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摘要:本文对一类非线性系统,提出了一种设计渐近稳定控制律的有效方法. 其中,通过更新系统浸入与不变流
形理论的应用方法,流形的吸引坐标可以在有限时间内收敛到平衡点. 为了得到闭环系统的稳定性,增广系统的各
个信号被证明是有界的. 本文得出的一个重要成果是流形吸引有限时间的计算方法. 此外,在施加了有限时间流形
吸引控制器之后,流形对外部有界未知扰动具有不敏感性. 最后利用车摆系统来论述所提出的控制方法的设计步
骤,以及通过仿真验证控制器的性能.
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Finite-time attractivity-based immersion and invariance control
for a class of nonlinear systems

HUANG Xian-lin, ZHANG Xu†, LU Hong-qian
(Harbin Institute of Technology, Center for Control Theory and Guidance Technology, Harbin Heilongjiang 150001, China)

Abstract: We propose an effective approach for designing asymptotically stabilizing control laws for a class of nonlinear
systems. In this approach, by modifying the application method of the immersion and invariance (I & I) theorem, the off-
the-manifold coordinates are ensured to converge to the equilibrium point in finite time. In order to obtain the stability
of closed-loop system, all trajectories in the augmented system are proved bounded. An important result we obtained
is the computation method for the finite time of the manifold attractivity. Moreover, the application of the finite-time
manifold-attractivity controller makes the manifold insensitive to all external bounded unknown disturbances. The design
procedures are detailed by designing a controller for a cart-pendulum system, and the controller performances are validated
by simulations.
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1 Introduction
Over the past few decades, stabilization control in fi-

nite time for nonlinear systems, for affine nonlinear sys-
tems in particular, has played an important role in the con-
trol field. Natural nonlinearities and diversity of nonlinear
systems are the most significant constraints on applicabili-
ty. Many research groups have devoted themselves to iden-
tifying reliable stabilizing control laws and applying them
successfully to various systems. Acosta et al., for exam-
ple, proposed an interconnection and damping assignment
passivity-based control (IDA–PBC) for underactuated me-
chanical systems. This algorithm was derived from the
passivity-based theory in order to provide a natural proce-
dure that shapes kinetic and potential energy[1–3]. The most
crucial issue which remains is effectively solving a partial
differential equation (PDE). As degree of freedom (DOF)
increases, IDA–PBC implementation becomes increasing-
ly complex. Thus, considering calculation difficulties, this
algorithm is only applicable for the lower-order nonlinear
systems. A sliding mode control was proposed to stabilize
a class of underactuated systems in cascaded form[4–5].

One of the promising and effective control methods is
the immersion and invariance (I&I) theorem, proposed by
Astolfi and Ortega in 2003[6–7], which has been further de-
veloped in additional studies[8–11]. System immersion is
based on the nonlinear regular theory, where the required
mappings can integrate the desired dynamical behavior
with the reduced-order systems toward the high-order sys-
tems. Manifold invariance is derived from geometric non-
linearity to ensure the stability of closed-loop systems. Im-
mersion and invariance control is not needed for the Lya-
punov candidate function in the controller design phase. A
notable advantage of this approach is the perfect decou-
pling calculation between manifold attractivity and invari-
ance. Recently, researchers have evaluated the use of I&I
for tracking control on a pneumatic actuator with a proven
tracking theorem[12]. Manjarekar et al. applied I&I to sta-
bilize a single machine infinite bus (SMIB) system using
a controllable series capacitor (CSC)[13]. This technique
has also been applied to tendon-controlled systems with
variable stiffness[14]. An adaptive-state feedback controller
was designed for n-dimensional nonlinear systems in feed-
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back form, as well[15]. An adaptive regulation via state
feedback for discrete-time nonlinear systems in a paramet-
ric strict-feedback form has also been proposed[16].

In actuality, the off-the-manifold coordinate converges
to equilibrium in the exponential form such that the dis-
tance from the state space of closed-loop systems to the
manifold is rendered asymptotically attractive. However,
low convergence rate may decrease the transient perfor-
mance of closed-loop systems. Furthermore, robustness of
stabilization cannot be theoretically ensured due to exter-
nal disturbance. Compared to asymptotically stable man-
ifold, finite-time attractivity controls possess the follow-
ing properties: first, it shows better convergence perfor-
mance around the equilibrium point, and second, it has
better disturbance rejection erformance[17]. In one rela-
tive study[18], two globally stable control algorithms for
robust stabilization of spacecraft in the presence of control
input saturation, parametric uncertainty, and external dis-
turbances were proposed, and fast and accurate response
was designed. In another study[19], a finite-time control
technique for a rigid spacecraft with external disturbances
was proposed.

This work mainly focuses on the finite-time attractivi-
ty-based immersion and invariance stabilizing control for
a class of nonlinear systems. A detailed procedure for de-
signing the immersion and invariance controller is provid-
ed. Mapping can be obtained by selecting a target system
and solving a partial differential equation. The stability
proof of closed-loop systems accounting for the bounded-
ness of actual states is described.The finite time is com-
puted, in which the manifold is rendered attractive; The
manifold does remain insensitive to bounded unknown dis-
turbance under the proposed method. Simulation results
validate the stabilizing control laws, based on this nov-
el technique, through a cart-pendulum system. The pro-
posed algorithms are computationally simple and involve
straightforward tuning.

Preliminary results of the immersion and invariance
theorem for an affine nonlinear system are described in
Section 2. Section 3 describes the primary results of the
finite-time attractivity-based immersion and invariance
controller design for a nonlinear system class, and provides
the stability proof and the computations of finite time. An
analysis of the disturbance rejection is also described in
Section 3. The controller performance is demonstrated by
a cart-pendulum system in Section 4, and Section 5 pro-
vides concluding remarks.

2 System description and preliminary re-
sults

2.1 System description
In this section, a class of nonlinear systems are consid-

ered as follows:
ẋ1 = x2,

ẋ2 = f2(x1) + g2(x1)u,

ẋ3 = f3(x1) + u

(1)

with state xi ∈ R for i = 1, 2, 3, input u ∈ R, the vector
fields f2(x1), f3(x1), g2(x1) : R → R and an equilib-

rium x∗(t) to be asymptotically stabilized. The functions
f2(x1), g2(x1), and f3(x1) are assumed to be known. The
finite-time attractivity of manifold based immersion and
invariance control requires the following assumption on
the continuity of f2(x1), g2(x1), and f3(x1).

Assumption 1 For each i = 2, 3, the functions
fi(x1), g2(x1) and their derivatives are continuous and
bounded on any compact set D ⊂ R.

The main objective for this work is to design a con-
trol law to asymptotically stabilize system (1) based on the
I & I theorem, while making the manifold attractive in fi-
nite time.

2.2 Preliminary results
This section recalled the fundamental theorem, serving

as principal tool of the immersion and invariance approach.
Theorem 1[6] Consider an affine nonlinear system

ẋ = f(x) + g(x)u (2)

with x ∈ Rn, u ∈ Rm and an equilibrium point x∗ ∈ Rn

to be stabilized. Let p < n, and assume that there exist
smooth mappings α(·) : Rp → Rp, π(·) : Rp → Rn, c(·) :
Rp → Rm, ϕ(·) : Rn → Rn−p, ψ(·) : Rn×(n−p) → Rm,
such that the following hold.

H1) Target system. The target system

ξ̇ = α(ξ) (3)

with ξ ∈ Rp has a globally asymptotically stable equilibri-
um ξ∗ ∈ Rp and x∗ = π(ξ∗).

H2) Immersion condition. For all ξ ∈ Rp,

π(ξ(0)) = x(0), (4)
π(0) = 0, (5)

f(π(ξ)) + g(π(ξ))c(π(ξ)) =
∂π

∂ξ
α(ξ). (6)

H3) Implicit manifold. The following set identity

M = {x ∈ Rn|ϕ(x) = 0} =

{x ∈ Rn|x = π(ξ), ξ ∈ Rp} (7)

holds.
H4) Manifold attractivity and trajectory boundedness.

All trajectories of the system

ż =
∂ϕ

∂x
(f(x) + g(x)ψ(x, z)), (8)

ẋ = f(x) + g(x)ψ(x, z) (9)
are bounded and satisfy

lim
t→∞

z(t) = 0. (10)

Then x∗ is a globally asymptotically stable equilibrium of
the closed-loop system

ẋ = f(x) + g(x)ψ(x, ϕ(x)). (11)

Taken from [20], this theorem provides us an explic-
it procedure to design stabilizing control laws for a class
of nonlinear systems. The objective is to find a manifold
M = {x ∈ Rn|x = π(ξ), ξ ∈ Rp} based on the sys-
tem (2) and the target dynamics (3). This manifold can be
rendered invariant and attractive, and such that the well-
defined restriction of the closed-loop system to M is de-
scribed by the target system. Note that the control input
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u that makes the manifold invariant is not unique, since
it is uniquely defined only on M. One possible control,
that drives the off-the-manifold coordinates z to zero and
keeps the system bounded, is selected. The I&I concept is
illustrated for p = 2 and n = 3 in Fig. 1.

Fig. 1 Illustration of the immersion and invariance approach

3 Main results
This section details the procedures for modified im-

mersion and invariance control for a class of nonlinear sys-
tems.
3.1 Controller design

First, the conditions of Theorem 1 must be verified.
Step 1 The objective here is to find a target dynam-

ics and immerse it into the original system (1). The dimen-
sion of this target dynamics is strictly lower than the origi-
nal system. From Eq. (1), the target dynamics are specified
as follows:

ξ̇1 = ξ2,

ξ̇2 = −∂V (ξ1)

∂ξ1
−R(ξ1, ξ2)ξ2, (12)

where ξ1, ξ2 ∈ R are two states of system (12), V (ξ1) :
R → R is potential energy, and R(ξ1, ξ2) : R × R → R
is a damping injection function. To ensure that the target
dynamics have an asymptotically stable equilibrium at the
origin, the following assumption is required.

Assumption 2 1) The damping injection function
R(ξ1, ξ2) is positive definite, i.e. R(0, 0) > 0.

2) The potential energy function V (ξ1) satisfies

V (ξ1)|ξ1=0 = 0,
∂V

∂ξ1
|ξ1=0 = 0 and

∂2V

∂ξ21
|ξ1=0 > 0.

A Lyapunov function is defined as follows:

H1(ξ1, ξ2) =
1

2
ξ22 + V (ξ1). (13)

The derivative of this positive function along the solution
of (12) is

Ḣ1 = ξ2ξ̇2 +
∂V

∂ξ1
ξ̇1 = −R(ξ1, ξ2)ξ22 . (14)

According to Assumption 2, Ḣ1 6 0 for t > 0. There-
fore, the target dynamic system (12) has an asymptotically
stable equilibrium at ξ1 = 0, ξ2 = 0.

Step 2 From the system (1), the immersion con-
dition of Theorem 1 requires rank(π(ξ)) = 2, so that a
natural choice of the mapping π(ξ) can be provided by

π(ξ) =

π1(ξ)π2(ξ)
π3(ξ)

 =

 ξ1
ξ2

π3(ξ1, ξ2)

 , (15)

where x1 = π1(ξ) = ξ1, x2 = π2(ξ) = ξ2, and
π3(ξ1, ξ2) : R × R → R is an unknown mapping. From

Eqs. (4)−(6), the relationships on the manifold M defined
in (22) are as follows:

f2(x1)+g2(x1)c(π(ξ))=− ∂V
∂ξ1

−R(ξ1, ξ2)ξ2, (16)

f3(x1) + c(π(ξ)) =
∂π3
∂ξ1

ξ̇1 +
∂π3
∂ξ2

ξ̇2, (17)

where c(π(ξ)) is a controller that ensures the manifold M
is invariant. This controller is not used, however, because
the manifold M cannot be rendered attractive. In other
words, c(π(ξ)) cannot make an off-the-manifold coordi-
nate, the distance from x to π(ξ), converge to zero in finite
time. After replacing the controller c(π(ξ)) from (17) into
(16) and making a few rearrangements, a partial differen-
tial equation (PDE) to be solved is as follows:

(g2(x1)
∂π3
∂x1

+∆(x)R(x1, x2))x2 =

g2(x1)f3(x1)− f2(x1)−∆(x)
∂V

∂x1
, (18)

where the funtion ∆(x) is defined as

∆(x1) = 1− g2(x1)
∂π3
∂x2

. (19)

According to Theorem 1, the PDE (18) could be solved

only if
∂V

∂x1
and R(x1, x2) are known. Two degrees of

freedom (DOF),
∂V

∂x1
and R(x1, x2), are then added. The

mapping π3(ξ) plays an important role in controller design,
where the following assumption is necessary.

Assumption 3 There exist a mapping π3 and pos-

itive constant σ > 0 such that
∂π3
∂x2

is independent of x2,

and consequently, |∆(0)| > σ > 0.

If Assumption 3 holds, the PDE (18) can be solved by
selecting

R(x1, x2) = −∆−1(x1)g2(x1)
∂π3
∂x1

, (20)

∂V

∂x1
= ∆−1(x1)(g2(x1)f3(x1)− f2(x1)). (21)

Eqs.(21) and (22) provide a selection of 1-dimensional
mapping functions π3 so that Assumption 3 holds. The ex-
plicit form of π3 can be obtained in terms of the specified
nonlinear systems.

Step 3 The application of the set identity (7) per-
mits the derivation of the following implicit manifold:

M = {x ∈ R3|ϕ(x) = 0} =

{x ∈ R3|x = π(ξ), ξ ∈ R2}. (22)

Step 4 The off-the-manifold coordinate z = ϕ(x)
is defined as follows:

z = ϕ(x) = x3 − π3(x1, x2). (23)

Then, considering a Lyapunov candidate function:

H2(z) =
1

2
z2, (24)

which can be differentiated along the solutions of (1)
and (12), and produces the following after straightforward
computations:
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Ḣ2(z) = z(ẋ3 − π̇3) =

z{∆(x1)ψ(x, z) + f3(x1)−
∂π3
∂x1

x2 −
∂π3
∂x2

f2(x1)}. (25)

The stabilizing controller ψ(x, ϕ(x)) for the system (1) is
obtained from Eq.(25) as such that the off-the-manifold co-
ordinate converges to equilibrium at z = 0 in finite time.
The explicit form of the controller follows:

ψ(x, z) = ∆−1(x1){−γsgn(z)− f3(x1) +

∂π3
∂x1

x2 +
∂π3
∂x2

f2(x1)}, (26)

where the parameter γ is a positive constant, and sgn(·)
denotes a sign function, i.e.

sgn z =

1, z > 0,
0, z = 0,
−1, z < 0.

(27)

Substituting (26) into (25) yields

Ḣ2(z) = −γ|z| < 0. (28)

Therefore, lim
t→∞

z(t) = 0.
All trajectories of the closed-loop system

ẋ1 = x2,

ẋ2 = f2(x1) + g2(x1)ψ(x, z),

ẋ3 = f3(x1) + ψ(x, z)

(29)

remain bounded, because the stabilizing controller is ob-
tained. In the following section, a summary of of this
method is proposed and the proof of stability is described.

3.2 Stability analysis
Stabilization can be summarized via the finite-time

attractivity-based immersion and invariance control as fol-
lows.

Proposition 1 Consider a class of nonlinear sys-
tems (1) that satisfies Assumption 1, and equilibrium
x∗(t). Then, all trajectories of closed-loop system (1) and
off-the-manifold dynamics are bounded, and lim

t→∞
x(t) =

x∗(t) holds.

Prior to the stability proof, an assumption is necessary.
Assumption 4 There exists ϵ1, ϵ2, ϵ3 > 0, such

that |∆(x1)| > ϵ1, R(x1, x2) > ϵ2, and |g2(x1)| 6 ϵ3.

Proof Stability analysis is completed by proving that
there exists a set of initial conditions (x(0), z(0)) such that
the corresponding trajectories x(t) of (29) are bounded.
From (20) and (21) and after some simple calculations, all
trajectories of the system (29) can be rewritten as follows:

ẋ1 = x2,

ẋ2=− ∂V

∂x1
−R(x1, x2)x2−γg2(x2)∆−1(x1)sgn z,

ż = −γsgn z.
(30)

Consider a positive definite function

H3(x1, x2) =
1

2
x22 + V (x1), (31)

the derivative of which, along the trajectories of (30), is

Ḣ3(z) = −R(x1, x2)x22 − γ∆−1(x1)x2g2(x1)sgn z.
(32)

All trajectories of the system (29) are bounded on t ∈
(0,∞). Two cases should be considered: 1) t <

z0
γ

, and

2) t > z0
γ

.

Case 1 t<
z0
γ

. In this case, z(t)<z(0), and Eq.(32)

satisfies the following:

Ḣ3(z) 6 −ϵ2x22 +
ϵ3
ϵ1
|x2|γ 6 ϵ23γ

2

4ϵ2ϵ21
, (33)

where the second inequality follows from Young’s inequal-
ity. In other words, the above inequality shows that the
system energy is bounded.

Case 2 t> z0
γ

. In this case, z(t) = 0, and Ḣ3(z) 6
−ϵ2x22 is easily obtained.

Hence there exists a ball around zero and a finite time
tf , where all trajectories starting from all initial conditions
converge in the ball at tf , then converge to equilibrium
asymptotically. The boundedness of x3 is expressed as

x3(t) = z(t) + π3(x1(t), x2(t))− z(0) + x3(0).

(34)

According to the boundedness of x1, x2, then x3 ∈ L∞.

3.3 Speed of manifold response
In this section, the finite time tf , from which the off-

the-manifold coordinate z can be rendered attractive, is
computed.

Proposition 2 Considering a manifold (7), all tra-
jectories of the n-dimensional closed-loop systems con-
verge to the manifold M in finite time tf for any initial
condition z(0) = z0, and the attractivity of the manifold is
described by lim

t→tf
z(t) = 0.

Proof Due to the fact that
n∑

i=1

|zi| > ∥z∥, (35)

where ∥ · ∥ represents the Euclidean norm, γ is defined by

γ = min{γi} (36)

for γi > 0, i = 1, · · · , n. Thus

−
n∑

i=1

|zi|γi 6 −∥z∥γi 6 −∥z∥γ. (37)

Considering a positive definite function

H(z) =
1

2
zTz =

1

2
∥z∥2, (38)

the derivative along the trajectories of ż = −Σ(z)γ is pro-
vided by

Ḣ(z) = (−Σ(z)γ)Tz (39)

with

Σ(z) =


sgn z1 0 · · · 0
0 sgn z2 0 0
...

...
...

...
0 0 0 sgn zn

 . (40)
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Then,

Ḣ(z) = −
n∑

i=1

γi|zi| 6 −
√
2Hγ. (41)

Integrating the differential inequality,

H(z(t)) 6 (
√
H(z(0))− 1√

2
γt)2, (42)

∥z∥ 6
√

2H(z(0))− γt. (43)

According to H(z(0)) =
1

2
∥z0∥2,

0 6 ∥z∥ 6 ∥z0∥ − γt. (44)

Therefore, the finite time tf is provided by

tf =
∥z0∥
γ

(45)

and the off-the-manifold coordinate z(t) converges to
equilibrium at tf from an initial condition z0.

Remark 1 The dimension of the manifold dynamics
(23) is one, so that the attractivity of finite time is tf =

z0
γ

.

3.4 Disturbance rejection
This section analyzes the disturbance rejection using

the proposed finite-time control law. A class of nonlinear
systems in the presence of bounded unknown disturbance
is described as follows:

ẋ1 = x2,

ẋ2 = f2(x1) + g2(x1)u,

ẋ3 = f3(x1) + u+ d(t),

(46)

where all variables are defined above. With regards to this
study’s objective, an Assumption is necessary.

Assumption 5 In general, the external disturbance
d(t) is time-varying and bounded, i.e., ∥d(t)∥ 6 δ, where
δ is a positive constant.

By selecting the controller (26), the derivative of
H2(z) is rewritten as

Ḣ2(z) = −γ∥z∥+ d(t)z 6 −(γ − δ)∥z∥. (47)

The design parameter γ is set to γ > δ to ensure that the
term (γ − δ)∥z∥ is positive, so Ḣ2(z) 6 0.

When computing the finite time, the disturbance must
also be considered. From Eq.(45), the finite time tf is ex-
pressed as follows:

tf =
∥z0∥
γ − δ

, (48)

where γ is defined as γ = min{γi}. Therefore, the at-
tractivity of finite time for the manifold coordinate (23) is

tf =
z0

γ − δ
.

Remark 2 The manifold is insensitive to unknown
bounded disturbance. Accordingly, the robustness of stabiliza-
tion of the nonlinear system (1) with the proposed finite-time
controller can be ensured.

4 A cart-pendulum system
This section describes the construction of a cart-

pendulum system as an example of mastering the modified
I & I technique (see Fig. 2).

Fig. 2 The cart-pendulum system

A partial feedback linearization stage is assumed to
have been applied[21]. After normalization, the state equa-
tion becomes:

ẋ1 = x2,

ẋ2 = a sinx1 + b cosx1u,

ẋ3 = u,

(49)

where x1 and x2 ∈ R are the pendulum angle with respect
to the upright vertical axis and its velocity, respectively,
x3 ∈ R is the velocity of the cart, and u ∈ R is the control
input. The positive constants a > 0 and b > 0 are physical
parameters. The equilibrium to be stabilized is the upward
position of the pendulum after the cart stops, which corre-
sponds to x∗ = 0. The state equation (49) has the same
form as the system (1), i.e.:

f2(x1) = a sin x1,

g2(x1) = −b cos x1,
f3(x1) = 0,

(50)

and Assumption 1 is automatically satisfied. From Eq.(26),
the I & I stabilizing control law is specified by the follow-
ing:

ψ(x, z)=
1

∆(x1, x2)
(−Σ(z)γ+

∂π3
∂x1

x2+
∂π3
∂x2

a sinx1),

(51)

where π3 and ∆ are obtained based on Assumptions 2−3.
∆ plays a fundamental role in the stabilization of closed-
loop systems. Select the following:

π3 = −k1x1 − k2
x2

cos x1
, (52)

∆ = 1− k2b (53)

with k1 > 0, k2 > 0, so the stabilizing control law for the
cart-pendulum system becomes

ψ(x) = − 1

1− k2b
{−sgn(x3 − π3)γ +

(k1 +
k2x2 sinx1
cos2 x1

)x2 + k2a tanx1} (54)

with γ > 0. Replacing the explicit form f2(x), g2(x) and
f3(x), the stability proof can be completed. (This proce-
dure is omitted for brevity.)
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Note that V has an isolated global minimum at zero
and ∆ is a constant. The controller is not globally de-

fined because x1 has a singularity at
π

2
. The proposed

stabilizing control law was implemented on a MATLAB
Simulink simulation. It was assumed that a = 24.5, b =
2.5. The domain of attraction for the cart-pendulum sys-
tem was (−π

2
,
π

2
). The initial conditions were x(0) =

(
π

2
− 0.1, 0, 0), and parameters were k1 = 5, k2 = 3,

and γ = 5. Simulation results are shown in Figs. 3−5.
Fig. 3 shows that the state variables x1, x2, and x3 con-
verge to zero at time t = 5 s, with the proposed I & I
method. Convergence to zero at a high speed was achieved.
Fig. 4 displays the curves of the corresponding input of the
system (1). Fig. 5 shows that the off-the-manifold coor-
dinate z converged to equilibrium in finite time tf . From
z(0) = x3(0)− π3(x1(0), x2(0)) = 7.354, the finite time
tf = 1.47 s is obtained by replacing the initial condition in
(45).

Fig. 3 Simulation of trajectories of states for
the cart-pendulum system

Fig. 4 Simulation of control input for the cart-pendulum
system

Fig. 5 Simulation of the off-the-manifold coordinate for
the cart-pendulum system

Simulation results conducted for disturbance d(t) =

5 cos(1.5t +
π

6
) at 10 ∼ 15 s are shown in Figs. 6−8. Pa-

rameters were k1 = 5, k2 = 3, and γ = 9. A slight fluc-
tuation in x1 can be observed at 10 ∼ 15 s in Fig. 6, the
amplitude of which is about 0.5 rad. Fig. 7 shows that the
control input converged to zero after a sine disturbance at
10 ∼ 15 s, whereas the response curve oscillated at the
zero point. Fig. 8 shows that manifold z was rendered in-
sensitive to bounded disturbance.

The mode of the system response was inclined to chat-
ter along z = 0, as shown in Figs. 4 and 7. The reason
for manifold chatter is that the attractivity speed was lim-
ited, and inertia existed in the system. Rejecting manifold
chatter is the primary objective of our laboratory’s future
research.

Remark 3 The off-the-manifold coordinate depicted
in Figs. 5 and 8 converged to zero in finite time with the pro-
posed I & I method. That said, manifold chatter directly affect-
ed the control input and reduced the performance of the closed-
loop system (1).

Fig. 6 Simulation of trajectories of states for
the cart-pendulum system with
a bounded disturbance
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Fig. 7 Simulation of control input for the cart-pendulum
system with a bounded disturbance

Fig. 8 Simulation of the off-the-manifold coordinate for
the cart-pendulum system with
a bounded disturbance

5 Conclusions
This study developed a finite-time attractivity-based

immersion and invariance control for a class of nonlinear
systems. This novel approach modified the standard im-
mersion and invariance theorem and focused on compu-
tations of finite time. The controller design was detailed
above, and stability proofs were provided. A manifold
was successfully designed to be insensitive to bounded un-
known disturbance by implementing the finite-time attrac-
tivity controller. Controller performance was demonstrat-
ed using a cart-pendulum system with various simulations.
Clearly, the proposed control algorithm is effective for this
class of nonlinear systems.
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