead as measurement inputs for the estimation.

The paper is organized as follows: section 2 describes
dual quaternion and the dual quaternion 3-D transforma-
tion representation is given in section 3. Section 4 presents
the pinhole camera model and the line feature’s represen-
tation in image plane. The pose and motion estimation
system model is defined in section 5, while section 6 gives
the simulation examples. Finally, the conclusion is drawn in
section 7.

2 Dual quaternions

2.1 Quaternions

A Quaternion is a four-component number consising
of a scalar part and three orthogonal parts. Formally, a
quaternion ¢ can be defined as

q = qo+ qii + q2J + q3k. (1)

where each of the g; is a real number, and i,j and k are
orthogonal imaginary unit vectors. The conjugate of a
quaternion is ¢ * = gg — qi — q2J — g3k, and its modu-
lus is | qI=\/?(2)+q%+q%+q§.
Multiplication of the two quatemions p and q is defined as
pg ={pogo - P191 - P22 - P3q3) +
(Pog1 + P1go + P29 — paga)i +
(Pog2 — P193 + P2qo + P3q1)J +
(Pogs + P192 - P2q1 + p3go)k.  (2)
Matrix forms of quaternion multiplication are given below
[-P0o —-P1 —-p2 -P3
P Po —-P3 P2 _
P2 P3 Po - P 7= M
- P3 - P2 D1 Po
[P0 - Pt - P2 - p3
P11 Po p3 - P2 -
gp = q = Mmyq.
P2 —P3 Do g
-P3 P2 - P1 Do

pq

: (3)
We know from equation (3) that the multiplicaton of
quatermion is not commutative .
2.2 Dual numbers
A dual number is defined as
d =a+€a 5 (4)
where a,@ are real numbers and € is defined as €2 = 0, a
is the real part and @ is the dual part, the conjugate of a
dual number d s d* = a -€ @, and its modulus is
| d | = a. Note that the modulus of a dual number can
be negative.
The Taylor series expansion of a dual function about its
real part has the form
fla +€ @) = fla) +€ af'(a). (5)
2.3 Dual quaternions
A dual quaternion can be defined as
q =T +€ $, (6)
where r and s are each quaternion.
The modulus and conjugate of a dual quaternions § are

IQI:\/QQ* =V +€(rs* +sr*)and§* =

r* —€s”.

3 Representation of 3D rotation and
translation by dual number quater-
nions

A line in space with direction ! through a point P can
be represented with the 6-tuple (I,m), where m is the
unit normal vector and is equal tom = P x l. The con-
straints [ + m and | I | = 1 guarantee that the degree of
freedom of an arbitrary line in space is four.
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Applying a rotation RO and a translation ¢ to a given
line (1, m,) we obtain the transformed line (l,,m,)

l, = ROL,,

m, = PaXla= (ROPb—t)XROlb=

RO(Py x 1,) + t x ROl, = ROmy, + t x ROL,.

(7

We change from vector to quaternion notation which
means that the vector / is represented by a quaternion with
zero scalar part | = (0,7). The terms containing rotation
can be easily written with quaternions. The difficulty with
the cross-product is tackled with the identty

(0,t x q) = %(qt* +1q), (8)

where ¢ is the translation quatemion (0,¢) and ¢ is the
rotation quaternion (0,q). Using the identity (8) we
obtain

I, = qlbq* ’
* 1 * * *
my = qmyq” + 5 (qlg™t” + tglhg™). (9)

We define a new quaternion § = %tq and a dual

quaternion § = q¢ +€ g. It can be easily shown that
equation (9) is equivalent to
L+€m,=(g+€ )l +€ my)(g” +€g").
(10)
Denoting also the lines by dual quatermions lA,1 and Zb we
obtain
lo= ghg". (1)
This formula resembles the rotation of points with quater-
nions. Lines can thus be transformed using a single opera-
tion in a non-Abelian ring of dual quaternions. The norm
Is
1g17=¢§" = q¢" +€(g@” +3q") =
qgq" +€ %(qq*t* +1q7) =1, (12)

hence ¢ is a unit quaternion. From equation (6) and
(12) we obtain

§d = q+¢€ %q = (1 +¢€ %)q (13)

We know from equation (13) that the unit dual
quaternion ¢ can be written as the concatenation of a pure
tanslation unit dual quaternion and a pure rotational
quaternion with dual part equal zero.

4 Pinhole camera model and the
representation of lines in a
plane

A pinhole camera model, which is shown in Fig. 1, is
used where the lens center is the camera reference origin.

The first step is to transform the object coordinates to the
camera reference. Next, the x and y coordinates of the
projected object onto the image plane are found. Given
image coordinates p(«,y) and camera coordinates P( x,,
YesZe) ,these relations are

Fx, Fy,

x = z s ¥ = z—c y (14)
where F is the focal length.
Pe ¥ i
{re /
r @) - X

= X¢

o

Fig. 1 Pinhole camera model

The result of the perspective projection from the 3D
lines is a set of dual vector quaternion coplanar lines located
in the image plane. A format is needed to compare these
transformed lines with line features measured from the ac-
quired images. The format used to represent these lines is
an x,y point called the line point. A line point is defined
as the intersection of the line feature with a line passing
through the image origin that is perpendicular to the line
feature, Fig. 2 illustrates the definition of the line point on
the image plane. The line point is unique for all lines ex-
cept for those hines that pass through the origin. The line
point has the advantage of minimum state representation
and a simple distance measure as well as being continuous
for all lines.

A
y

N

d(x[p’ylp)

p
I;

o/ X

Fig. 2 Definition of line point in 2D image plane

The projected line lies in a plane defined by the 3D line
and the center of projection. This plane is described by the
equation

mgx. + my. + mz, = 0, (15)
that intersects the image plane at z, = F. The result is an
equation of the projected line in the z, = F plane,

mx; + my; + mgF = 0, (16)
where x; and y; are the image plane coordinates. The di-
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rection vector of the image line is
- [ _ m, m, 0] T (17)
U e mam
The line point is calculated from the dual vector image
line as ‘

xlp = liym,-z, ylp = - l,'_xm,'z. (18)
In terms of the 3D dual vector components,
m,m, m,m,
xp = F 5, = F————.
b m? + ml’ % m% + m? (19)

5 Model of pose and motion system

Consider the following general nonlinear model of a

dynamic system whose states are to be estimated
%ot = f(x,0), v = h(x,we),  (20)

v and wy, are assumed i.i.d.and independent of current
and past states, vy ~ (9, Q(k)),w, ~ (g, R(K)).

The state assignment estimates the transformation be-
tween the camera and the object reference frames and the
first denivatives of this transformation. The assignment is
based on the dual quaternion representation of the 3D
transformation. Similar to the approach given by
Broidal 8], the state variable assignment with a known ob-
ject geometry is

x = [, L & q Q1 q2 g3

v, v, w, 7. (21)

Thirteen state variables are present: ¢; and v; terms are
the linear translation and linear velocity, respectively, ¢; is
the rotational quaternion, and w; is the rotational velocity
in each axis. Translation, rather than the dual part of the
dual quaternion, 1s estimated in the state vector since the
dual part can readily be calculated from the translation and
rotational real quaternion as given by equation (13) . The
first derivative is

q= q+€(%q+%q). (22)
Choul®! gives the relation between quaternion angular
velocity and the spatial angular velocity
Q=00 w, w, @]"=2¢¢". (23)
) is a vector quaternion where the vector portion is the
angular velocity about the axis. Solving for ¢

g = %ﬂq. (24)

Since the quaternion has four parameters to represent
rotation, and additional degree of freedom is present. As a
result, normalization of the quaternion to unit magnitude
is performed after each iteration.

The state transition function f(x;,v;) extrapolates
from the state at time interval &£ to the next state at time
interval & + 1. The linear and angular velocities are as-

v, w, w,

sumed constant so that w;(k + 1) = w;(k) and v;(k +
1) = »(k).

The quatemion propagation in time is described by
equation (24) , the solution is when all w; are constant, af-
ter stmplication .

¢(tes1) = Leos(wi(T)/2)1 +
(& sinlw 1 (£)/2)0]q(1) = Qa(n), (25)
where © is the sampling time.

The complete state transition function is

g =l v, 4400, 6+, Q)

Ve Uy U, w, w w,]T. (26)
Measurement function h ( x; , w; ) comprises the line point
function given in equation (19). Since the dual quater-
nion operation transforms lines to lines, the given model
features from the object are lines represented as dual vector
quaternions. The measured y, = h(x;,w;) components
are the line points of the 2D image plane lines projected
from the 3D lines.

For the parameter m of measurement function y, =
h(x;,w;), according to equation (7) and (11), ex-
panding each hne, ! + € m, and solving for m gives

_ | - - 1 -
m=mim;- M+ M mim;x l,,,+7 mimim;« [, =

mimiemy + 5 (mt 4 mi)mimiel,, (27)

where m,, is the initial nomal vector and m is the normal
vector after transformation.Let RO = m}m[- and M = m}
+ m7*. RO and M can be computed from equation (3).
6 Simulation experiments

To demonstrate the performance of the three kinds of
filter, a target object is simulated with individual feature
points. Pairs of these points, when extracted from the im-
age plane, are connected together to form lines. For the
test, an object with four coplanar points in a rectangular
pattern was defined. Fig. 3 shows the dimensions and the
shape of the four points target.

o 100 mm —Q
60 mm
o— e

Fig. 3 Four-point coplanar target used in
the simulation experiment
The object of the filter is to estimate the position,
orientation, and corresponding velocites of the object
with respect to the camera. The noisy image plane feature
locations are used as inputs along with a prion knowl-
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edge . An ideal camera model is used in the simulation.
Perspective projection is assumed for the camera with a
known effective focal length. Noise of an assumed magni-
tude and distribution is added to the image feature loca-
tions before processing.

Initial conditions requiring specification include the ini-
tial state, xg, and the error covariance matrix Py. The
state vector may be considered a collection of Gaussian
random variables with covariance Py. The initial state is a
sampling taken from each random variable. Process noise
given by the covariance matrix @ is also specified as an
initial condition for the simulations, remaining constant

throughout . Similarly , measurement noise given by the co-
variance matrix R is initially specified as a constant and the
diagonal elements are 0.0004 mm.

To compare the performance of [EKF,DD] and DD2,
we took two groups assumed initial states to estimate the
pose and motion. The assumed initial state and the true
initial state are shown in table 1. The diagonal elements of
the initial error covariance matrix Py and the process noise
matrix () are shown in table 2. The input noise is a Gaus-
sian with a standard deviation of 0. (2 mm. Based on this
noise level, the measurement error covarance matrix has di-
agonal elements of 0.0004 mmy for each measured variable.

Table 1 Actal and assumed initial state
Translagon Quaternion Linear Velocity Rotational Velocity
State x ¥ z 90 q1 UK x Yy z x Y z
mm mmes™! rad*s ™!
True initial state 10 10 1000 1 0 0 -5 2 -5 -0.03 005 -0.2

Assumed initial state | 0 0 990
Assumned initial state I 0 0 90 09 0.1

0.998 0.01 0.01 0.01 -45 1.5 -45

-0.028 0.045 -0.15

0.1 0.00 0.010 0.01 0.01 0.00 001 0.0

Table 2 The diagonal elements of initial error covariance matrix and process noise matrix

Translation Quaternion Linear Velocity Rotational Velocity

State x ¥y z 9o q 93 x Yy z x Y z
mm mmes”! rades™!

Py 100 100 100 0.01 0.01 0.01 0.01 100 100 100 0.1 0.1 0.1

Q 1035107 10> 10°° 10°° 107 10°* 10° 10°° 105 10 10 107

To ensure a fair result of the estimation result proposed
in this paper, the estimates are averaged across a Monto
Carlo simulation consisting of 50 runs. Each run is carried
out with a different noise sample, and the simulation was
run for a ime of 30 seconds with a measurement interval
of 0.1 second. The pose and motion estimation results of
the Monto Carlo simulation with the assumed initial state
I are shown in Fig.4( The iterative steps is 20 for the
[EKEF filter ), and the pose and motion estimation results
of the Monto Carlo simulation with the assumed initial
state [I are given in Fig.5 (‘The simulation results are di-
verge for IEKF filter when the iterative steps varies from 1
to 50).
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Fig. 4 Simulaton results of pose and motion estimation with
initial state value (0,0,990,0.998,0.01,
0.01,0.01, -4.5,1.5, -4.5,-0.028,

0.045, —0.15) . (50 runs average)
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Fig. 5 Simulation results of pose and motion estimation with

initial state value (0,0,990,0.9,0.1,0.1,0.01,
0.01,0.01,0.01,0.01,0.01,0.01) . (50 runs average)

7 Conclusion

Three kinds of pose and motion estimation methods
have been developed. These methods use an imaging tech-
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nique with a single area-based camera along with a refer-
ence object to calculate estimates for relative six-degree of
freedom position and orientation as well as the associated
velocity estimates. The system model for these methods are
based on line features, a dual quaternion parameterization
for the 3-D transformation, using IEKF,DD1 and DD2 as
estimator respectively. Conceptually, the principle underly-
ing the DD1 and DD2 filters resembles that of the EKF
and its higher-order relatives. The implementation is,
however, quite different. In contrast to Taylor’s formula
no derivatives are needed in the interpolation formula, on-
ly function evaluations. From the simulation results of two
groups assumed initial states, we conclude that when the
assumed initial state is near to the true initial state, the
[EKF,DD1 and DD2 filters all can converge to the true
state, but the performance of IEKF is slightly worse than
DDI1 and DD2, however, as the assumed initial state is far
from the true initial state, the IEKF filter is diverge from
the true state, while the DD1 and DD2 filters have good

convergence.
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