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摘要:本文研究了具有扇形执行器的多机电力系统气门开度的时滞无关分散控制器和鲁棒分散控制器的设计问
题.首先利用三角变换把非线性关联函数变换为子系统状态变量的二次有界不等式形式,然后基于Lyapunov稳定性
理论,推导出闭环多机电力系统及其参数不确定系统渐近稳定的线性矩阵不等式(LMI)充分条件,最后以两机无穷
大母线系统为例进行了仿真分析,验证了所提方法的有效性.
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Delay-independent stabilization for steam valve opening of
multi-machine power system with sector actuator

SUN Miao-ping, NIAN Xiao-hong, PAN Huan
(School of Information Science and Engineering, Central South University, Changsha Hunan 410004, China)

Abstract: A time-independent decentralized controller and a robust decentralized controller have been developed for
the steam valve opening of multi-machine power system with sector saturating actuator. The nonlinear interconnected
function is first converted by trigonometric transformation into quadratically bounded inequalities in the subsystem states;
and then, linear matrix inequality (LMI) sufficient conditions for the closed-loop multi-machine power system and uncertain
system to be asymptomatically stable are derived based on Lyapunov stability theory. A two-machine infinite-bus system
is considered as an application example. Simulation results demonstrate the effectiveness of the proposed method.
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1 Introduction
Multi-machine power system is known as a com-

plex interconnected large-scale system that is composed
of many electric devices and mechanical components,
so it’s very common to have parameter uncertainty and
time-delay which are often the source of instability. In
the past years, scholars employed excitation control to
enhance its stability[1–4]. However, application scope
of this method is very limited for the constraints on
the maximum value and rising rate of excitation cur-
rent. Thus it’s necessary to make further improvement
on transient stability level by regulating the steam valve
or water valve opening of prime mover to control the
injected mechanical power. In addition, the control of
steam value opening is more effective since the exis-
tence of water hammer effect weakens the efficiency of
its improvement on stability of system[5]. At the same
time, the physical limitations of the actuator are un-
avoidable in the operation of driving the actuator by sig-
nals emitted from the designed controllers, thus causing

actuator saturation, which not only deteriorates the con-
trol system performance, but also leads to undesirable
stability effects. In addition, in most cases, it is diffi-
cult to know the exact value of delays, and it is even not
easy to estimate the bounds of the delays. Hence, it’s
significant to investigate time-independent robust steam
valve opening control of large-sized steam turbine with
actuator saturation to enhance stability level of multi-
machine power system.

In the past decade, scholars paid close attention to
the control of steam valve opening and several contri-
butions had been published. They can be divided into
two types: one was linear feedback controller, for exam-
ple, by virtual of solving Ricatti equation[6], making use
of LMI approach[7], based on state observer[8–9], etc.;
the other was nonlinear feedback controller, for exam-
ple, using backstepping method[10–12], availing itself of
Hamiltonian control technique with dissipation and re-
cursive method[13–15], etc. Among the above mentioned
reports, only [12, 15] took actuator saturation into con-
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sideration; meanwhile, they had only thought over that
the actuator reached its extreme limit. So far as we
known, report on the control of steam vale opening for
time-delay multi-machine power system have not been
covered yet. And, though there are many useful theo-
retical results about linear uncertain time-delay systems
with linear interconnection function considering actua-
tor saturation[16–18], and also, some good results about
special linear time-delay systems with constrained non-
linear interconnection function[19–20], there are no con-
structive results related to linear uncertain time-delay
system with nonlinear interconnection function.

In this paper, the design of delay-independent de-
centralized controller and robust decentralized con-
troller for steam valve opening of uncertain time-delay
multi-machine power systems with actuator saturation
are handled. The system parameter uncertainties are
unknown but bounded and the delays are time-varying.
Sufficient LMI conditions of uncertain multi-machine
power system and its nominal system asymptomatic sta-
bility have been developed based on the Lyapunov sta-
bility theory combined with LMI technique, and the
design algorithm of controller gain matrices and three
corollaries are presented.

2 Model description
Considering delays, input constraints and the time-

varying structured uncertainties, an N -machine power
system with steam valve control, which is composed of
turbine generator with reheater, is described by the in-
terconnection of N subsystems as follows[5–6]:




ẋi(t) =
[Ai + ∆Ai(t)]xi(t) + [Bi + ∆Bi(t)]usi(t)+

N∑
j=1,j 6=i

pij[Gij +∆Gij(t)]gij(xi(t), xj(t−τij)),

usi(t) = sat(ui(t)),
xi(t) = φi(t), t ∈ [−τ, 0],

(1)

where xi(t) = [∆δi(t) ωi(t) ∆PMi(t) ∆XEi(t)]T

and ∆δi(t) = δi(t)−δi0, ∆PMi(t) = PMi(t)−PMi0,
∆XEi(t) = XEi(t) − XEi0. ui(t), which is generated
from the designed controller, is the control input vec-
tor to the actuator, usi(t) is the control input vector to
the plant. gij(xi(t), xj(t − τij)) is the nonlinear func-
tion vector characterizing the interconnection between
the ith generator and jth generator and

gij(xi(t), xj(t− τij)) =
sin(δi(t)− δj(t− τij))− sin(δi0 − δj0), (2)

τij is the unknown time-varying signal transmission de-
lay term between the ith generator and jth generator,
and satisfied

0 6 τij 6 τ 6 ∞. (3)

The nominal system matrices are represented as fol-
lows:

Ai =




0 1 0 0

0 − Di

2Hi

ω0

2Hi

(1−FIPi
)

ω0

2Hi

FIPi

0 0 − 1
TMi

KMi

TMi

0 − KEi

TEiRiω0

0 − 1
TEi




,

Bi = [0 0 0 1/TEi]T,

Gij = [0 − ζij 0 0]T, ζij = ω0ÉqiÉqjBij/2Hi,

where, pij : constant of either 1 or 0 (pij = 0 means
that the jth generator has no connection with ith gen-
erator); Hi: inertia constant for ith generator, in sec-
onds; Di: damping coefficient for ith generator, in
pu; FIPi: fraction of the turbine power generated by
the intermediate pressure section; TMi and KMi: time
constant and gain of ith machine’s turbine; TEi and
KEi: time constant and gain of ith machine’s speed
governor; Ri: regulation constant of ith machine in
pu; Bij : ith row and jth column element of nodal
susceptance matrix at the internal nodes after elimi-
nated all physical buses, in pu; PMi: mechanical power
for ith machine, in pu; XEi: steam valve opening for
ith machine, in pu; ωi: relative speed for ith ma-
chine, in rad/s; δi: rotor angle for ith machine, in rad;
ω0: the synchronous machine speed; Éqi and Éqj : in-
ternal transient voltage for ith and jth machine, in
pu, which are assumed to be constant; δi0, PMi0 and
XEi0: the initial values of δi, PMi and XEi, respectively.
∆Ai(t),∆Bi(t) and ∆Gij(t) are real time varying pa-
rameter uncertainties and assumed to be of the follow-
ing structure:{

[∆Ai(t) ∆Bi(t)] = LiFi(t)[Mi Ni ],
∆Gij(t) = LijFij(t)Eij

(4)

with Fi(t) and Fij(t) being unknown matrix functions
with Lebesgue measurable elements and satisfying

FT
i (t)Fi(t) 6 Ii, FT

ij (t)Fij(t) 6 Iij, (5)

where Li,Mi, Ni, Lij and Eij are known real constant
matrices with appropriate dimensions.

The sector nonlinear function usi(t) is considered
to be inside the sector [ai, 1] and is shown in Fig.1,
where 0 6 ai 6 1.

Fig. 1 Sector nonlinear function
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3 Main results
For convenience, the nonlinear interconnection

function gij(xi(t), xj(t − τij)) is converted into the
following form via transformation of triangle functions:

gij(xi(t), xj(t− τij)) =
−2cos(βi(δ))sin(∆δi(t)−∆δj(t− τij))/2 =
−2cos(βi(δ))sin(xi1(t)− xj1(t− τij))/2,

where βi(δ) = [δi(t)− δj(t− τij) + δi0 − δj0]/2.
It is immediately got that

gT
ij(xi(t), xj(t− τij))gij(xi(t), xj(t− τij)) =

4cos2(βi(δ))sin2[xi1(t)− xj1(t− τij)]/2 6
[xi1(t)− xj1(t− τij)]2 6
xT

i1(t)xi1(t) + xT
j1(t− τij)xj1(t− τij). (6)

Remark 1 xi1(t) = Wixi(t), xj1(t − τij) =

Wjxj(t− τij), where Wi = Wj = [1 0 0 0].

Remark 2 The deduced result of the nonlinear inter-
connected function is smaller than the assumption in [6].

In the sequel, some useful lemmas, which are
needed to solve our problem, are introduced.

Lemma 1 Let D, E and F be real matrices of ap-
propriate dimensions with FT(t)F (t) 6 I , then for
any given ε > 0, we have that

DFE + ETFTDT 6 ε−1DDT + εETE. (7)

Lemma 2 Consider the partitioned matrix F =[
C D
DT E

]
where C = CT, E = ET with appropri-

ate dimensions, then F is positive definite if and only if
either the following conditions hold

E > 0 and C −DE−1DT > 0 or
C > 0 and E −DTC−1D > 0. (8)

Next, the state feedback control law is designed as

ui(t) = Kixi(t), (9)

where Ki is control gain matrix.
Thus, the resulting closed-loop system is written as

ẋi(t) =
(Aic + ∆Aic(t))xi(t) + [Bi + ∆Bi(t)]ηi(t) +

N∑
j=1,j 6=i

pij[Gij + ∆Gij(t)]gij(xi(t), xj(t− τij)),

(10)

where Aic = Ai + 0.5(1 + ai)BiKi, ∆Aic(t) =
∆Ai(t) + 0.5(1 + ai)∆Bi(t)Ki, ηi(t) = usi(t) −
0.5(1 + ai)Kixi(t).

From Fig.1, it’s obvious that vector function ηi(t)
satisfies the following inequality:

ηT
i (t)ηi(t) 6 1

4
(1− ai)2xT

i (t)KT
i Kixi(t). (11)

The main results are given in the following theo-
rems.

Theorem 1 The nominal system of (10) is time-
delay independent robustly stable with feedback gain
matrix Ki = YiX

−1
i if there exists symmetric and

positive-definite Xi and any matrix Yi, such that the fol-
lowing LMI holds:



Ξi Ti Y T
i XiW

T
i

TT
i −Ri 0 0

Yi 0 − ζi 0
WiXi 0 0 − ξi


 < 0, (12)

where Ξi = AiXi + XiA
T
i + 0.5(1 + ai)(BiYi +

Y T
i BT

i )+βiBiB
T
i , ζi =

4βi

(1− ai)2
, other variables are

defined below.
Proof Choose the Lyapunov-Krasovskii func-

tional candidate in the following form:

V (xi(t), xi(t− τij)) =
N∑

i=1

{xT
i (t)Pixi(t) +

N∑
j=1,j 6=i

w t

t−τij

pijµijx
T
j1(ξ)xj1(ξ)dξ}, (13)

where Pi is a positive definite symmetric matrix and µij

is any given positive constant.
Taking the time derivative of V (xi(t), xi(t− τij))

along the trajectory of closed-loop nominal system of
(9) is given by

V̇ (xi(t), xi(t− τij)) =
N∑

i=1

{2xT
i (t)Pi[Aicxi(t) + Biηi(t) +

N∑
j=1,j 6=i

pijGijgij(xi(t), xj(t− τij))] +

N∑
j=1,j 6=i

pijµij[xT
j1(t)xj1(t)−

xT
j1(t− τij)xj1(t− τij)]}. (14)

According to Lemma 1 and (10), it follows that

xT
i (t)PiBiηi(t) + ηT

i (t)BT
i Pixi(t) 6

βix
T
i (t)PiBiB

T
i Pixi(t) + β−1

i ηT
i (t)ηi(t) 6

βix
T
i (t)PiBiB

T
i Pixi(t) +

(1− ai)2

4βi

xT
i (t)KT

i Kixi(t), (15)

where βi is any given positive constant.
Substituting (6) and (15) into (14), we obtain that

V̇ (xi(t), xi(t− τij)) 6
N∑

i=1

{xT
i (t)Ξ̃ixi(t)+

N∑
j=1,j 6=i

pij[2xT
i (t)PiGij ḡij −

µijx
T
j1(t− τij)xj1(t− τij)]} =
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N∑

i=1

{xT
i (t)Ξ̃ixi(t)+

N∑
j=1,j 6=i

pij[2xT
i (t)PiGij ḡij −

µijx
T
j1(t−τij)xj1(t−τij)+γij ḡ

T
ij ḡij−γij ḡ

T
ij ḡij]}6

N∑
i=1

{zi(t)Θizi(t)−
N∑

j=1,j 6=i

pij[µij − γij]xT
j1(t−

τij)xj1(t− τij)}, (16)

where

ḡij = gij(xi(t), xj(t− τij)),
Ξ̃i = PiAic + AT

icPi + βiPiBiB
T
i Pi +

(1− ai)2

4βi

KT
i Ki +

N∑
j=1,j 6=i

pijµjiW
T
i Wi,

zi(t)=[xT
i (t) ḡi1 · · · ḡi(i−1) ḡi(i+1) · · · ḡiN ]T,

Θi =
[

Ξ̄i PiTi

TT
i Pi −Ri

]
,

Ξ̄i = PiAic + AT
icPi + βiPiBiB

T
i Pi +

1
4βi

(1− ai)2KT
i Ki + ξ−1

i WT
i Wi,

ξ−1
i =

N∑
j=1,j 6=i

pij[µji + γji],

Ti = [pi1Gi1 · · · pi(i−1)Gi(i−1)

pi(i+1)Gi(i+1) · · · piNGiN ],
Ri = diag{γi1, · · · , γi(i−1), γi(i+1), · · · , γiN}.
For µij and γij are any given positive constants,

it’s reasonable to let µij > γij . Hence, if Θi < 0
is satisfied, V̇ (xi(t), xi(t − τij)) < 0 holds and the
nominal system of (10) is asymptotically stable. Be-
cause Θi < 0 is a bilinear matrix inequality (BMI),
it’s necessary to find a way to transform the inequal-
ity to a form which is affine in the unknown variables.
To achieve this, letting the variables Xi = P−1

i and
Yi = KiXi, pre-multiplying and post-multiplying Θi

by diag{Xi, I}, we obtain that

Θi < 0 ⇐⇒
[

Ξ̂i Ti

TT
i −Ri

]
< 0, (17)

where

Ξ̂i = AiXi+XiA
T
i +0.5(1+ai)(BiYi+Y T

i BT
i )+

βiBiB
T
i +

(1− ai)2

4βi

Y T
i Yi+ξ−1

i XiW
T
i WiXi.

According to Lemma 2, it is obvious that LMI (12)
is equivalent to (17) and (12) guarantees that the neg-
ativeness of V̇ (xi(t), xi(t − τij)) whenever xi(t) is
not zero, which immediately implies that the asymp-
totic stability of the nominal system of (10). The proof
of Theorem 1 is completed.

In the sequel, the robust time-delay independent
LMI condition is investigated.

Theorem 2 The system (10) is time-delay inde-
pendent robustly stable with feedback gain matrix Ki =

YiX
−1
i if there exists symmetric and positive-definite

Xi and any matrix Yi, such that the following LMI
holds



Υi Ti Y T
i XiW

T
i ΩT

i

TT
i −Ri 0 0 0

Yi 0 − ζi 0 0
WiXi 0 0 − ξi 0
Ωi 0 0 0 − θi



< 0, (18)

where Υi = AiXi + XiA
T
i + 0.5(1 + ai)(BiYi +

Y T
i BT

i )+Φi, Ωi = [MiXi +0.5(1+ ai)NiYi], other
variables are the same as the ones in Theorem 1 or de-
fined below.

Proof Choose the same Lyapunov-Krasovskii
functional candidate as Theorem 1 and take the time
derivative of V (xi(t), xi(t − τij)) along the trajectory
of closed-loop system (10) to obtain that

V̇ (xi(t), xi(t− τij)) 6
N∑

i=1

{2xT
i (t)Pi[(Aic + ∆Aic(t))xi(t) +

(Bi + ∆Bi(t))ηi(t) +
N∑

j=1,j 6=i

pij(Gij +

∆Gij(t))ḡij] +
N∑

j=1,j 6=i

pijµij[xT
j1(t)xj1(t)−

xT
j1(t− τij)xj1(t− τij)]}. (19)

According to Lemma 1, it follows that
2xT

i (t)Pi∆Aic(t)xi(t) =
2xT

i (t)PiLiFi(t)[Mi + 0.5(1 + ai)NiKi]xi(t) 6
xT

i (t)(θiPiLiL
T
i Pi + θ−1

i Ω̄T
i Ω̄i)xi(t) (20)

and
2xT

i (t)Pi∆Bi(t)ηi(t) =
2xT

i (t)PiLiFi(t)Niηi(t)6
ϑix

T
i (t)PiLiL

T
i Pixi(t)+ϑ−1

i ηT
i (t)NT

i Niηi(t)6
ϑix

T
i (t)PiLiL

T
i Pixi(t) +

χi(1− ai)2

4ϑi

xT
i (t)KT

i Kixi(t) (21)

and
2xT

i (t)Pi

N∑
j=1,j 6=i

pij∆Gij(t)ḡij =

2xT
i (t)Pi

N∑
j=1,j 6=i

pijLijFij(t)Eij ḡij 6

δ−1
i xT

i (t)Pi

N∑
j=1,j 6=i

pijLijL
T
ijPixi(t) +

δi

N∑
j=1,j 6=i

pij ḡ
T
ijE

T
ijEij ḡij 6

pij{δ−1
i xT

i (t)Pi

N∑
j=1,j 6=i

LijL
T
ijPixi(t) +

δi

N∑
j=1,j 6=i

λij[xT
i1(t)xi1(t) +
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xT
j1(t− τij)xj1(t− τij)]}, (22)

where θi, ϑi and δi are any given positive constants,
Ω̄i = Mi + 0.5(1 + ai)NiKi, χi and λij are the max-
imum eigenvalues of NT

i Ni and ET
ijEij respectively.

Substituting (6)(15) and (20)−(22) into (19), we
obtain that

V̇ (xi(t), xi(t− τij)) 6
N∑

i=1

{xT
i (t)Υ̃ixi(t)+

N∑
j=1,j 6=i

pij[2xT
i (t)PiGij ḡij−

(µij − δiλij)xT
j1(t− τij)xj1(t− τij)]} =

N∑
i=1

{xT
i (t)Υ̃ixi(t)+

N∑
j=1,j 6=i

pij[2xT
i (t)PiGij ḡij−

(µij − δiλij)xT
j1(t− τij)xj1(t− τij) +

γij ḡ
T
ij ḡij − γij ḡ

T
ij ḡij]} 6

N∑
i=1

{zT
i (t)Πizi(t)−

N∑
j=1,j 6=i

pij[µij−δiλij−γij] ·

xT
j1(t− τij)xj1(t− τij)}, (23)

where

Υ̃i = PiAic + AT
icPi + PiΦiPi + θ−1

i Ω̄T
i Ω̄i +

(1− ai)2

4
(
χi

ϑi

+ 1)KT
i Ki +

N∑
j=1,j 6=i

pijµjiW
T
i Wi,

Φi = (θi + ϑi)LiL
T
i + βiBiB

T
i +

δ−1
i

N∑
j=1,j 6=i

pijLijL
T
ij,

Πi =
[

Ῡi PiTi

TT
i Pi −Ri

]
, Ῡ = Υ̃ +

N∑
j=1,j 6=i

pijγjiW
T
i Wi.

For µij , δi and γij are any given positive constants,
it’s reasonable to let µij > δiλij + γij . Hence, if
Πi < 0 holds, the system (10) is robust asymptotically
stable. Using the same manipulation as Theorem 1, we
find that LMI (18) is equivalent to Πi < 0 and (18)
guarantees the negativeness of V̇ (xi(t), xi(t − τij))
whenever xi(t) is not zero, which implies that the ro-
bust asymptotic stability of the system (10). The proof
of Theorem 2 is achieved.

Meanwhile, when some parameters take some spe-
cial values, the following results are easily derived.

Corollary 1 When ai = 1, if LMI (12) or (18)
holds, the nominal system of (10) or system (10) is
time-independent asymptotic stability without actuator
saturation.

Corollary 2 When τij = 0 and ai = 1, denoting
Ki = ιiB

T
i Pi, the following result is obtained that

Ῡi < 0 ⇔ PiAi + AT
i Pi + 2ιiPiBiB

T
i Pi +

PiΘiPi+Ω̄i+ν̄−1
i WT

i Wi+Qi =0, (24)

where Ω̄i = η−1
i (Mi+ιiNiB

T
i Pi)T(Mi+ιiNiB

T
i Pi),

ν̄−1
i =

N∑
j=1,j 6=i

2pij(θiλij + ϑi) and Qi is positive defi-

nite matrix.
It is obvious that Corollary 2 is the main result of

[6], therefore Theorem 1 has wider range of application.
Corollary 3 When τij = 0 and ai = 1, the LMI

(12) can be simplified as follows:[
S̃i XiW

T
i

WiXi − ν̃iIi

]
< 0, (25)

where

S̃i = AiXi + XiA
T
i + BiYi + Y T

i BT
i +

N∑
j=1,j 6=i

pijγijGijG
T
ij,

ν̃−1
i = 2

N∑
j=1,j 6=i

γijpij.

If letting AD, BD, KD and GD are the same as

[7] and Gi =
N∑

j=1,j 6=i

pijGijgij(xi(t), xj(t)), LMI (25)

implies the main result in [7]. In addition, LMI (25) is
simpler and more general than LMI (20) in [7] in de-
scription form.

4 Simulation results
In this section, a two-machine infinite bus example

system which is shown in Fig.2 is chosen to demon-
strate the design procedure and the effectiveness of the
proposed decentralized controller. Since generator #3 is
with an infinite bus, we have Éq3 = 1∠0◦.

Fig. 2 A two-machine infinite bus example power system

From Fig.2, it’s easily seen that p12 = p21 = 1 and
p13 = p23 = 1.

The system parameters used in the simulation are as
follows[6]:

xd1 = 1.863, x́d1 = 0.257, xT1 = 0.129,

T́d01 = 16.9 s, H1 = 4 s, D1 = 5, kc1 = 1,
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xd2 = 2.36, x́d2 = 0.319, xT2 = 0.11,

T́d02 = 7.96 s, H2 = 5.1 s, D2 = 3,

kc2 = 1, ω0 = 314.159, FIP1 = FIP2 = 0.3,

KM1 = KE1 = 1, KM1 = KM2 = 1 rad/s,

R1 = R2 = 0.05, TM1 = TM2 = 0.35 s,

TE1 = TE2 = 0.1 s, x12 = 0.55, x13 = 0.53,

x23 = 0.6, xad1 = xad2 = 1.712.

The matrices Ai, Bi and Gij that describe the nom-
inal system model are as follows:

A1 =




0 1 0 0
0 − 0.625 27.48 11.781
0 0 − 2.85 2.857
0 − 0.637 0 − 10


 ,

A2 =




0 1 0 0
0 − 0.392 20.56 9.24
0 0 − 2.857 2.857
0 − 0.637 0 − 10


 ,

G12 = G13 = [0 − 27.49 0 0]T,

G21 = G23 = [0 − 23.1 0 0]T,

B1 = [0 0 0 10]T, B2 = [0 0 0 10]T.

According to Theorem 1, we choose constants as
β1 = β2 = 10, µ12 = µ21 = 2 and γ12 = γ21 = 1,
the sector saturation coefficients are a1 = a2 = 0.4.
It’s obvious that µ12 > γ12 and µ21 > γ21 are satisfied.
The feasible solutions of LMI (12) with X1 > 0 and
X2 > 0 are as follows;

X1 =


5.59 − 72.84 − 54.71 171.19
−72.84 1371.23 1903.35 − 5577.53
−54.71 1903.35 25112.00 − 61362.35
171.19 − 5577.53 − 61362.35 150819.20


,

Y1 = [2.72 − 65.52 − 370.50 152.07],
X2 =


5.29 −75.06 −199.63 519.99
−75.06 1539.10 6161.61 −15720.40
−199.63 6161.61 62556.95 −150569.67
519.99 −15720.40 −150569.67 363436.33


,

Y2 = [3.26 − 80.55 − 541.35 550.17].

Hence, the feedback gain matrices are

K1 = Y1X
−1
1 =

[−138.59 − 19.58 − 36.98 − 15.61],
K2 = Y2X

−1
2 =

[−169.19 − 26.47 − 39.25 − 17.16].

With time-delay τ12 = τ21 = 0.1 s, the state trajec-
tories of generator #1 are shown in Fig.3, and those of
generator #2 are shown in Fig.4.

Fig. 3 The state trajectories for the #1 generator with the presented
controller in Theorem 1

Fig. 4 The state trajectories for the #2 generator with the presented
controller in Theorem 1

When the constant delay is varied and other param-
eters are the same, the increment of rotor angle trajec-
tories of Generator #1 is shown in Fig.5.
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Fig. 5 The increment of rotor angle trajectories of generator #1

with various constant delays

It’s easily seen from Figs.3 and 4 that the state tra-
jectories of generator #1 and #2 have been quickly sta-
bilized before t = 0.8 s with the controller in Theorem
1. What’s more, the increment of rotor angle trajec-
tories of generator #1 can be quickly stabilized before
t = 0.8 s when taking various constant delays.

Next, Theorem 2 will be validated. For simplicity,
only the parametric perturbation in TMi is considered,
which is used to emulate the time constant uncertain-
ties in the high-pressure and low-pressure sections. Let
ρi(t) = 1/TMi− 1/(TMi−∆TMi) = 0.635φ̃i(t) with
|φ̃i(t)| 6 1, it follows that

∆Ai(t) =




0 0 0 0
0 0 0 0
0 0 −ρi(t) ρi(t)
0 0 0 0


 .

The structure of parametric uncertainty is expressed
as follows:
Li =[0 0 1.41|ρi(t)|max 0]T, Mi =diag{1, 1, 1, 1},
Fi(t) = [0 0 − 0.707ρi(t)/|ρi(t)|max

0.707ρi(t)/|ρi(t)|max].

According to Theorem 2, we choose constants as
β1 = β2 = 10, θ1 = θ2 = 1, µ12 = µ21 = 2 and
γ12 = γ21 = 1, the sector saturation coefficients are
a1 = a2 = 0.4. It’s obvious that µ12r12 > γ12 and
µ21 > γ21 are satisfied. The feasible solutions of LMI
(18) with X1 > 0 and X2 > 0 are as follows:

X1 =


19.38 − 180.18 − 56.66 − 57.31
−180.18 4525.51 653.23 − 3458.78
−56.66 653.23 1605.53 − 2746.54
−57.31 − 3458.78 − 2746.54 27006.93


,

Y1 =[
847.16 − 70068.74 − 28089.99 63380.76

]
,

X2 =


19.85 − 181.88 − 55.60 − 53.82
−181.88 4115.46 593.07 − 3689.29
−55.60 593.07 1785.93 − 2610.26
−53.82 − 3689.29 − 2610.26 27523.69


,

Y2 =
[906.37 − 59921.38 − 28035.67 64633.41].

Hence, the feedback gain matrices are

K1 = Y1X
−1
1 =

[−283.09 − 26.43 − 23.65 − 4.04],
K2 = Y2X

−1
2 =

[−266.42 − 26.69 − 20.53 − 3.70].

With time-delay τ12 = τ21 = 0.1 s and parameter
uncertainty γ1(t) = γ2(t) = 0.625, the state trajec-
tories of generator #1 are shown in Fig.6, and that of
generator #2 are shown in Fig.7.

It’s easily seen from Figs.6 and 7 that the state tra-
jectories of generator #1 and #2 have been quickly sta-
bilized before t = 1 s with the controller in Theorem 2
when the operation parameters change in the given
range.

Fig. 6 The state trajectories for the generator #1 with the presented

controller in Theorem 2
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Fig. 7 The state trajectories for the generator #2 with the presented

controller in Theorem 2

Numerous simulation results show that, though
there are sector actuator saturation and time-delays
in the nominal system of (10) or the uncertain sys-
tem (10), the corresponding control schemes are time-
independent and can still rapidly damp the oscillations
and greatly enhance the stability of the multi-machine
power system.

5 Conclusion
In this paper, a decentralized feedback control

scheme has been proposed to enhance the transient sta-
bility of uncertain and time delay multi-machine power
system with sector nonlinear saturating actuator. Suffi-
cient conditions of asymptomatic stability for nominal
and uncertain closed-loop power system have been pre-
sented. The LMI method has been used to compute the
control gain matrices. It has been shown from the simu-
lation results that the presented control schemes are ef-
ficient and permits the rapid stability of the closed-loop
system. What’s more, it’s obvious that the results in [6]
and [7] are special cases of Theorem 1 or 2 in our paper.
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