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Disturbance-rejection composite nonlinear control applied to
two-inertia servo drive system

CHENG Guo-yang†, HUANG Yan-wei
(College of Electrical Engineering and Automation, Fuzhou University, Fuzhou Fujian 350116, China)

Abstract: This paper extends the composite nonlinear feedback (CNF) control method to linear systems subject to input
saturation and non-constant disturbance. The unknown disturbance is treated as an extended state variable to be augmented
with the plant model, and then an extended state observer is designed to estimate both the states and the disturbance, and
a disturbance compensation mechanism is incorporated into the CNF framework, so as to alleviate the steady-state bias
due to disturbances, while retaining the fast transient performance of the original CNF control. Both constant and varying
disturbances, either matched or unmatched, can be handled within this control scheme. Closed-loop stability and set-point
tracking performance are analyzed theoretically. The proposed control scheme is then applied to a two-inertia servo drive
system. Simulation studies are conducted to verify its superior transient performance and steady-state accuracy in set-point
tracking, as well as the robustness against the amplitude variations of disturbance/set-point.
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1 Introduction
Rapid motion control is required in many industrial ap-

plications, for which myriad advanced control techniques
have been developed to achieve faster and more precise po-
sition or velocity regulation (see e.g., [1–5]). So far, linear
control techniques have gained popularity in most applica-
tions. However, it is well know that a linear control system
with a given bandwidth cannot achieve fast response while
maintaining a low overshoot, and a tradeoff always needs
to be made. In the seminal paper [6], Lin et al. proposed
an add-in nonlinear feedback term to supplement the lin-
ear state feedback control law so as to speed up the settling
process of set-point tracking tasks for second order linear
systems with input amplitude constraint. Chen et al.[7]

extended this idea and developed the so-called compos-

ite nonlinear feedback (CNF) control technique, for more
general linear systems with measurement feedback and in-
put saturation but without external disturbances. The CNF
control consists of a linear control part and a nonlinear
feedback part. The linear control part is designed such that
the closed-loop system yields a fast response. Generally, a
pair of dominant poles is designed to have a small damping
ratio. The nonlinear feedback portion is then designed to
tune the damping ratio of the closed-loop system when the
system controlled output approaches the target reference
to gradually reduce the overshoot resulted from the linear
control law. Thus, the CNF implements a closed-loop dy-
namics from lightly damped to heavily damped, leading
to fast and smooth transient response in set-point track-
ing tasks. So far, successful implementations of CNF have
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been reported on disk drive servo test-beds (see e.g., [7–9])
and unmanned helicopters (see e.g., [10–12]).

In the earlier development of CNF, it was assumed
that no disturbances exist in the plant. When the given
plant does have disturbances, the resulting system output
with CNF control generally cannot asymptotically match
the target reference. In typical servo applications, there are
always some disturbances, e.g., friction and load torques.
Under such circumstance, the original CNF technique
alone cannot achieve accurate servo tracking. To remove
the steady-state bias caused by unknown constant distur-
bances, Peng et al.[8] enhanced the CNF technique with an
additional integration action. The headache with integral
control is that it can easily lead to the so-called integral-
windup phenomenon. Moreover, it is found that integral
control is not robust to the amplitude of disturbance and/or
target reference, e.g., a minor change in the amplitude of
disturbance or target may call for a re-tuning of controller
parameters in order to maintain a satisfactory performance.
This is undesirable for practical applications. To gain a bet-
ter robustness against the amplitudes of reference and dis-
turbance, Cheng et al.[13] incorporated an extended state
observer (ESO) into the CNF control framework, where
the unknown constant disturbance is estimated together
with the unmeasurable state variables. Because of the dis-
turbance compensation, the expected value of system state
is no longer constant compared to that in the original CNF
control. Such a flexibility helps to improve the robustness
against disturbances. However, [8, 13] assume a constant
disturbance, which may be an over-simplification for some
practical systems, e.g., the frictional disturbance usually
exhibits some dynamic behaviors, such as hysteresis. This
motivated us to extend the result in [13] to cover more gen-
eral systems subject to input saturation and a time-varying
unknown disturbance. Theoretical analysis will show that
the ultimate bounded-ness of tracking error can be guaran-
teed for a rate-bounded disturbance, and moreover, a zero
steady-state error will be achieved in the case of constant
disturbance.

The rest of the paper is organized as follows. The de-
sign of disturbance-rejection CNF control is presented in
Section 2. Section 3 is devoted to the theoretical analy-
sis of closed-loop system. In Section 4, the effectiveness
of the proposed control scheme is demonstrated on a two-
inertial servo drive system. Some concluding remarks are
provided in Section 5.

2 Disturbance-rejection CNF control
In this section we present a robust version of the CNF

control design, which incorporates an extended state ob-
server to estimate the unknown disturbances together with
unmeasurable state variables, and a disturbance compen-
sation mechanism is subsequently designed to improve the
tracking accuracy in servo systems. The new approach will
retain the quick response property of the original CNF con-
trol and at the same time have an additional capacity of re-
ducing steady-state bias caused by disturbances yet with-
out resorting to explicit integration control. It should be
noted that this design is an extension to the work reported

in [13], where the disturbance was limited to a constant
one. Here, we consider a linear system subject to an am-
plitude constrained actuator and an unknown bounded dis-
turbance with a limited rate of change, characterized by




ẋ = Ax + Bsat u + Ew, x(0) = x0,

y = C1x,

h = C2x,

(1)

where x ∈ Rn, u ∈ R, y ∈ Rp, h ∈ R and w ∈ R
are respectively the state, control input, measurement out-
put, controlled output and disturbance input of the system.
A, B, C1, C2 and E are constant matrices of appropriate
dimensions. The function, sat: R → R, represents the ac-
tuator saturation defined as

sat u = sgn u ·min{umax, |u|} (2)
with umax being the saturation level of the input. The fol-
lowing assumptions on the given system are made:

1) (A,B) is stabilizable.
2) (A,C1) is detectable.
3) (A,B, C2) and (A,E,C1) have no zeros at s = 0.
4) w is an unknown bounded disturbance with a lim-

ited variation rate.
5) h is a subset of y, i.e., h is also measurable.
Note the above assumptions are fairly standard for

tracking control. We aim to design a robust control law
without explicit integration action for the given system
such that the resulting controlled output would track a set-
point target reference, say r, fast, smoothly, and accurately
as possible.

In the following, we outline the design procedure
of the proposed control scheme, which involves 4 major
steps.

Step 1 Design a linear disturbance-rejection control
law for the system (10) as follows:

uL = Fx + Fww + Gr, (3)

where F is chosen such that 1) A + BF is Hurwitz, and
2) the transfer function C2(sI−A−BF )−1B has a dom-
inant pair of conjugate poles with a small damping ratio,
which would lead to a fast closed-loop output response.
Next, the feed-forward gain G is chosen as

G = −[C2(A + BF )−1B]−1, (4)

and Fw is then determined as

Fw = G[C2(A + BF )−1E], (5)

which are well defined as C2(sI − A − BF )−1B has no
zeros at s = 0. Note that the state variables and the distur-
bance term in the control law will eventually be replaced
with their respective estimated ones.

Step 2 Given a positive definite symmetric matrix
W ∈ Rn×n, we solve the following Lyapunov equation:

(A + BF )′P + P (A + BF ) = −W, (6)

for P > 0. Such a solution is always existent as (A+BF )
is asymptotically stable. Next, we define{

Ge := −(A + BF )−1BG,
Gw := −(A + BF )−1(BFw + E),

(7)

and the expected value of system state
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xe := Ger + Gww. (8)

It is then trivial to verify that C2xe = r. The nonlinear
feedback control law, uN, can now be given by

uN = ρ(e)Fn(x− xe), (9)

where Fn = B′P , and ρ(e) is a smooth, non-positive
function of |e| with e = h − r, to be used to gradually
change the system closed-loop damping ratio to yield a
better tracking performance. The choices of the design pa-
rameters, ρ(e) and W , will be discussed later.

Step 3 An observer will be designed to estimate the
state variables and unknown disturbance. Here we assume
that the measurement output matrix C1 ∈ Rp×n is of full
row rank, i.e., there is no redundance in the measurements.
Choose a matrix C0 ∈ R(n−p)×n, such that the matrix

T =
[
C1

C0

]
is invertible. Define the extended state vector

x̄ =
(

Tx
w

)
and obtain an augmented model as follows:

{ ˙̄x = Ā · x̄ + B̄ · sat u + N · ẇ,

y = C̄ x̄,
(10)

where

Ā =
[
TAT−1 TE

0 0

]
, B̄ =

[
TB
0

]
,

N =
[
0
1

]
, C̄ =

[
Ip 0

]
.

Based on the assumptions about the plant model, it is easy
to check (C̄, Ā) is detectable. Thus, an observer, of either
full order or reduced order, can be designed to estimate the
extended state variables. In real-time control, it is more
feasible to implement controllers with smaller dynamical
order. Clearly, the first p elements of extended state vector,
denoted by x̄1, is readily available from the measurement
output y. We only need to estimate the remaining n−p+1
elements of state vector, denoted by x̄2, and the matrices
in the augmented model (10) can then be partitioned in ac-
cordance with the dimensions of x̄1 and x̄2, as follows:

Ā =
[
A11 A12

A21 A22

]
, B̄ =

[
B1

B2

]
, N =

[
0

N1

]
.

Following the design procedure of reduced-order ob-
server in [8], we choose an observer gain matrix K ∈
R(n−p+1)×p such that the poles of A22 +KA12 are placed
in appropriate locations in the open-left half plane. Then
the reduced-order observer is derived as{

ẋv = Av · xv + Bu · sat u + By · y,
ˆ̄x2 = xv −Ky,

(11)

where xv is the internal state vector of the observer, and ˆ̄x2

is the estimation of x̄2. Further{
Av = A22 + KA12,
Bu = B2 + KB1,
By = A21 + KA11 − (A22 + KA12)K.

The estimation of extended state vector x̄ is given by

ˆ̄x =
(

y
xv −Ky

)
.

The estimations of the original state vector x and unknown
disturbance w can be obtained as

{
x̂ = T−1

[
In 0

]
ˆ̄x,

ŵ =
[
0 · · · 0 1

]
ˆ̄x.

(12)

Step 4 In this step, the linear control law, the nonlin-
ear feedback portion, and the extended state observer de-
rived in the previous steps are combined to form the final
controller

u=
[
F Fw

](x̂
ŵ

)
+Gr+ρ(e)Fn (x̂−Ger−Gwŵ) ,

(13)

where the estimated values x̂ and ŵ are given in (12).
Remark 1 Figure1 is a schematic of the control system,

where the linear control law is a fundamental part, comprising
the state feedback and feed-forward compensation of reference
and disturbance, while the nonlinear feedback part serves to
tune up the dominant closed-loop damping ratio for suppress-
ing overshoot. The extended state observer (ESO) provides a
unified mechanism for state and disturbance estimation. Both
matched and unmatched disturbances can be handled within
this framework. The idea of using observer to estimate both
state and disturbance has been available for quite some time
and is still attracting the attention from the control community
(see e.g., [14–18]). The conventional ESO design assumes a
constant or slowly varying disturbance, i.e., its variation rate is
reasonably small. If the variation rate is not negligible but is
bounded anyway, then the observer error will remain bounded
with an upper bound monotonously decreasing with the in-
crease in the observer bandwidth [19]. For time-varying dis-
turbances, an improved estimation is possible by resorting to
the generalized ESO, or higher order ESO (see e.g., [20–21]).

Remark 2 The procedures for selecting the design pa-
rameter W and the nonlinear gain ρ(e) for the control scheme
here are basically the same as those given in [7–8]. By the the-
ory of root locus, the closed-loop poles of CNF control system
approach the locations of the invariant zeros of Gaux(s):

Gaux(s) := Fn(sI −A−BF )−1B, (14)

as |ρ| gets larger. Note that the locations of these invariant ze-
ros are highly dependent on the choice of matrix W . In general,
an appropriate W > 0 should be chosen such that the invariant
zeros of Gaux(s), have a dominant pair with a large damping
ratio, which in turn will yield a smaller overshoot. A software
toolkit for CNF control design has been reported in [22].

Remark 3 The general guideline for selecting the non-
linear function ρ(e) is that it should be a smooth, non-positive
and non-decreasing function of |e|. Several forms of nonlin-
ear function ρ(e) have been suggested in [6–9]. Especially, the
one proposed in [9] is a scaled nonlinear function with a better
performance robustness to variation of tracking targets:

ρ(e) = −βe−αα0|e|, (15)

with

α0 =

8
<
:

1

|e(0)| , if e(0) 6= 0,

1, if e(0) = 0,

in which α and β are positive scalars that can be tuned to im-
prove tracking performances. An auto-tuning procedure for pa-
rameter α and β using the Hooke-Jeeves method is proposed
in [9]. It should be noted that the choice of ρ(e) is non-unique.
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Fig. 1 Schematic diagram of the proposed control scheme

3 Stability analysis
To analyze the closed-loop stability, let us first par-

tition the matrix T−1 =
[
T1 T2

]
such that T1 has p

columns. Define

H = G + FGe, Hw = Fw + FGw,

Fv =
[
FT2 Fw

]
, Fnv =

[
FnT2 − FnGw

]
,

and
x̃ = x− xe, z = ˆ̄x2 − x̄2.

It is easy to verify that
(

x̂− x
ŵ − w

)
=

[
T2 0
0 1

]
z. (16)

Then the control law in (13) can be rewritten as

u=
[
F Fv

](x̃
z

)
+

[
H Hw

](r
w

)
+ρ(e)

[
Fn Fnv

](x̃
z

)
.

(17)
Next, we choose a positive definite matrix M ∈

R(n−p+1)×(n−p+1) such that

M > F ′vB
′PW−1PBFv, (18)

and solve the following Lyapunov equation

A′vQ + QAv = −M (19)

for a positive definite matrix Q. Note that such a Q exists
as Av = A22 + KA12 is asymptotically stable. We have
the following result.

Theorem 1 For the given system (1) with the un-
known disturbance w, there exists a scalar ρ∗ > 0 such
that for any ρ(e), which is a smooth, non-positive function
of |e| with |ρ(e)| 6 ρ∗, the observer-based disturbance-
rejection CNF control law of (13) will ensure the stabil-
ity of the closed-loop system and that the system con-
trolled output h will approach the step reference r without
steady-state error if the disturbance w is constant, or with a
bounded tracking error if the variation rate of w is bounded
by a non-negative scalar τw ( i.e., |ẇ| 6 τw), provided that
the following conditions are satisfied:

1) There exist two positive scalars δ ∈ (0, 1) and cδ

> 0 such that

∀ξ ∈Ω(δ, cδ) :=
{
ξ ∈ R2n−p+1 : ξ′

[
P 0
0 Q

]
ξ6cδ

} ⇒
∣∣[F Fv

]
ξ
∣∣ 6 (1− δ)umax. (20)

2) The initial conditions, x0 = x(0), w(0), and xv(0),
satisfy

(
x̃(0)
z(0)

)
∈ Ω(δ, cδ). (21)

3) The target reference r, and the disturbance w, sat-
isfy

|Hr + Hww| 6 δ · umax. (22)

Proof First, it is easy to derive the observer error
dynamics as follows:

ż = Av · z −N1ẇ. (23)

Next, we note that

(A + BF )xe + BGr + (BFw + E)w = 0. (24)

By applying (24) and the definitions of error variables, the
error dynamics of plant (1) can be expressed as follows:

˙̃x =Ax + Bsat u + Ew −Gwẇ =
(A + BF )x̃ + BFvz + Bv −Gwẇ, (25)

where

v := sat u− [
F Fv

](
x̃
z

)
− [

H Hw

](
r
w

)
. (26)

To simplify the presentation, we will drop the variable e
of function ρ(e) throughout this proof. It is noted that, for(

x̃
z

)
∈ Ω(δ, cδ) and |Hr + Hww| 6 δumax, we have

∣∣ [
F Fv

](
x̃
z

)
+

[
H Hw

](
r
w

) ∣∣ 6

∣∣ [
F Fv

](
x̃
z

) ∣∣ + |Hr + Hww| 6 umax. (27)

Following the similar reasoning in [7], we can show
for the three possible situations of u < −umax, |u| 6 umax

and u > umax, the variable v can always be rewritten as

v = qρ
[
Fn Fnv

](x̃
z

)
, (28)

for some non-negative variable q ∈ [0, 1]. Thus, for the

case when
(

x̃
z

)
∈ Ω(δ, cδ) and |Hr + Hww| 6 δumax,

the closed-loop system comprising the given plant (1) and
the observer-based control law (13) can be expressed as
follows:( ˙̃x

ż

)
=

[
A+BF+qρBFn B(Fv+qρFnv)

0 Av

](
x̃
z

)
−

[
Gw

N1

]
ẇ.

(29)
In what follows, we will show that closed-loop system

(29) is stable provided that the initial condition, x(0) and
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xv(0), the target reference, r, and the disturbance, w, sat-
isfy those conditions listed in Theorem 1. Let us define a
Lyapunov function

V =
(

x̃
z

)′ [
P 0
0 Q

](
x̃
z

)
. (30)

The derivative of V is then calculated along the trajec-
tory of the system (29):

V̇ = x̃′[(A+BF )′P +P (A+BF )]x̃+2qρx̃′PBFnx̃ +
2x̃′PB(Fv + qρFnv)z − 2x̃′PGwẇ +
z′(A′vQ + QAv)z − 2z′QN1ẇ 6
−x̃′Wx̃ + 2x̃′PB(Fv + qρFnv)z − z′Mz −
2x̃′PGwẇ − 2z′QN1ẇ =

−
(

x̃
z

)′
Wρ

(
x̃
z

)
−2

(
x̃
z

)′ [
P 0
0 Q

] [
Gw

N1

]
ẇ, (31)

where

Wρ =
[

W − PB(Fv+qρFnv)
−(Fv+qρFnv)′B′P M

]
.

(32)
According to the definition of M in (18), there exists

a scalar ρ∗ > 0 such that for any ρ(e), which is a smooth,
non-positive function of |e| with |ρ(e)| 6 ρ∗, we have
Wρ > 0.

For easy derivation, we define

xz :=
(

x̃
z

)
, PQ :=

[
P 0
0 Q

]
, Nw :=

[
Gw

N1

]
,

λm := max{λmax

(
PQW

−1
ρ

)
: 0 6 ρ 6 ρ∗},

γ := 2τwλm (G′wPGw + N ′
1QN1)

1/2
.

By introducing a square matrix S such that PQ = S′S, we
will have the following:

V̇ 6−x′zS
′SP−1

Q WρP
−1
Q S′Sxz −2x′zS

′SNwẇ6
−λmin(SP−1

Q WρP
−1
Q S′)x′zS

′Sxz+

2 ‖Sxz‖·‖SNw‖ τw= −λmin(P−1
Q Wρ)x′zPQxz+

2τw(x′zPQxz)1/2(N ′
wPQNw)1/2=

−λmin(P−1
Q Wρ) (x′zPQxz)

1/2×[
(x′zPQxz)

1/2−2τwλmax(PQW−1
ρ ) (N ′

wPQNw)1/2
]
6

−λmin(P−1
Q Wρ) (x′zPQxz)

1/2 × [(x′zPQxz)
1/2 − γ].

Clearly, the closed-loop system with a constant distur-
bance, i.e., τw = 0, has V̇ < 0 and thus is asymptotically
stable. As x̃ → 0, h = C2x → C2xe = r, implying
that the system output h approaches the set-point target r
without steady-state error.

In the presence of a time-varying disturbance (τw >

0), and with
(

x̃(0)
z(0)

)
∈ Ω(δ, cδ), where cδ > γ2, the

corresponding trajectory of (29) will remain in Ω(δ, cδ)

and eventually settle into a ball characterized by {
(

x̃
z

)
:

(
x̃
z

)′ [
P 0
0 Q

](
x̃
z

)
6 γ̃2} with γ̃ 6 γ. Thus

γ̃2 > x̃′Px̃ > λmin(P ) · ‖x̃‖2

or
‖x̃‖ 6 γ̃√

λmin(P )
.

Note that the tracking error e = h− r = C2x̃, hence

|e| = |C2x̃| 6 ‖C2‖ · ‖x̃‖ 6 γ̃‖C2‖√
λmin(P )

.

Obviously, the tracking error e(t) is ultimately bounded.
This completes the proof of Theorem 1.

Remark 4 Based on the Eq.(17), the control signal u

can be decomposed into three components: the one dependent
on state error, the one related to observer error, and finally, the
one corresponding to exogenous signals r and w. The term
Hr +Hww in Eq.(22) actually represents the steady-state con-
trol signal when the state error and observer error converge to
negligible values. Obviously, its amplitude should be smaller
than umax, otherwise even the maximum control signal would
be insufficient to counteract the disturbance and target refer-
ence, leaving no control energy for servo tracking tasks. The-
orem 1 assumes that Hr + Hww is bounded by δ · umax, thus
in the worst case there is a remaining control energy of (1 −
δ)umax to overcome the observer error and perform servo
tracking.

4 Application to a two-inertia servo system
In this section, we apply the proposed control method

to a two-inertia servo drive system with resilient coupling.
Such kind of systems can be found in many industrial ap-
plications. So far, control design for two-inertia servo drive
systems has attracted a lot of research efforts, mostly re-
lated to the PID–type techniques (see e.g., [23–25]). The
difficulty in dealing with such systems is the unmatched
load torque acting on the load machine. However, the
disturbance-rejection CNF control will prove to be a good
solution for such case.

Figure 2 shows a schematic of a two-inertia servo-
drive system consisting of two lumped inertias Jm and Jd,
representing the motor and load, respectively, coupled via
a shaft of finite stiffness kc. This shaft is subjected to a tor-
sional torque τs and excited by a combination of electro-
magnetic torque τe and load-torque perturbations τL. The
considered system could be described by the following dy-
namics equation:





dωm

dt
=

1
Jm

(τe − τs),

dωd

dt
=

1
Jd

(τs − τL),

dτs

dt
= kc(ωm − ωd),

(33)

where ωm is the motor speed, ωd is the load speed, τe is the
electromagnetic torque of motor, τs is the shaft torque (tor-
sional), τL is the disturbance torque, Jm = 0.0058 N ·m2

and Jd = 0.00145 N ·m2 are the lumped inertias of
the motor and the load machine respectively, and kc =
110 (N·m)/rad is the stiffness of the resilient coupling [23].
The electromagnetic torque τe is used as the control input
of the system, and the angular speed ωd of the load ma-
chine is taken as the system output to be controlled. ωm
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and ωd are assumed to be measurable. The above model
can be cast into the standard form of (1), with

x =




ωm

ωd

τs


 , y =

(
ωm

ωd

)
, h = ωd, u = τe, w = τL,

and

A=




0 0 − 1
Jm

0 0
1
Jd

kc − kc 0




, B=




1
Jm

0
0


 , E =




0

− 1
Jd

0


 ,

C1 =
[
1 0 0
0 1 0

]
, C2 = [0 1 0].

Fig. 2 Mechanical schematic of a two-inertia system

The saturation level of τe is assumed to be umax = 20
N·m. The objective in control design is for the angular
speed ωd of the load machine to track a given set-point
target speed r fast, smoothly and accurately.

Following the design procedure outlined previously,
we first design a linear control law

uL =
[
F Fw

](
x
w

)
+ Gr =

[−5.336 3.501 − 7.233 8.233
](

x
w

)
+ 1.835r,

(34)
which places the closed-loop poles at−ζωn±jωn

√
1− ζ2

and −3ωn with ζ = 0.3 and ωn = 200 rad/s. Next, we
choose the matrix W to be the third-order identity matrix
and solve the Lyapunov equation in (6) for matrix P :

P =




1.408 1.753 7.234
1.753 8.071 14.16
7.234 14.16 67.68


× 10−3, (35)

we then obtain the nonlinear feedback part of CNF as fol-
lows:

uN = ρ(e)Fn (x−Ger −Gww) (36)
with

Fn = B′P =
[
0.2428 0.3022 1.247

]
,

Ge =




1
1
0


 , Gw =




0
0
1


 ,

and ρ(e) is as given in (15) with e = ωd − r and α =
1, β = 25.

Next, to estimate the unmeasured shaft torque τs and
the unknown disturbance w (i.e., the load τL), we design
a reduced-order extended state observer with its two poles
organized in Butterworth pattern and with a bandwidth of
ωv = 800 rad/s. Combining all the above results, we ar-
rive at the following disturbance-rejection CNF controller

(referred to as RCNF later) for the servo system:



ẋv =
[−565.7 565.7
−565.7 − 565.7

]
xv +

[
0

1131.4

]
sat u+

[−3602 − 1038
3712 0

](
ωm

ωd

)
,

(
τ̂s

ŵ

)
= xv +

[
0 − 0.8202

6.562 0.8202

](
ωm

ωd

)
,

(37)
and

u =

[−5.336 3.501 − 7.233 8.233
]



ωm

ωd

τ̂s

ŵ


+ 1.835r+

ρ(e)
[
0.2428 0.3022 1.247

]



ωm−r
ωd−r
τ̂s−ŵ


 . (38)

For comparison, we also design an integration-en-
hanced CNF controller using the method proposed in [8]:



ẋi = ωd − r,

ẋc =−800 · xc+47.06sat u+
[
328.4 − 983.4

](ωm

ωd

)
,

τ̂s = xc −
[
0.2729 − 1.092

](
ωm

ωd

)
,

(39)
and

u =

[−3.67 − 4.188 2.336 − 0.9814
]



xi

ωm

ωd

τ̂s


+1.852r +

ρ(e)
[
0.1362 0.4805 0.0669 2.37

]



xi

ωm − r
ωd−r

τ̂s


 ,

(40)
where the gain function ρ(e) is the same as the one used in
the RCNF controller. Moreover, the closed-loop poles are
placed at the same locations as of RCNF, with an additional
integration pole at −0.01ωn.

Simulations are conducted to evaluate the performance
of the designed controllers. Simulations are first conducted
to track two different target speeds, i.e., r = 10 rad/s and
r = 30 rad/s, and the load torque τL is set to be 0 initially
and then stepped up to 3.5 N·m at the time instant 0.05
s. The simulation results with RCNF are shown in Fig.3
and Fig.4, where the output response is fast and smooth
without steady-state error, and the speed ωd settles down
to the target value within 20 ms after the rapid increase of
τL. Fig.5 and Fig.6 present the simulation results with the
integration-enhanced CNF controller, the speed response
is also fast and accurate (comparable with that of RCNF)
when there is no load torque. However, after the load
torque is applied, a noticeable error appears in the speed
response and the error cannot be wiped out within a reason-
able time. It is possible to redesign this controller for better
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rejection of load disturbance. e.g., if we use the integration
action ẋi = 7.2(ωd − r) instead and accordingly refresh
the feedback gain matrices (going through the design pro-
cedure again), we can obtain the simulation results given
in Fig.7, with a desirable speed response against the load
torque 3.5 N·m, but unfortunately a sustained overshoot
appears at the early stage without load torque. Clearly,
it is difficult to choose a set of design parameters for the
integration-enhanced CNF control to maintain a desirable
performance in the presence of various load amplitudes.

(a) Speed response

(b) Control signal

Fig. 3 Simulation results with RCNF for target speed
r = 10 rad/s

(a) Speed response

(b) Control signal

Fig. 4 Simulation results with RCNF for target speed
r = 30 rad/s

Next, simulation is done for r = 10 rad/s with an ini-
tial load torque of 3.5 N·m which is removed at the time
instant 0.05 s. Again, a fast and accurate tracking perfor-
mance is obtained by the RCNF controller, as shown in
Fig.8. Finally, we study the case when the initial load
torque is τL = 1 + 0.2 sin(20πt + π/4), and an addi-
tional 3.5 N·m is superimposed at time instant 0.05 s, and

comparisons are made with a conventional CNF controller
(using the same parameters as the RCNF controller, but
without the disturbance compensation mechanism, i.e, let
Fw = 0 and Gw = 0) and a linear disturbance-rejection
controller (with a dominant damping ratio ζ = 0.8). The
results are given in Fig.9. Obviously, the RCNF controller
achieves fast and accurate tracking in the face of time-
varying disturbance, while the conventional CNF con-
troller leads to a noticeable steady-state error, and the lin-
ear controller results in a sluggish closed-loop response.

(a) Speed response

(b) Control signal

Fig. 5 Simulation results with integration-enhanced CNF for
target speed r = 10 rad/s

(a) Speed response

(b) Control signal

Fig. 6 Simulation results with integration-enhanced CNF for
target speed r = 30 rad/s
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(a) Speed response

(b) Control signal

Fig. 7 Simulation results with integration-enhanced CNF
(redesigned) for target speed r = 10 rad/s

(a) Speed response

(b) Control signal

Fig. 8 Simulation results with RCNF for target speed
r = 10 rad/s with initial load torque

(a) Speed response −ωm

(b) Speed response −ωd

(c) Control signal −τe
Fig. 9 Comparisons among three controllers for target speed

r = 10 rad/s

5 Conclusion
The design of a disturbance-rejection CNF control

method has been presented, which incorporates an ex-
tended state observer for both states and disturbance es-
timation into the CNF control framework. No explicit in-
tegration action is needed in the proposed method. This
method is able to achieve superior transient and steady-
state set-point tracking performance for linear systems
with actuator saturation and disturbances. Both matched
and unmatched disturbances can be handled elegantly
within the unified control framework. Closed-loop stabil-
ity has been established by strict proof based on Lyapunov
theory. This control method was then applied to a two-
inertia servo drive system. Simulation results show that the
servo system is capable of tracking a wide range of target
references fast and accurately, and has a better robustness
against the amplitude variations of load disturbance. The
control method offers a desirable solution for performance
enhancement in industrial servo systems. In this paper, we
have been focusing on the set-point tracking problem. To
accommodate the case of time-varying references (trajec-
tory tracking), some modifications would be needed. One
possible solution is to include a trajectory generator to con-
struct the target state vector (may be varying) for use in the
CNF control framework (see e.g., [26]), which can be re-
served for a future research.
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