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摘要:本文针对一类由状态相互耦合的子系统组成的分布式系统,提出了一种可以处理输入约束的保证稳定性的非
迭代协调分布式预测控制方法(distributed model predictive control, DMPC).该方法中,每个控制器在求解控制率时只与
其它控制器通信一次来满足系统对通信负荷限制;同时,通过优化全局性能指标来提高优化性能.另外,该方法在优化
问题中加入了一致性约束来限制关联子系统的估计状态与当前时刻更新的状态之间的偏差,进而保证各子系统优化问
题初始可行时,后续时刻相继可行. 在此基础上,通过加入终端约束来保证闭环系统渐进稳定. 该方法能够在使用较少
的通信和计算负荷情况下,提高系统优化性能.即使对于强耦合系统同样能够保证优化问题的递推可行性和闭环系统的
渐进稳定性. 仿真结果验证了本文所提出方法的有效性.
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Global stabilizing distributed model predictive control systems with
limited communication

ZHENG Yi, LI Shao-yuan†, WEI Yong-song
(Department of Automation, Shanghai Jiao Tong University, Key Laboratory of System Control and Information Processing,

Ministry of Education of China, Shanghai 200240.)

Abstract: A novel stabilized distributed model predictive control (DMPC) with input constraints and global cost
optimization coordination strategy is proposed for spatially distributed coupling systems which are presented by states
interacted models. The distributed controllers make decisions locally and merely communicate once a control period with
each others. Cooperation is promoted by consideration of the system-wide objective by each local controller. Consistency
constraints, which bound the estimation errors of the interaction sequences among subsystems, are designed to guarantee
that, if an initially feasible solution can be found, subsequent feasibility of the algorithm is guaranteed at every update, and
that the closed-loop system is asymptotically stable. The proposed control algorithm could reduce the communication and
computation loads with improved performance of entire systems, and guarantee the recursive feasibility and the asympto-
tically stability even when the controlled subsystems are strong coupled. Simulation results show that the performance of
the proposed DMPC is very close to that of a centralized model predictive control (MPC).
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1 Introduction
Many large scale and spatially distributed sys-

tems, such as power networks, smart grids[1], large
scale chemical processes and hydro power plants[2],
motivate the development of distributed control
framework. The distributed model predictive con-
trol (DMPC), which controls each subsystem by a
separate local model predictive control (MPC) has
been more and more popular[3] since it not only inhe-
rits MPC’s ability of explicitly accommodating con-
straints[4–10], but also possesses the advantages of
the distributed framework of fault-tolerance and less
computation[11–12].

The performance of a DMPC is, in most cases,

not as good as that of a centralized MPC[11–13]. And
a large communication loads may destroy the real-
time control of DMPC although the information of the
whole system is usually available to all subsystems in
the most used industrial automation systems. Thus,
how to design a stabilized DMPC which could im-
prove the global performance of the closed-loop sys-
tem with limited local computation and communica-
tion loads has been a very important topic issued from
industries.

Many DMPC algorithms have appeared in the lit-
erature for different types of systems and for diff-
erent problems in the design of DMPC, e.g. design
of DMPC for nonlinear systems[14], uncertain sys-
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tems[15–16], and networked systems with time de-
lay[17], development of distributed optimization al-
gorithms[18–19], and design of cooperative strategies
for improving performance of DMPC[20–21], as well
as the design of control structure[22]. Among them,
several coordination strategies focus on studying how
to improve the system-wide performance. The ear-
liest and most adopted one is that each local MPC
uses the inputs sequences of its neighbors to estimate
the interactions among subsystems, then minimizes
its own cost[23], we call it as local cost optimization
based DMPC (LCO--DMPC). References [24] and
[25] give two design methods for guaranteeing the
stability. To guarantee the recursive feasibility, the
algorithm uses a consistent constraints to limits the
error between the presumed sequences of upstream
neighbors, which are calculated based on the solu-
tion in the previous time instant, and the predictive
states calculated by the corresponding subsystem in
the current time instant. Then the stability is ensured
by adding additional stabilization constraints, and ju-
diciously integrating designs of the bound of the er-
ror[24], and the terminal constraint set. Furthermore,
an iterative version of LCO--DMPC is developed
in [26], by which the Nash Optimality of the closed-
loop system can be achieved. Another commonly
used coordination strategy, called impact-region cost
optimization based DMPC, is proposed by [27–28],
where each local MPC takes not only it’s own per-
formance but also that of the subsystems it directly
impacts on into account in its optimization index. In
addition, references [12] and [28] give another kind
of cooperative algorithms, called cooperative DM-
PC, where each local MPC optimizes the cost over
the entire system to improve the global performance
of closed-loop system, and uses iterative algorithm
to make the presumed states converge to the predic-
tive states, then guarantees the stability by integrat-
ing terminal constraints. The Pareto Optimality of the
closed-loop system can be obtained by this method.
There are also several other strategies. e.g. refer-
ence [30] develops a dual decomposition based DM-
PC which uses Lagrange multipliers in order to relax
the coupling between different agents. These multi-
pliers can be seen as prices in a market mechanism,
by means of which an agreement between the solu-
tions of the different sub-problems is achieved. Refer-
ence [31] gives a sensitivity based DMPC to improve
the robustness of the system. In [32], a comparison of
parallel versus serial schemes is presented. The appli-
cation areas of all these approaches are complemen-
tary. Each method possesses its own strengths and
weaknesses. The practitioner, using knowledge and
experience, must choose the control algorithm that is
more appropriate for the problem at hand.

Consider that the cooperative DMPC can signifi-

cant improve the global performance of entire system
when the global information is available for each lo-
cal MPC[11, 20], and the iterative algorithms dramati-
cally increase network communication burdens with
the expansion of the scale of inputs and states of
system since each subsystems exchange information
with each other many times in one sampling time, the
non-iterative Cooperative DMPC where each subsys-
tems communicating once a control period may be
a good strategy for providing a good global perfor-
mance with limited local computation and communi-
cation loads.

Control design that takes state and/or input con-
straints into account, whether or not under the M-
PC framework, is an important and challenging prob-
lem. For the coordination strategy used here, there
is no convergence condition can be used comparing
to [12, 29]. And comparing to [24], excepted that
there are errors between the presumed state/input se-
quences and predictive state sequences of upstream
neighbors, the predictive state sequences of all sub-
systems calculated by current subsystem may not
equal to those calculated by the others themselves,
these error are hard to estimated, which makes it
difficult to construct a feasible solution in the cur-
rent time instant. In addition, the method in [24] us-
es an additional stability constraints to guarantee the
asymptotically stability, which will further effect the
optimization performance of the closed-system. To
remove these constraints is also a problem. As a re-
sult, the existing methods for the design of stabiliz-
ing DMPC[12,24−25,28] are hard to be directly adopted
to develop a stabilized global cost optimization based
DMPC which communication once in a control peri-
od for spatial distributed coupling systems. All these
make it difficult to design a stabilizing DMPC with
limited local cooperation.

In this paper, a novel DMPC design method is
proposed, where each local MPC optimizes the cost
of the whole system and communicates with each oth-
er once a control period. The constrains which limit
the errors between the optimal inputs sequences cal-
culated at the previous time instant and the optimal
inputs sequences calculated at the current time instant
to within a prescribed bound, are designed and includ-
ed in the optimization problem of each local MPC,
which guarantee the recursive feasibility of proposed
method. These inputs constraints combing with du-
al mode predictive control[25, 33–34] strategy also guar-
antee the asymptotically stabilizing of the resulting
closed-loop system without any additional stability
constraints except the terminal cost and terminal con-
straints set. The contributed of this method are
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· improve the performance of entire closed-loop
system with fast computation speed and limited com-
munication loads;
· guarantee the recursive feasibility and asymp-

totically stability even the interactions among subsys-
tems is very strong;
· give a DMPC design method for the systems

which are presented by state interacted models.
The remainder of this paper is organized as fol-

lows. Section 2 describes the problem to be solved
in this paper. Section 3 presents the design of the
proposed stabilized DMPC. The recursive feasibility
and the stability are analyzed in Section 4. Section
5 presents the simulation results to demonstrate the
effectiveness of the proposed DMPC. Finally, a brief
conclusion to the paper is drawn in Section 6.
2 Problem formulation

Consider a spatially distributed system, as illus-
trated in Fig. 1, which is composed of many physical-
ly partitioned interacted subsystems, and each subsys-
tem is controlled by a local controller which in turn
is able to exchange information with other local con-
trollers.

Fig. 1 An illustration of the structure of distributed system
and distributed control framework

Without losing of generality, suppose that the
whole system is composed of m discrete-time linear
subsystems i ∈ P, P = {1, · · · ,m}. Let the sub-
systems interact with each other through their states.
Then, subsystem Si can be expressed asxi,k+1 = Aiixi,k+Biiui,k+

∑
j∈P+i

Aijxj,k,

yi,k = Ciixi,k,
(1)

where xi ∈ Rnxi , ui ∈ Ui ⊂ Rnui and yi ∈ Rnyi

are respectively the local state, input and output vec-
tors, and Ui is the feasible set of the input ui, which
is used to bound the input according to the physical
constraints on the actuators, the control requirements
or the characteristics of the plant. A non-zero matrix
Aij , indicates that Si is affected by Sj , j ∈ P and
subsystem Sj is said to be an upstream system of Si,

Si is downstream system of Sj . Let P+i denote the
set of the subscripts of the upstream systems of Si,
that is, j ∈ P+i, and set P−i be the set of the sub-
scripts of the downstream systems of Si. In addition,
set Pi = {j|j ∈ P , and j ̸= i}. In the concatenated
vector form, the system dynamics can be written as{

xk+1 = Axk +Buk,
yk = Cxk,

(2)

where x= [xT1 xT2 · · · xTm]T∈Rnx , u= [uT1 uT2 · · ·
uTm]T ∈ Rnu and y = [yT1 yT2 · · · yTm]T ∈ Rny are
respectively the concatenated state, control input and
output vectors of the overall system S, and A, B and
C are constant matrices of appropriate dimensions.
Also, u ∈ U = U1 × U2 × · · · × Um and U contain a
neighborhood of the origin.

The control objective is to stabilize the overall
system S in an DMPC framework with limited com-
munication resources. Meanwhile, the performance
of closed-loop system should be as close as possible
to the performance of the closed-system under control
of a centralized MPC.

3 DMPC with limited local cooperation
In this Section, m separate optimal control prob-

lems, one for each subsystem, and the DMPC with
limited local cooperation (LLC--DMPC) which com-
municates once a control period is defined. In every
distributed optimal control problem, the same con-
stant prediction horizon N, N > 1, is used. And
every distributed MPC law is updated globally syn-
chronously. At each update, every local MPC opti-
mizes only for its own open-loop control sequence,
given the current states and the estimated inputs of
the whole system.

To proceed, we need the following assumption,
and we also define the necessary notation in Table 1.

Assumption 1 For every subsystem i ∈ P ,
there exist a state feedback ui = Kix such that the
closed-loop system xk+1 = Acxk is asymptotically
stable, where

Ac = A+BK,

K = [KT
1 KT

2 · · · KT
m]T.

Remark 1 This assumption is very loose, it only pre-
sumes that the whole subsystem is able to be stabilized by a
feed-back control Kx. The control gain K can be obtained by
LMI or LQR technology. Another normal assumption in the
design of stabilized DMPC is that each subsystem is able to
be stabilized by a decentralized control Kixi, i ∈ P [24–25]. It
means that the algorithms are designed for weakly coupled sys-
tem and is more restricted than Assumption 1. There is no any
requirements on the strength of the interactions among subsys-
tems in Assumption 1.
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Table 1 Notation

Notation Explanation

P the set of the subscripts of all subsystems

Pi
the set of the subscripts of all subsystems

excluding S itself
+i all upstream subsystem of Si

−i all downstream subsystem of Si

ui,k+l−1|k
the optimal control sequence of Si

calculated by Ci at time k

x̂j,k+l|k,i
the predicted state sequence of Sj

calculated by Ci at time k

x̂k+ l|k,i
the predicted state sequence of all

subsystems calculated by Ci at time k

ufi,k+l−1|k
the feasible control at time k + l − 1 of Si

defined by Ci at time k

xfj,k+l|k,i
the predictive feasible state sequence of Sj

defined by Ci at time k

xfk+ l|k,i
the predictive feasible state sequence of all

subsystems calculated by Ci at time k

xfk+ l|k the predictive feasible state sequence of all
subsystems, and xfk+l|k = [xf1,k+l|k
xf2,k+l|k · · · xfm,k+l|k]

T

|| · ||P
refer to the P norm, P is any positive matrix,

and ||z||P =
√

xTk Pxk,

As the state evolution of subsystem Sj , j ∈ P−i,
is affected by the optimal control decision of Si, and
the affection on the control performance of subsystem
Sj may be negatively sometime. Thus, the idea of
global cost optimization[12, 20] is adopted here, that is
each local MPC takes the cost function of all subsys-
tems into account, more specifically, the performance
index is defined as

J̄i,k = ∥x̂k+N |k,i∥P +

N−1∑
l=0

(∥x̂k+ l|k,i∥Q+ ∥ui,k+l|k∥Ri
), (3)

where

P = PT > 0, Q = QT > 0,

Ri = RT
i > 0, R = diag{R1, R2, · · · , Rm},

and P is chosen to satisfy the Lyapunov equation:

AT
c PAc − P = −(Q+KTRK). (4)

Since every local controller updates synchronous-
ly, the control sequences Sj , j ∈ Pi are unknown to
subsystem Si. Thus, at the time instant k, presume the
control sequence of Sj , j ∈ Pi be the optimal control
sequence calculated by Cj at time k− 1 concatenated
with the feedback control law, that is

[uj,k|k−1uj,k+1|k−1 · · ·
uj,k+N−2|k−1Kj x̂k+N−1|k−1,j ]. (5)

Then, the predictive model in the MPC for Si is
expressed as

x̂k+l|k,i =Alxk +
l∑

h=1

Al−hB̄iui,k+h−1|k +

∑
j∈Pi

l∑
h=1

Al−hB̄juj,k+h−1|k−1, (6)

where, for ∀i and j ∈ Pi,

B̄i = [0nui×Σj<inxj Bi 0
nui×Σj>inxj ]T. (7)

In addition, to enlarge the feasible region, a ter-
minal state constraint is included in each local MPC.
The terminal state constraint set should guarantee that
the terminal controllers are stabilizing inside it.

From Assumption 1, in the optimization problem
of each local MPC, the terminal state constraint set
for S can be set to be

Ω(ε) = {x ∈ Rnx |∥x∥P 6 ε}, (8)

where ε is small enough positive scalar such that Kx
is in the feasible input set U ⊂ Rnu for all x ∈ Ω(ε).

Suppose that at some time k0, x(k0) ∈ Ω(ε) for
every subsystem, then stabilization can be achieved if
every Ci, i ∈ P employs its static feedback controller
Kix(k) for all time k > k0. Thus, the objective of the
MPC law is to drive states of all subsystems to the set
Ω(ε). In what follows, we formulate the optimization
problem for each local MPC.

Problem 1 Consider subsystem Si. Let the up-
date time be k > 1. Given xk, and uk+l|k−1, l = 0, 1,
· · · , N − 1, find the control sequence ui,k+l|k : {0, 1,
· · · , N − 1} → Ui that minimizes the performance
index

J̄i,k = ∥x̂k+N |k,i∥P +

N−1∑
l=0

(∥x̂k+ l|k,i∥Q + ∥ui,k+l|k∥Ri
),

subject to the constraints:

Equation (6)
l∑

h=0

βl−h∥ui,k+h|k − ui,k+h|k−1∥2 6
γκαε

m− 1
,

l = 1, 2, · · · , N − 1,

(9)

ui,k+ l−1|k ∈ Ui, l = 1, 2, · · · , N − 1, (10)

x̂k+N |k,i ∈ Ω(αε). (11)

In the constraints above,

βl = max
i∈P

(λmax((A
lB̄i)

TPAlB̄i)
1
2 ), (12)

where l = 0, 1, · · · , N − 1. The constant 0 < κ <
1, 0 < α < 0.5 and γ > 0 are design parameters,
and

κ 6 1− λmax(
√

AT
c Ac). (13)

The consistency constraints (9) requires that each op-
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timal manipulated variables remain close to the pre-
sumed sequence. It is a key equation in proving that
xf·|k,i is a feasible state sequence at each update.

Remark 2 It should be noticed that following three
restrictions (or assumptions) should be considered when using
the LLC--DMPC: a) there are no directly couplings through in-
puts among subsystems; b) there are no constraints on states
and outputs, or there are other measures to limit states and out-
puts; c) there is no coupling constraints.

Before stating the LLC--DMPC algorithm, an as-
sumption is made to facilitate the initialization phase.

Assumption 2 At initial time k0, there exis-
ts a feasible control ui,k0+l ∈ Ui, l ∈ {1, · · · , N},
for each Si, such that the solution to the full system
xl+1+k0 = Axl+k0 + Bul+k0 , denoted x̂·|k0,i, satis-
fies x̂N+k0|k0,i ∈ Ω(αε) and results in a bounded cost
J̄i,k0 .

Remark 3 Assumption 2 bypasses the task of actu-
ally constructing an initially feasible solution in a distributed
way. In fact, one way to obtain an initially feasible solution
is to solve the corresponding centralized MPC solution at the
initial time instant.

The dual-mode LLC--MPC law for any Si, which
communicates once every update, is as follows.

Algorithm 1
Step 1 Initialization at time k0.
· Initialize xk0 , uk0+l−1|k0 , l = 1, 2, · · · , N .
Step 2 Update control law at time k.
· Measure xi,k; Transmit xi,k and ui,k+l|k to all

other subsystems; Receive xj,k and uj,k+l−1|k−1, j ∈
Pi from all Sj ;
· If xk ∈ Ω(ε), then apply the terminal con-

troller ui,k = Kixk; Else
· Solve Problem 1 for ui,k+ l−1|k and apply

ui,k|k to Si;
Step 3 Update control at time k + 1.
· Let k + 1 → k, repeat Step 2.

In the next section, it is shown that the LLC--MPC
policy drives the state xk+l to Ω(ε) in a finite number
of updates and the state remains in Ω(ε) for all future
time. And the analysis of the feasibility and stability
of LLC--DMPC algorithm is proceeded as follows.
4 Performance analysis
4.1 Feasibility

The main result of this subsection is that, provid-
ed an initially feasible solution is available, for any Si

and at any time k > 1, ui,·|k = ufi,·|k is a feasible con-

trol solution to Problem 1. Here, uf·|k is the reminder
of previous control concatenating with a feedback

control, that is

ufi,k+ l−1|k=

{
ui,k+ l−1|k−1, l = 1, · · · , N − 1,

Kix
f
k+N−1|k,i, l = N,

(14)

and xfk+l|k,i, l = 1, 2, · · · , N , can be expressed as

xfk+ l|k,i =Alxk +
l∑

h=1

Al−hB̄iu
f
i,k+h−1|k +∑

j∈Pi

l∑
h=1

Al−hB̄juj,k+h−1|k−1. (15)

Substitute (14) into (15), we have that

xfk+ l|k,i=xfk+ l|k,j = xfk+ l|k, l=1, 2, · · · , N, (16)

xfk+N |k = Acx
f
k+N−1|k. (17)

The control ufi,·|k is a feasible solution to Problem
1 for any Si and at any update k > 1 refers to that
the control ufi,·|k satisfies equation (9) and the control
constraints (10), and the corresponding state xfk+N |k
satisfies the terminal state constraint (11).

To establish this feasibility result, define that the
state x̂k+N |k−1,i to be the closed-loop response of

x̂k+N |k−1,i = Acx̂k+N−1|k−1,i. (18)

Here, the state x̂k+N |k−1,i does not equal to the result
of substituting ui,k+N−1|k−1 into (6). It is because
that x̂k+N |k−1,i is only a middle variable used in the
proof of feasibility, and do not impact on the opti-
mization problem and stability.

In this section, Lemma 1 identifies that
x̂k+N |k−1,i ∈ Ω(αε′). Then Lemma 2 identifies suffi-
cient conditions to ensure that ∥xfk+ l|k−x̂k+ l|k,i∥P 6
γκαε, for every i ∈ P . Lemma 3 establishes the con-
trol constraint feasibility. Finally, Theorem 1 com-
bines the results in Lemmas 1–4 to arrive at the con-
clusion that, for any i ∈ P , the control ufk+l|k,i is a
feasible solution to Problem 1 at any update k > 1.

Lemma 1 If the condition (13) is satisfied, ∀i
∈ P , it has

x̂k+N |k−1,i ∈ Ω(αε′), (19)

provided that x̂k+N−1|k−1,i ∈ Ω(αε) and ε′ = (1 −
κ)ε.

Proof Consider that Ω(ε) is the ε--level set of
the Lyapunov function of the closed-loop dynamics
xk+1 = Acxk. Therefore, under the condition (13), it
has ||xk+N ||P < (1 − κ)||xk−N−1||P , and the proof
of Lemma 1 is completed.

Lemma 2 Suppose that Assumptions 1–2 hold
and xk0 ∈ X , for any k > 0, if Problem 1 has a solu-
tion at every update time 0, · · · , k − 1, then
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∥xfk+ l|k − x̂k+ l|k,i∥P 6 γκαε, (20)

where 0 < γ < 1 is a design parameter, for ∀i ∈ P, j
∈ Pi, and all l ∈ {1, · · · , N}. In addition, ufi,k+l−1|k,

l = 1, 2, · · · , N − 1 satisfies the constraint (9).

Proof First we will prove (20), provided there is
a solution at update time 0, 1, 2, · · · , k−1. Substitute
(14) into (15) and consider that xk = Axk−1 +∑
i∈P

B̄iui,k−1|k−1, for any l = 1, 2, · · · , N−1, the fea-

sible state is given by

xfk+ l|k =Al+1xk−1+
l∑

h=0

Al−hB̄iui,k+h−1|k−1 +

∑
j∈Pi

l∑
h=0

Al−hB̄juj,k+h−1|k−1. (21)

The state predicted at time k − 1 is given by

x̂k+ l|k−1,i =Al+1xk−1+
l∑

h=0

Al−hB̄iui,k+h−1|k−1+

∑
j∈Pi

l∑
h=0

Al−hB̄juj,k+h−1|k−2. (22)

Subtract (21) from (22), then discrepancy between the
feasible state sequence and the state sequence predict-
ed at time k − 1 is obtained as

∥xfk+ l|k − x̂k+ l|k−1,i∥P =

∥
l∑

h=0

∑
j∈Pi

Al−hB̄j(uj,k+h−1|k−1−uj,k+h−1|k−2)∥P .

(23)

Let Sr be the subsystem which maximizes
l∑

h=0

βl−h∥ui,k+h−1|k−1 − ui,k+h−1|k−2∥2, i ∈ P.

(24)

Then, the following equation can be deduced from
(23)

||xfk+ l|k − x̂k+ l|k−1,i||P 6
l∑

h=0

βl−h∥ur,k+h−1|k−1 − ur,k+h−1|k−2∥2. (25)

Since there is a solution at update time 0, 1, 2, · · ·, k−
1,
∀i ∈ P satisfied the constraint (9), for all l = 1, 2,
· · · , N − 1, it has
l∑

h=0

βl−h∥ur,k+h−1|k−1− ur,k+h−1|k−2∥26
γκαε

(m−1)
.

(26)

Then, for l = 1, 2, · · · , N−1, following equation can
be deduced

∥xfk+ l|k − x̂k+ l|k−1,i∥P 6 γκαε. (27)

Thus, (20) hold for all l = 1, 2, · · · , N − 1.

When l = N , from (17) and (18), it has

∥xfk+N |k − x̂k+N |k−1,i∥P 6
λmax(A

T
c Ac)∥xfk+N−1|k − x̂k+N−1|k−1,i∥P 6

(1− κ)γκαε. (28)

Consequently, (20) hold for all l = 1, 2, · · · , N .
In addition, from definition (14), it has ufi,k+l−1|k

− ui,k+l−1|k−1 = 0. Thus ufi,k+l−1|k satisfied con-
straints (9) when l = 1, 2, · · · , N − 1. The proof is
completed.

Lemma 3 Suppose that Assumptions 1–2 hold,
xk0 ∈ X , and the conditions (13) and (20) are sat-
isfied. For any k > 0, if Problem 1 has a solu-
tion at every update time t, t = 0, · · · , k − 1, then
ufi,k+ l−1|k ∈ U for all l = 1, 2, · · · , N , and for any
i ∈ P .

Proof Since Problem 1 has a feasible solution at
k − 1, and ufi,k+ l−1|k = ui,k+ l−1|k−1 for all l ∈ {1,
· · · , N − 1}, it need only be shown that the
ufi,k+N−1|k is in U .

Since ε is chosen satisfy that Kix ∈ U for
all i ∈ P when x ∈ Ω(ε). Consequently, a sufficient
condition for ufi,k+N−1|k is that xfk+N−1|k ∈ Ω(ε).

In view of Lemma 1, Lemma 2 and α 6 0.5, us-
ing the triangle inequality, it has

∥xfk+N−1|k∥P 6
∥xfk+N−1|k − x̂k+N−1|k−1∥P + ∥x̂k+N−1|k−1∥P 6
γκαε+ αε 6 ε, (29)

that is, xfk+N−1|k ∈ Ω(ε), ∀i ∈ P . This concludes
the proof.

Lemma 4 Suppose that Assumptions 1 and 2
hold, xk0 ∈ X , and the conditions (13) and (20) are
satisfied. For any k > 0, if Problem 1 has a solution
at every update time t, t = 0, · · · , k − 1, then the
terminal state constraint is satisfied, for any i ∈ P .

Proof Since there is a solution for Problem 1 at
updates t = 1, · · · , k − 1, Lemmas 1–3 can be in-
voked. Using the triangle inequality, it has

∥xfk+N |k∥P 6
∥xfk+N |k − x̂k+N |k−1,i∥P + ∥x̂k+N |k−1,i∥P 6
(1− κ)γκαε+ (1− κ)αε 6 αε, (30)

for each i ∈ P . This shows that the terminal state
constraint is satisfied.

Theorem 1 Suppose that Assumptions 1 and 2
hold, xk0 ∈ X and equations (9)–(11) are satisfied
at k0. Then, for every i ∈ P , the control ufi,·|k and
state xf·|k, defined by (14)(15) and (17), is a feasible
solution to Problem 1 at every update k > 1.
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Proof Suppose ui,·|t = ufi,·|t is a feasible solu-
tion for t = 1, · · · , k − 1. Lemmas 1–4 can be in-
voked. The consistency constraints (9) are trivially
satisfied, the feasibility of control constraint and the
terminal state constraint is guaranteed, and the proof
of Theorem 1 is completed.
4.2 Stability

By Algorithm 1, if xk ∈ Ω(ε) for any k > 0, the
terminal controllers take over and stabilize the system
to the origin. Therefore, to present the asymptotical-
ly stability of the closed-loop system with proposed
DMPC, it remains to show that if xk0 ∈ X\Ω(ε),
then by application of Algorithm 1, the closed-loop
system (2) is driven to the set in finite time.

Define the non-negative function Vk for all system

S, Vk =
m∑
i=1

Vk,i, and

Vk,i = J̄i,k. (31)

Theorem 2 Suppose that Assumptions 1 and 2
hold, xk0 ∈ X , (9)–(11) are satisfied, and the follow-
ing parametric conditions hold

ρ− α(0.42 + ((N − 1)ρ′ + 1)γκ) > 0, (32)

where

ρ = λmin(P
− 1

2QP− 1
2 )

1
2 , (33)

ρ′ = λmax(P
− 1

2QP− 1
2 )

1
2 . (34)

Then, by application of Algorithm 1, the closed-loop
system (2) is asymptotically stabilized to the origin.

Proof We will show that for any k > 0, if xk ∈
X\Ω(ε), then there exists a constant η ∈ (0,∞) such
that Vk 6 Vk−1 − η. Since the performance index of
Si, ∀i ∈ P , with the optimal solution of ui(·|k) is
not more than the performance index of Si with the
feasible solution of ufi(·|k), it has

Vk,i − Vk−1,i 6
−∥x̂k−1|k−1,i∥Q − ∥ui,k−1|k−1∥Ri +

N−2∑
l=0

(∥xfk+ l|k∥Q + ∥ufi,k+l|k∥Ri) +

(∥xfk+N−1|k∥Q+∥ufi,k+N−1|k∥Ri
)+∥xfk+N |k∥P−

N−2∑
l=0

(∥x̂k+ l|k−1,i∥Q + ∥ui,k+l|k−1∥Ri
)−

∥x̂k+N−1|k−1,i∥P . (35)

In order to describe the equation simply, we define

ρ = λmin(P
− 1

2QP− 1
2 )

1
2 , (36)

ρ′ = λmax(P
− 1

2QP− 1
2 )

1
2 . (37)

Assuming xk ∈ X\Ω(ε), that is ∥x̂k−1|k−1,i∥P > ε,
by the definition of ρ, we can get ∥x̂k−1|k−1,i∥Q >
ρε. By the definition of ufi(·|k) by (14),

Vk,i − Vk−1,i 6

−ρε+
N−2∑
l=0

(∥xfk+ l|k∥Q)−

N−2∑
l=0

(∥x̂k+ l|k−1,i∥Q) +

(∥xfk+N−1|k∥Q + ∥ufi,k+N−1|k∥Ri
) +

∥xfk+N |k∥P − ∥x̂k+N−1|k−1,i∥P . (38)

Then substitute (20) and ρ′ into (38)

Vk,i − Vk−1,i 6
−ρε+ ρ′(N − 1)γκαε+

∥xfk+N−1|k∥Q + ∥ufi,k+N−1|k∥Ri
+

∥xfk+N |k∥P − ∥x̂k+N−1|k−1,i∥P . (39)

According to the Cauchy equation, it has

∥xfk+N−1|k∥Q+∥ufi,k+N−1|k∥Ri + ∥xfk+N |k∥P 6

2
1
2 (∥xfk+N−1|k∥

2
Q + ∥ufi,k+N−1|k∥

2
Ri

+

∥Acx
f
k+N−1|k∥

2
P )

1
2 . (40)

Consider that AT
c PAc + (Q+KTRK) = P , it has

∥xfk+N−1|k∥
2
Q+∥ufk+N−1|k∥

2
R+∥Acx

f
k+N−1|k∥

2
P =

∥xfk+N−1|k∥
2
P . (41)

Substituting (41) into (40) yields

∥xfk+N−1|k∥Q+∥ufi,k+N−1|k∥Ri+∥xfk+N |k∥P 6

2
1
2 ∥xfk+N−1|k∥P . (42)

Considering that

2
1
2 ||xfk+N−1|k||P−||x̂k+N−1|k−1,i||P 6

0.42||xfk+N−1|k||P + ||xfk+N−1|k||P −
||̂xk+N−1|k−1,i||P 6
0.42||xfk+N−1|k||P + ||xfk+N−1|k −
x̂k+N−1|k−1,i||P 6
0.42αε+ γκαε, (43)

and substituting (42)–(43) into (39) yields

Vk,i − Vk−1,i 6
−ρε+ (N − 1)ρ′γκαε+ 2

1
2 ∥xfk+N−1|k∥P −

||x̂k+N−1|k−1,i||P 6
−ρε+ (N − 1)ρ′γκαε+ 0.42αε+ γκαε =

−ε(ρ− α(0.42 + ((N − 1)ρ′ + 1)γκ)). (44)

According to sufficient condition (32) in the theorem
2, which implies that

Vk,i − Vk−1,i < 0. (45)

Thus, for any k > 0, if x(k) ∈ X\Ω(ε), there is a
constant ηi ∈ (0,∞) such that Vk,i 6 Vk−1,i − ηi.
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Further more, we have the inequality of Vk 6 Vk−1−
η, where η =

m∑
i=1

ηi, since m is limited. From this in-

equality, it follows by contradiction that there exists a
finite time k′ such that x(k′) ∈ Ω(ε). If this is not the
case, the inequality implies Vk → −∞ as k → ∞.
However, Vk > 0, therefore, there exists a finite time
k′ such that x(k′) ∈ Ω(ε). This concludes the proof.

Thus, provided an initially feasible solution could
be found, subsequent feasibility of the algorithm is
guaranteed at every update, and the resulting closed-
loop system is asymptotically stable at the origin.
5 Simulation validation

In this section, the load-frequency control (LFC)
problem in power networks is used to show effective-
ness of LLC--DMPC. The purpose of LFC is to keep
the power generation close to power consumption un-
der consumption disturbances, such that the frequen-
cy is maintained close to a nominal frequency of typ-
ically 50 Hz or 60 Hz. Power systems are decom-
posed into subnetworks with consumption and gener-
ation capabilities. We consider a network divided into
5 subnetworks as shown in Fig. 2.

Fig. 2 The interaction relationship among subsystems

The simplified dynamics for the subnetwork mod-
els are considered, that do however include the ba-
sic elements of power injection, power consump-
tion and power flow over power line, and that do
show the basic characteristics of LFC problem. the
continuous-time linearized dynamics of subnetwork i
be described by the following second-order dynamics
from [23].

d∆δi(t)

dt
= 2π∆fi(t), (46)

d∆fi(t)

dt
=

− 1

ηT,i
∆fi(t) +

ηK,i

ηT,i
∆Pg,i(t)−

ηK,i

ηT,i
∆Pd,i(t) +

ηK,i

ηT,i
(
∑

i∈P+i

ηS,ij
2π

(∆δj(t)−∆δi(t))), (47)

where at time t, ∆δi is the incremental phase angel
deviation in rad, ∆fi is the incremental frequency
deviation in Hz, ∆Pg,i is the incremental change in
power generation in per unit, ∆Pd,i is a disturbance
in the load in per unit; ηS,ij is synchronizing coeffi-

cient of the line between subnetwork i and j, which
value is given in Table 2.

Table 2 Parameters of the subnetworks, for
i ∈ {1, · · · ,m} and j ∈ P+i.

Constant ηK,i ηS,ij ηS,ji ηT,i(s)

value 120 0.5 0.5 20

For the purpose of comparison, the centralized
MPC, LCO--DPMC and the proposed LLC--DMPC,
as well as the cooperative DMPC[29] are all applied to
this system. Set ε = 0.1, and set the control horizon
of all the controllers to be N = 10. Set the initial
presumed inputs and states, at time k0 = 0, be ze-
ros. In the centralized MPC, the local MPCs of the
LCO--DMPC and cooperative DMPC, the dual mode
strategy is adopted, and set the parameters, the initial
states and the initial presumed inputs be the same as
those used in the LLC–DMPC. Define the up and low
bounds of the inputs to be 1 and −1, and up and low
bounds of the input increments to be 0.2 and −0.2,
respectively.

We simulate the network in MATLAB, and each
local MPC is solved by ILOG CPLEX. The MAT-
LAB solver of fmincon is also able to be used to
solve each local MPC. When implementing this algo-
rithm in Automation systems, to compile the MAT-
LAB code can be an alternative choice if there is
no solver to resolve Problem 1 on hand. When dis-
turbances are injected in to subsystem S1, S3 and
S4, the state responses and the inputs of the closed-
loop systems under the control of the centralized
MPC, cooperative DMPC, LLC--DMPC and LCO--
DMPC are shown in Figs. 3–5. The shapes of the
states response curves under the control of coopera-
tive DMPC nearly equal to those under the centralized
MPC. The performance of closed-loop system un-
der the control of LLC--DMPC is very close to those
under the control of centralized MPC and coopera-
tive DMPC. Under the control of LCO--DMPC, the
states of all subsystems could converge to set point,
but there exists much larger variations comparing to
those under the control of other three methods. The
roots of the sum of square errors under the control of
LCO--DMPC, LLC–DMPC, cooperative DMPC and
the centralized MPC are 1.0646, 0.5171, 0.5998 and
0.4789, respectively. The total errors resulting from
the LCO--DMPC is more than the twice of that result-
ing from the LLC--DMPC.

It can be seen from the simulations that the pro-
posed constraint LLC--DMPC is able to steer the sys-
tem states to the set point when disturbance exists if
there is a feasible solution at the initial states, and
the performance of the closed-loop system with LLC
--DMPC is very similar to that with the centralized
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MPC, and the communication and computation load-
s are smaller than the cooperative DMPC since each
local MPC in proposed LLC--DMPC only communi-
cates with each other and solves optimization prob-
lem once a control period.

Fig. 3 The evolutions of ∆δi, i ∈ P under the control of
centralized MPC, cooperative DMPC,
LLC--DMPC and LCO--DMPC

Fig. 4 The evolutions of ∆fi, i ∈ P under the control of
centralized MPC, cooperative DMPC, LLC--
DMPC and LCO--DMPC
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Fig. 5 The ∆Pg,i, i ∈ P under the control of centralized
MPC, cooperative DMPC, LLC--DMPC and
LCO--DMPC

6 Conclusions
In this paper, a stabilizing DMPC where each lo-

cal MPC considers the performance of all subsystems
and communicates with each other only once a sam-

pling time, is developed for dynamically coupled s-
patially distributed systems subject to decoupled in-
put constraints. If an initially feasible solution and a
feed back control law Kix could be found, the sub-
sequent feasibility of the algorithm is guaranteed at
every update, and the resulting closed-loop system is
asymptotically stable without any other additional as-
sumptions. The simulations illustrate that the perfor-
mance of global system under the control of proposed
method is very close to that under the control of cen-
tralized MPC.

References:

[1] LING W, LIU D, LU Y, et al. IEC 61850 model expansion toward dis-
tributed fault localization, isolation, and supply restoration [J]. IEEE
Transactions on Power Delivery, 2014, 29(3): 977 – 984.

[2] BRDYS M A. Integrated monitoring, control and security of critical
infrastructure systems [J]. Annual Reviews in Control, 2014, 38(1):
47 – 70.

[3] CHRISTOFIDES P D, SCATTOLINI R, PENA D M D L, et al.
Distributed model predictive control: a tutorial review and future
research directions [J]. Computers & Chemical Engineering, 2013,
51(14): 21 – 41.

[4] QIN S, BADGWELL T. A survey of industrial model predictive con-
trol technology [J]. Control Engineering Practice, 2003, 11(7): 733 –
764.

[5] XU Q, LI Y. Micro-nanopositioning using model predictive output
integral discrete sliding mode control [J]. IEEE Transactions on In-
dustrial Electronics, 2012, 59(2): 1161 – 1170.

[6] LIM C S, RAHIM N, HEW W P, et al. Model predictive control of a
two-motor drive with five-leg-inverter supply [J]. IEEE Transactions
on Industrial Electronics, 2013, 60(1): 54 – 65.

[7] TARISCIOTTI L, ZANCHETTA P, WATSON A, et al. Modulated
model predictive control for a seven-level cascaded H-bridge back-
to-back converter [J]. IEEE Transactions on Industrial Electronics,
2014, 61(10): 5375 – 5383.

[8] HAN H, QIAO J. Nonlinear model-predictive control for industrial
processes: an application to wastewater treatment process [J]. IEEE
Transactions on Industrial Electronics, 2014, 61(4): 1970 – 1982.

[9] ZHENG Y, LI S, WANG X. Horizon-varying model predictive con-
trol for accelerated and controlled cooling process [J]. IEEE Transac-
tions on Industrial Electronics, 2011, 58(1): 329 – 336.

[10] ZHENG Y, LI N, LI S. Hot-rolled strip laminar cooling process plant-
wide temperature monitoring and control [J]. Control Engineering
Practice, 2013, 21(1): 23 – 30.

[11] SCATTOLINI R. Architectures for distributed and hierarchical mod-
el predictive control-a review [J]. Journal of Process Control, 2009,
19(5): 723 – 731.

[12] VENKAT A, RAWLINGS J, WRIGHT S. Distributed model pre-
dictive control of large-scale systems [M] //Assessment and Future
Directions of Nonlinear Model Predictive Control. Berlin: Springer,
2007: 591 – 605.

[13] WANG Q, GAO H, ALSAADI F, et al. An overview of consensus
problems in constrained multi-agent coordination [J]. Systems Sci-
ence & Control Engineering: an Open Access Journal, 2014, 2(1):
275 – 284.

[14] KIRUBAKARAN V, RADHAKRISHNAN T, SIVAKUMARAN N.
Distributed multiparametric model predictive control design for a
quadruple tank process [J]. Measurement, 2014, 47(1): 841 – 854.



No. 5 ZHENG Yi et al: Global stabilizing distributed model predictive control systems with limited communication 585

[15] ZHANG L, WANG J, LI C. Distributed model predictive control for
polytopic uncertain systems subject to actuator saturation [J]. Journal
of Process Control, 2013, 23(8): 1075 – 1089.

[16] AL-GHERWI W, BUDMAN H, ELKAMEL A. A robust distributed
model predictive control algorithm [J]. Journal of Process Control,
2011, 21(8): 1127 – 1137.

[17] LIU J, DAVID M D L P, CHRISTOFIDES P D. Distributed model
predictive control of nonlinear systems subject to asynchronous and
delayed measurements [J]. Automatica, 2010, 46(1): 52 – 61.

[18] CHENG R, FRASER J F, YIP W S. Dantzig–Wolfe decomposition
and plant-wide MPC coordination [J]. Computers & Chemical Engi-
neering, 2008, 32(7): 1507 – 1522.

[19] CAMPONOGARA E, SCHERER H F. Distributed optimization for
model predictive control of linear dynamic networks with control-
input and output constraints [J]. IEEE Transactions on Automation
Science and Engineering, 2011, 8(1): 233 – 242.

[20] ZHENG Y, LI S, QIU H. Networked coordination-based distributed
model predictive control for large-scale system [J]. IEEE Transac-
tions on Control Systems Technology, 2013, 21(3): 991 – 998.

[21] NAMARA P M, NEGENBORN R R, SCHUTTER B D, et al. Weight
optimisation for iterative distributed model predictive control applied
to power networks [J]. Engineering Applications of Artificial Intelli-
gence, 2013, 26(1): 532 – 543.

[22] AL-GHERWI W, BUDMAN H, ELKAMEL A. Selection of control
structure for distributed model predictive control in the presence of
model errors [J]. Journal of Process Control, 2010, 20(3): 270 – 284.

[23] CAMPONOGARA E, JIA D, KROGH B, et al. Distributed model
predictive control [J]. IEEE Control Systems Magazine, 2002, 22(1):
44 – 52.

[24] DUNBAR W. Distributed receding horizon control of dynamically
coupled nonlinear systems [J]. IEEE Transactions on Automatic Con-
trol, 2007, 52(7): 1249 – 1263.

[25] FARINA M, SCATTOLINI R. Distributed predictive control: a non-
cooperative algorithm with neighbor-to-neighbor communication for
linear systems [J]. Automatica, 2012, 48(6): 1088 – 1096.

[26] LI S, ZHANG Y, ZHU Q. Nash-optimization enhanced distributed
model predictive control applied to the shell benchmark problem [J].
Information Sciences, 2005, 170(2/4): 329 – 349.

[27] ZHENG Y, LI S, WANG X. Distributed model predictive control for
plant-wide hot-rolled strip laminar cooling process [J]. Journal of
Process Control, 2009, 19(9): 1427 – 1437.

[28] ZHENG Y, LI S, LI N. Distributed model predictive control over net-
work information exchange for large-scale systems [J]. Control Engi-
neering Practice, 2011, 19: 757 – 769.

[29] STEWART B T, VENKAT A N, RAWLINGS J B, et al. Cooperative
distributed model predictive control [J]. Systems & Control Letters,
2010, 59(8): 460 – 469.

[30] DOAN M D, KEVICZKY T, SCHUTTER B D. An iterative scheme
for distributed model predictive control using Fenchel’s duality [J].
Journal of Process Control, 2011, 21(5): 746 – 755.

[31] SCHEU H, MARQUARDT W. Sensitivity-based coordination in dis-
tributed model predictive control [J]. Journal of Process Control,
2011, 21(5): 715 – 728.

[32] NEGENBORN R R, SCHUTTER B D, HELLENDOORN J. Multi-
agent model predictive control for transportation networks: serial ver-
sus parallel schemes [J]. Engineering Applications of Artificial Intel-
ligence, 2008, 21(3): 353 – 366.

[33] LEE J, KWON W H, CHOI J. On stability of constrained receding
horizon control with finite terminal weighting matrix [J]. Automati-
ca, 1998, 34(12): 1607 – 1612.

[34] MICHALSKA H, MAYNE D. Robust receding horizon control of
constrained nonlinear systems [J]. IEEE Transactions on Automatic
Control, 1993, 38(11): 1623 – 1633.

[35] MAYNE D, RAWLINGS J, RAO C, et al. Constrained model pre-
dictive control: stability and optimality [J]. Automatica, 2000, 36(6):
789 – 814.

作者简介:
郑郑郑 毅毅毅 (1978–),男,副教授,目前研究方向为综合能源网系统建

模控制与优化及分布式预测控制, E-mail: yizheng@sjtu.edu.cn;

李李李少少少远远远 (1965–),男,教授,目前研究方向为预测控制、自适应智

能控制、模糊智能控制, E-mail: syli@sjtu.edu.cn;

魏魏魏永永永松松松 (1986–),男,博士研究生,目前研究方向为分布式预测控

制, E-mail: yswei@sjtu.edu.cn.


