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Abstract: In order to allay the influence of both the experience in the design of the fuzzy rule of unified power flow
controller (CPFC) and the UPFC performance with respect to the power system parameter variations, fuzzy neural networks are
applied to UPFC in this paper. First, the control strategy of UPFC is briefly introduced. Second, the constructions of self-organizing
fzzy neural network and fuzzy neural network based on genetic algorithms are presented. Third, the self-organizing fuzzy neural net-
work, the fuzzy neural network based on genetic algorithms and the control strategy of UPFC are used to design two kind of
UPFC. Finally, the simulating examples, done on MATLAB, are adopted to demonstrate that the proposed approaches of these
UPFC will be effective.
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1 Introduction

Unified power flow controller(UPFC) can effectively
control both real power flow and reactive power flow of
transmission system, provide voltage support, and increase
transmission line capacity and transient stability of power
system. Most of the existing wortk on UPFC muainly deal
with how to setup the mathematical model'! * and
discuss how it affects the stability of power system[ﬁ‘ﬂ.
There exist few prior studies on UPFC’s new control
techniques, especially the fuzzy neural network control.
Recently, the application of traditional control techniques
to UPFC is introduced in [3,5,7], and PID control and
fuzzy control are applied to UPFC respectively. However,
PID and traditional fuzzy controllers have shortcomings in
themselves. The algorithm of traditional PID control
cannot work well when the plant parameters change. The
fuzzy control can make ratiocination, but it excessively
depends on the foreknowledge and the experience. These
disadvantages affect their extensive applications to UPFC.
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On the other hand, in the learning and training
algorithms, genetic algorithms can make global search in
the whole solution space, but its search speed is too low to
meet the need of quick UPFC, and gradient descent
method (GDM) has rapidity of convergence, but it easily
converges to local optimum solution. In order to
overcome the above shortcomings, two kinds of UPFC are
designed here. Both of them consist of two control
agorithms. The first control algorithm, which regulate
active power flow and reactive power flow, are uniformly
based on electric current forecasting, d-q axis decoupled
control and voltage-space-vector pulse-width modulation
(VSVPWM) technique. The second control algorithm,

which maintain desired voltage profile of bus and capacitor
terminals, are different for each kind of UPFC. That for
the fist kind of UPFC is the combination of self-
organizing fuzzy neural network, d-q axis decoupled
control and VSVPWM. That for the second kind of
UPFC is the combination of fuzzy neural network,
to which the genetic algorithms is applied for searching
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parameters’ “ quasi-optimum value” offline and the GDM
is applied for speeding up the rate of convergence online,
d-q axis decoupled control and VSVPWM. The numerical
simulation shows that these UPFC can effectively control
real power flow and reactive power flow of transmission
system, maintain desired voltage profile of bus and on
capacitor terminals, and that the design of UPFC does not

depend on the mathematical model of power system.
2 Unified power flow controller

The plant is a single-machine infinite power system
with UPFC. UPFC consists of a series transformer, a shunt
transformer, two inverters and a direct current capacitor.
The first inverter is connected to the series transformer,
and the second inverter is connected to the shunt
transformer. The first inverter produces voltage with
adjustable magnitude and phase, regulating the real power
flow and the reactive power flow of transmission system.
The second inverter also produce voltage with adjustable
magnitude and phase, maintaining zero cross-over value of
reactive power between the UPFC and transmission line,
and the desired voltage profile of capacitor. It also holds
the attachment voltage value in constant through injecting
and generating reactive power. The capacitor only injects
or generates energy and transmits power. The plant’s
mathematical model and control strategy are depicted as
follows.

2.1 Mathematical model of the plant

The mathematical model of the plant consists of
synchronous motor equations, d-q axes decoupled control
equations of series transformer and shunt transformer, and
dynamic equations of capacitor terminal voltage .

Synchronous motor equations are second order
differential equations.

After discretized with forward-difference method, the
d-q axes decoupled control equations of series transformer

is

used(k) =

ug(k) — ug(k) + Rig(k) - a)inseq(k) +
Lliwi(k +1) - i (k)I/T,, (1)
Useq(k) =

g (k) = ug(k) + Rio, (k) + wLi,(k) +
Lliw,(k+1) - i (k)]/T, (2)

and the d-g axes decoupled control equations of shunt
transformer is

ushd(k) = uld(k) - Rshishd(k) + sthishq(k) -
LaliwaCk + 1) — ige(K)1/T,,  (3)

Vol.22
ushq(k) =
ulq(k) - Rshishq(k) - sthishd(k) -
Lsh[ishq(k + 1) - Lshq(k)]/Ts (4)

By considering the charge and discharge process of
capacitor, the dynamic equaton of capacitor terminal
voltage is

dug/dt = (Py, - P.)/Cuy. (5)

The parameters of equations (1) ~(5) can be
described as follows: u, is the infinite system voltage, u, is
the bus voltage, uy, is the capacitor terminal voltage, R..,
L.,u, are respectively the resistance, the inductive
resistance and the voltage of series transformer, Ry, Ly,

uy, are respectively the resistance, the inductive resistance

and the wvoltage of shunt transformer, R;,L; are
respectively the line resistance and the line inductive
resistance, R, = R,. + R;,L, = L, + L;,C is the
capacitance of capacitor, Py, P, are respectively the
injecting and generating real power of capacitor, T is
sampling period, w is power systemn frequency .

2.2 Control strategy of unified power flow

controller

The control strategy of UPFC includes the control
technique of the switching element of inverter and the
control scheme of power flow and voltage.

The switching element of UPFC’s inverter uses
VSVPWM technique. The key part of VSVPWM is the
conversion from the ideal three-phase voltage source to
d-q axis two-phase rotational coordinates, please refers to
[3,8] for the conversion formula and operation process.

The control strategy of power flow and voltage of
proposed UPFC is divided into two sections. The first
section, which adopts electric current forecasting and d-g

axis decoupled control

, adjusts the real power P and
reactive power (). The second section, which uses fuzzy
neural network and d-q axis decoupled control adjusts the
bus voltage and capacitor terminal voltage. The detail
control method is shown as Figs.1,2.
The decoupled control scheme of real power P and
reactive power () is shown in Fig. 1.
For
S=P+jQ =Vl = (uy+ ju,)(ig - ji,). (6)
It can be obtained
i‘(}hj = (uP + qu)/(u%i + uzq),
i‘flhj = (qu - uQ)/(u + uzq)
In formula (1),(2), the predictive value i.4(k + 1)

and i, (k+1) are igog(k+1) = i, i, (k+l) = i,

(7
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The control scheme of bus voltage u, and capacitor
terminal voltage u, is shown in Fig. 2, where the input
variables of multi-input and single-output FNNI are the
capacitor terminal voltage error Au, = u% — uy and its
change rate dAu,/d¢, the output variable is i%;; the
input variables of multi-input and single-output FNN2 are
bus voltage error Au, = u®™ - u, and its change rate
dAy,/de, (3),(4),
the predictive value na(k + 1) and iy, (k + 1) are iy

(k+1) shd’ shq(k"'l) (s)ll:g]

the output variable is t:}l,'{l In Egs.

Aud

Obj n

FNNI1

dAud
dr

ishd|

Lshd @

pob

ECF

-

VSVPWM

Fig. 1

ish([

VSVPWM

Obj
| FNN2

Lshq + 78

Fig. 2 Control scheme in shunt part

3 Self-organizing fuzzy neural networks

In Fig.2, FNNI1, FNN2 of the fist UPEC are
self-organizing fuzzy neural networks SOFNN1, SOFNN2 .
This SOFNN consists of input layer, fuzzifier layer, fuzzy
logic layer, fuzzy normalized layer and output layer, and its
connecting weight coefficient only exists between fuzzy
normalized layer and output layer. The structure and node
connection is dynamically varying. The detail description
about self-organizing fuzzy neural networks was given in [9].
m; i(k+1) =

The learning of SOFFN implements the training of the
parameters of membership function and connecting weight
coefficient. Their training algorithms adopt gradient decent
methods, the objective function is

J = —(y‘"’J - )%
where, SOFNNI, y2 js uP,y, s
SOFNN2, y® is ut™, y, is u,.
The training algorithms of the center point value and

width m; ;,0; ; (that is mean and variance)of Gaussian
membership functions is

(8)

for for

Ugs

(k _ 2(x;-m;
m; (k) + A WCyPi(k) - y: (k) )sgn( y( ))2 el (3) c$¥ . S , node i connects with node 1,
ZC 0i,j
m; ;(k), node ¢ does not connect with node 1,
(9)
O'i,j(k + 1) =
2(x;—m;

(3) 2]

5 R) + Aa(y () =3, () )sgn(PEDy 3

1

o.i.j(k)s

where 4| = 771|‘7}’i = 772|ayi » 715 72 are

the varying learning factors, A,, A, are the actual leamning

C
! 2053) G%.j

, node i connects with node 1,

node i does not connect with node 1,

(10)

factors, which are constant.

The connecting weight coefficient training algorithm of
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SOFNN is as follows:
w;(k+1) =
w; (k) + 230y (k) = yi(k))sen(dyi (k) /du)ef?.
(11)
Ay = 73 |9y /9ul, 73 is the varying learning factor, A3 is
the actual learning factor, which is constant.

As shown in formula (9) ~ (11), the training algorithms
of SOFNN1 and SOFNN2 only need the varable of
sgn(dy;(k)/du), they do not need exact mathematical
model of the plant.

4 Fuzzy neural networks based on genetic
algorithms

Genetic algorithm is a global stochastic optimum search
method based on organic evolution. Its search process does
not depend on initial value, and the search result is a global
optimum value; however, the speed of convergence of
genetic algorithms is low . GDM is actually an algorithm that
obtains the optimum solution in local area. If fuzzy neural
networks are trained by GDM, their parameters may be
locally optimum, and their inital value easily affects the
convergence of training process during the optimization of
parameters. Compared with the genetic algorithm, GDM
has higher speed of convergence, it is more suitable for the
system required high control speed . Here, genetic algorithm
1s adopted to train fuzzy neural networks offline, which
obtains the “quasi-optimum value” of parameters, then the
GDM 1s used to traned fuzzy neural networks online,
which obtains the “optimum value”, at last the obtained
fuzzy neural networks are applied to the second UPFC to
improve the self-learning capability and robustmess. FNNI
and FNN2 of the second UPFC shown in Fig.2 are fuzzy
neural networks based on genetic algorithms GAFNNI and
GAFNN2.

GAFNN has the same structure as SOFNN, and their
node functions are also the same, but GAFNN nodes and
their connection are invariable. The premise of fuzzy logic
rule behaves Gaussian membership functon, and the
conclusion varable is the connecting weight coefficient.
The node function of input layer, fuzzifier layer, fuzzy logic
layer, fuzzy normalized layer and output layer is iV

= x,
2
¢ = expl- (c$V = m; )62 1, e = B, -,
N(3) N{(4)
05.2.),",05'4) = 053)/2 cj('3)’ and C(S) = 2054)1‘7;"
i=1

j=1
respectively, The connecting weight coefficient only exists
between fuzzy nommalized layer and output layer. The

training process is depicted as follows.

4.1 Offline learning algorithm

The initial values of fuzzy logic parameters (m; ;o; ;jw;)
in GAFNN are trained offline by genetic algorithm. The
process is: firstly to choose individual adaptability function
and objective function, and to determine decision variables
and their constraint conditions; secondly to choose the
encoding and decoding methods of decision varables;
thirdly to

regeneration, crossing and aberrance for the individual

choose basic genetic operators such as
operation; and finally to evaluate the individual according to
the objective function and to obtain the optimum decision
variable,, namely the quasi-optimum value of fuzzy logic
parameter in GAFNN which is the initial value.

The individual adaptability function is

Fo= (- u) + (uP - uy)? + (0™ - )2,
(12)
The objective function is
J=1/F. (13)

The detail process is as follows:

1) To stochastically produce n individuals( binary system
character strings), each individual represents a set of
GAFNN parameters (m; ; 6; ; w;), where the relationship
between character strings( y; is integer represented by k bit

binary character)and parameters x; is

. Yi .
mirn A i
xX; = X; + 2k 1 xX; )

2) The plant is controlled according to the set of
GAFNN parameters obtained in first step, then to compute
the adaptability and objective function of each individual,

(=P -

(14)

and to search the individual with best performance.

3) According to the existing probability of each
individual p; = f./ >, f;, by which individual will be
regenerated in next generation, new individual will be
regenerated until total number of new generation is n, and
a new colony  is obtained.

4) After selected the individuals Q; and Q; in the new
colony, the individuals Q; and @, will cross at cross
probability p., then the new n - 1 individuals Q} and Q;
are obtained, and the new colony Q' consists of (n — 1)
new individuals and the individual with best performance
obtained in Step 2) .

5) The individuals Q} and Q) are selected in the new
colony, the individuals @} and Q] carry out aberrance at
aberrance probability p,, and then the new n - 1
individuals Q7 and @] are obtained.

6) The new generation colony (" consists of the n — 1

new individuals and the individual with best performance


http://www.cqvip.com

No.6

YE Qi-ge et al: Unified power flow controller based on fuzzy neural network

929

obtained in Step 2) .

7) Return to Step 2) ,until one of the individuals meets
the control demand . The individual with best adaptability in
this colony is the initial value (quasi-optimum values) of
GAFNN parameters .

4.2 Online learning algorithm

Online learning algorithm is GDM, input variable, output
variable, objective function, training algorithms of Gaussian
membership and connecting weight coefficient are the same
as SOFNN.

§ Simulation result

The disturbance and the parameters of single-machine
infinite power system in the numerical simulation are shown
as follows. At t = 3.2s, the real power P increases from
0.2pu to 0.4 pu, the reactive power  increases from
0.2puto 0.3pu,att = 9.6s, the real power increases
from 0.4 pu to 0.6 pu, the reactive power increases 0.3 pu
t00.5pu. Ly = 0.01,Ry = 0.1,L,, = 0.01,R,, =
0.1,L; =0.03,R, = 0.3, X, =0.18, X3; = 0.16. The
leamning rate of SOFNNI in UPFC is ) = A; = A3 =

0.65
0.55 +
045l SOFNN-UPFC
g I yd
035t
- GAFNN-UPFC
0251
1
01— .
0 2 4 6 8 10 12 14 16
tl's
Fig. 3 Response curve of active power
1.02
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AL N[\
0.99‘*’ 1
\g_ 0.98 1
s 097f
0.96}
095} GAFNN-UPFC
0.94
0.93 . . . . " . .
0 2 4 6 8§ 10 12 14 16

tls
Fig. 5 Response curve of capacitor terminal voltage

6 Conclusion

These UPFC proposed in this paper can adjust fuzzy

0.08, sgn(-) is positive, the leaming rate of SOFNNZ is
Ay = A = A3 = 0.06, sgn (+) is positive. After
the times of learning they can obtain satisfactory control
result. The learning rate of GAFNNI in UPFC is A, =

Ay = A3 = 0.2, sgn(+) is positive, the leaming rate of
GAFNN2 is A, = A, = A3 = 0.15, sgn (+) is positive, the
cross probability is p, = 0.6, the aberrance probability is
Pm = 0.001. After 200 generations of leamning they can be
used to online control the power system at once. The
response curves of two kinds of UPFC are shown in Figs.

3 ~ 6. From the simulation results it can be seen that these
UPFC can realize the decoupled control of real and reactive
power, which have no obvious difference in control results,

that these UPFC can control the capacitor terminal voltage
ranging between 1+ 0.07 pu, but the adjusting result of
UPFC based on SOFNN is better than that of UPFC based
on GAFNN, and that these UPFC can control the bus
voltage ranging between 1 + 0.05 pu, but the adjusted result
of UPFC based on GAFNN is better than that of UPFC
based on SOFNN. In a word, these UPFC can effectively
maintain desired voltage profile of bus and capacitor
terminal .

0.55
0.5
045¢
0.4}
035} SOFNN-UPFC
03} /

025}
0.2
0.15

Q/pu

GAFNN-UPFC

0 2 4 6 8§ 10 12 14 16
tl's
Fig. 4 Response curve of reactive power

1.1

1.08 SOFNN-UPFC

= 1.06
[=9
S 1.t
1.02 ¢ GAFNN-UPFC
1 . — )
0 2 4 6 8 10 12 14 16

tls
Fig. 6 Response curve of bus voltage
rules and have the online leaming capability, it does not
depend on the foreknowledge and the experience of the
designer. And the design of these training algorithms do not
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need exact mathematical model of power system. In
addition, The UPFC adopting SOFNN can self-generate
fuzzy logic rule. They can effectively realize the decoupled
control of real and reactive power, and maintain desired
voltage profile on bus and direct current capacitor. These
show the validity of proposed two kind of UPFC.
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