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Exponential stability of stochastic Hopfield neural
networks with distributed parameters
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Abstract: Based on stochastic Fubini theorem, the Hopfield neural network system depicted by a stochastic partial differential
equation is transhated into a stochastic ordinary differential equation. By constructing a mean Lyapunov function with respect to
the space variables and using Itd formula under the integral operators, the exponential sability of stochastic neutral systems with
distributed parameters is investigated by deviating of the function along the trajectories of the systems. Also, the Lyapunov exponent
estimate is obtained . Thus, the stability of stochastic systems with distributed parameters is studied by Lyapunov direct method.
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1 Introduction

In recent years, there have been many results about the
stability of deterministic Hopfield neural network > %) In
the aspect of stochastic Hopfield neural network including
time delay and time-varying delay, many kinds of stability,
such as exponential stability, mean-square exponential
stability and almost sure asymptotic stability have been
researched extensively and deeply in [6~12].In fact, no
one will ignore the diffusion phenomena when he studies
the electrons moving in an asymmetric electron magnetic
field. When he studies the stability or stabilization of
Hopfield neural network, he should consider not only the
stochastic disturbance but also the diffusion phenomena.
Hence, the network model should be described by
boundary value problems of partial differential equations.
But so far, at the best knowledge of the authors, no
achievement has been made about the stability of the
stochastic Hopfield neural networks with distributed
parameter. So it is of great value to study the stability
of those systems.
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In this paper, based on stochastic Fubini theorem, we
will consider the integral of solution random field with
regard to spatial variables as the solution of the corre-
sponding stochastic ordinary differential equation and
research its stability. By constructing an average Lyapunov
functional and then using It5 formula, we will obtain some
sufficient conditions of exponential stability criteria for
stochastic system with distributed parameter.

2 Problem statements and preliminaries

In this paper, we will consider a more generalized Hop-
field neural networks with distributed parameter:
Cdu,(t,x) =
m u;

5’ 3u,~
{g axk[Dﬂc(t)x)u) 3xk] - R,’ + I,‘ +

i} Tyg(w(t,2))}de + Zafz(ui(t,x)dwz(t)
(1)

with the initial conditions
1;(0,x) = ¢(x), i =N, x€ G (2)
and the boundary conditions
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du;(t,x) Let L2( G) be a space of real Lebesgue measurable func-
it S0k hai4 — 0, . N, , + ac, 3
n i€ (2,2) € R"x (3) tons on G with the L,-norm defined as
_ _ T r
where G = {x = (xl, er) s | xp 1< a)} C R, H u "2 - [j | u(x) |2dx]]/2.
N = {1,~-,n!,R* = [0, + ®) is a bounded convex ¢

domain with smooth boundary, JG is sufficiently
D ak( tyx, u)
C; R;, I; ate capacitance, resistance and current respec-

tively; T = (T}j).x, is weighting matrix; u;, x; are state

smooth; Dy = 0 is diffusion operator;

variables and spatial variable; I; is exoteric nput and g; is
activation function, they are all global Lipshitz continuous;
w(t) = (W,(t),,W,(£))" is an m-dimensional
Brownian motion defined on the complete probability
space (2,F, (F,),c;,P) with natural filtration
{F}is050(u) = (og(ui{t,%))) aym is local Lipshitz
continuous and satisfies the linear increasing conditon
with 6(0) = 0;¢;(x),i € N are measurable functions
on G. Here we denote

E (aui du,

: = co

_ —_ e L1 + a
an axlv 1axr)7 (tvx) ER X Gv

n is the outside unit normal vector of G.

Definition 1) We say the stochastic field u(¢,x) =
col(u;(t,x), ", u,(t,x)) is a stochastic field solution of
problem (1) ~ (3), if the following conditions are satis-
fied

I) u(t,x) = col(u(t,x),
{FI}I;O;

II) For each T € R*,u(t,x) € C€([0,T] x G,

T
R"),E(JO lu(t,x) 12+1 Vu(t,x) 12) <+ o;
I Foreach T € R*,t € (0, T], it holds that

sun(tvx)) ada-pts

-

u;(t,x)dx =

| ¢,(x)dx+-[J 2 —-[D,;,(t x,u) U‘(E x)]dsd

L ul
Gjo[_ Rt I + le T.g(u;(§,x))]dedx +

jlzdz‘t(ui(&x))dwt(t)dx,
Jelorz
‘i =N, (t,2) € (0,T] x G, a.s.
(4)
Definition 2 We say the equilibrium of (1) ~ (3)
about the given nom ||

* |, is exponentially stable in
mean square , if for every random field solution
u(tyx) = col(u(t,2),,u,(t,x))
of problems (1) ~ (3), there exist constants M > 0,4 >
0 such that
E(lz - u*"%;)s Me ™™, a.s.

Then L*( G) becomes a Banach space,and | u | denotes
the Euclid norm. .

Note that stochastic Fubini theorem, from conditon
(5),ifg(i = 1, ,n3l =1,
m) are linear functions, then the stochastic process

z(t) = I (1; Iu(t x)dx, t € R* (5)
is the solution process to the stochastic ordinary differential

"',n),au(i =1,

equation

dﬁi(t) =
fj Zr: —[D,k(t A, 1) 3u(E,x)]dx+
G dxy,

k=1

j [_ +I +2Tyg,(U(E,x))]dx}dt+

jczaﬂ(ui(e1x))dxdwl(t)a i=N’ (tfx) 6 R*x G
(6)

with the initial conditon
2,(0) = §;, i € N, v
Where | G | denotes the measure of bounded set G,; =

1/ Gj'c(p,-(x)dx. However, in a neural network, g; and

ou(i =1, ,n;0 =1,
functions. Therefore, we treat (5) as the soludon process
to (6) formally in the following discussion. By construct-
ing an average Lyapunov functional and using the Itd dif-

, m) may not surely be linear

ferential formula, we reach our result via the computation
of the differential of the Lyapunov functional along the
system (1) ~ (3).

3 Main results

Consider the stochastic Hopfield neural network with
distributed parameter
C,-du i( tyx ) =

{ga""

2 Tgi(u(t,x))tde + Zdu(ui(t,x)dWl(t)

(8)
in the following discussion, we let u* be the equilibrium
of system (8), u(t,x) = col(u;,"**,u,) is random
field solution of (8), then the system (8) can be rewritten as

Cid(u,- - u:) =

uj

R+I+
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|Z [D,,‘(t x,u) B_(u,—-ku] - 2}62(ui—u,~')Zm)(ou(ui)-aﬂ(u,-*))dxdW,(t).

WS T gy - 5w ) +

R;
k

E[Uﬂ(ui) - oy(ul)dW, ()] (9)

I=1

Theorem 1 Assume that

1
H1) | g](ul) -g_,(uz) |s LTuy—upl,uypup

6 Rnsj = 11‘“1"/'7
H2) There exists a constant 22 > 0, such that
trlo(u)- a(u*)]T(a(u) o'(u*)) <plu-u® 1%

H3) A = dlag(c R, o

’CR nxn+l‘I

is negative defined, here b; = | Tz,ll k by = by =
| Ty 1L
2¢;

Suppose that A, (A) @ — A, then at the equilibrium u =

, the random field solution to the system of (9) has
the following Lyapunov exponent estimate with respect to
the spatial variables, namely

sup lim (1/TIg(EC I u - u™ 1)) <-

Proof Let

2(i 5 j), and (by) uxn is 2 symmetric matrix.

V(toultnn) = 2w - uf 2 (10)

Based on this, we construct a Lyapunov auxiliary function-
al
V(t’u(t’x)) =

jCV(t,u(t,x))dx = Icg(ui - u] )dx.

(11)
Obviowsly, it is positive definite. By using Ito differential
formula, computing the differential of (11) along system
(9) ,we obtain that
dv(t,ult,2)) Il =

JG[LV(E,u(t,x))dt +
(%)T("(”) - o(u”))dW(s)]dx =

*

| 2E(ui— W= B

(g,(u)

=1 l

j (o) - o(u) (s(u) - o(u®))dnds +

gj( u; )]dxdt +

i[Du‘(t,x,u) d(u; — u')

ldxd: +

Gk=l

(12)

Where
Lv(t,u(t,x)) =

V(20 2w

at g(au,- )"

Lo (w)-o(u™) No(u)-o(u DAV(,u(z,2).
From the boundary condition and Green formula, we ob-
tain that

> Dy 3 (9(u - uf))

EJ‘ (u u; ) C axk( axk dx =

k=1
Dy, 9(u - uf)\\"

[ (w-u)v (T

k=1

Dy 3w - u;)
‘k(—_xk ))k 1dx -

)) A+ (u-u/)dx =
k=1

v - G- u)
[ (oo ui)

v G ak

[ o Da,3(u = u)
dc(u—u,‘)( G ))k s -

S, 2

P 3xk

_ EJ D.k(a(uax

* Yy 2
')) dx < 0.
k

(13)

A is Laplace operator,
Dy 3(u; - ui )\"
(E d )k—l.
D; 9(u; - ui) Dim (u; - u;")
(E b S )
from the conditions 11) and (13), the expression (12)
can be rewritten as
dV(z,u(s,2)) lg <

J 255 G- )l B

,E, C <&<u> - g{u)1dxdt +

J tr(o(u) - o(u* ) olu) - o(u”))dxds +

[, 20 G- )2 o) - oulu? DaxdW(s) <

I=1

ul )

JZZ (UIER

chg(ui - u:); f(&(ly) - gi(uj ))dxde +

~—~t——""daxdt +

qu(a(u) —olu"))o(u) - o(u™))dxds +
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ché(ui -u )g(ad(ui) = oyw] ))dxdW,(t) <

,EnZRTn)(u - u”)dxdt +

(v - u")dxdt +

nXn

%f e(a(u) - o(u” ) (o(w) - o(u” ))dxds
G

Jci (w; - uf )Z:": (oy(w;) = o5(u; DdxdW,(t) <

_,’{Jc|u - u” |%dxds +

Jci(ui - uf)Z:n) (o) - oy(u ))dxdW,(2).

(14)
Taking @ € (0,1), from the Itd formula, we have
dleV(t,u)] =
e"[aV(t,u)de + dV(t,u)] <

aealjcz (wi-u )2dxdt—ile‘"jc la—u™ |l *dzde+
i=1

Zealjci)(ui—uf )lz_m;(au(ui)—ai,(ui* ))dxdW,(z).

Integrating the inequality (14) fom O to T > 0 and take
the mathematical expectation at its both sides, we have
E[eV(T,u)] <

T n
M+ E[a{JOe‘”Z(ui - u; )dedx -
i=1

T
Achoeal lu—-u” 1%dedx] < M, (15)

wherejc( Z ¢?(x))dx, then we have
i=1

e“‘E(JG lu—-u" 1%dx) < M

or
eE(llu-u" 12 < M.
Namely

sup ;_i.xg(l/T)lg(E( lu-u"I?)<-a.
The proof is completed.
Now we consider the following stochastic neural net-
work with distributed parameter
Cidui ( L, x) =
ul

(di(e)Au;(t,x) - R_ + I 4

'zn) T,-jgj(uj(t,x))dt + Zau(ui(t,x)dW,(t),

(16)
the initial and boundary conditions are the same as (2),
(3), d;(t) > 0(i = 1,-+,n) are continuous functions

with low boundary, A is Laplace operator.

Letu” = col(uf ,uy =+, u) ) is equilibrium of sys-
tem (17) , similarly to the Theorem], we have the follow-
ing theorem.

Theorem 2 Assume that

1
Hl) [ gj(lL]) —gj(ug) |$_7lj | uy - u2|,u1,U2

ER j=1,",n;

H2) There exists a constant ¢ > 0, such that
tr[(a(u)—a(u*)]T(a(u)—a(u*))s sglu—u" 12
We also let 4 < 2d/h*,d = inf max(d;(¢));

Jcg* iEN

H3) A = diag(- CR Can) + (by) pxn

is negative defined, and suppose that A, (4): = - A.
Then, at the equilibrium © = ", random field solution
to the systemn of (19) has a Lyapunov exponent estimate
in mean square with respect to the spatial variables.

sup lim (1/T)Ig(E( [ v - ™ 1?)) <~ a.

(17)
Proof  Analogous to the proof of Theorem 1, let
(11) be the corresponding Lyapunov function. We calcu-
late the derivative of it along the system (16) ,we have
dv(t,ult,x)) l(19) =

J 22— w080 - ur) -

i=1

ui—ul AT

woul Ty
CiR; g C;

jcu(a(u) — o)) (o) - o(u"))dxdt 5

(g(u) - g(u)]dxds +

2] |35 (- 40D 35 (o) = o)) ded ).

(18)
From Gauss Divergence theorem and the boundary condi-
tion, we obtain that

J (ui‘ui* )A(ui—u; )dx = —j [A(ui"ui* )]2dx.
G G
(19)

From Poincare inequality we obtain that
JG( u; - u; )dx < h? C[A(ui - ) dx.

(20)
Substituting (19) and (20) into (18), analogous to the
proof of Theorem 1, we can get the conclusion.

4 Conclusion

In this paper, we have considered a stochastic partial
differential system, by constructing an average Lyapunov
function with respect to the spatial variables and employ-
ing the It5 differential formula, we solve the problem of
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exponential stability of stochastic Hopfield neural networks
with distributed parameter, we also obtain the correspond-
ing rule for stochastic system with distributed parameter,
the results obtained here are absolutely new.
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