文章编号:1000-8152(2010)09-1171-07

可垂直起降、高速前飞的飞行器设计与控制

樊鹏辉, 王新华, 蔡开元

(北京航空航天大学 控制一体化技术重点实验室,北京 100191)

摘要:本文设计了一种具有垂直起降、悬停和高速前飞能力的飞行器.这种飞行器通过模态转换,既能够实现类似传统四轴飞行器的垂直起降,又能够实现类似固定翼飞行器的高速前飞.同时本文针对这种飞行器设计了模态转换控制律;仿真试验验证了设计方案和控制律的有效性.

关键词: 垂直起降; 高速前飞; 模态转换; 四轴飞行器; 固定翼 中图分类号: V22 文献标识码: A

Design and control of aircraft of vertical take-off-and-landing and high-speed forward flight

FAN Peng-hui, WANG Xin-hua, CAI Kai-yuan

(National Key Laboratory of Science and Technology on Holistic Control, Beihang University, Beijing 100191, China)

Abstract: We design a new aircraft with the ability of vertical take-off-and-landing(VTOL), like a four-rotor aircraft; and the ability of flying forward with high speed, like an aircraft with fixed-wings. The flight-mode transition from hovering to forward flight and the reverse process are achieved. A flight-mode transition control law is designed. Both the design-scheme and the proposed control law are verified by simulation.

Key words: VTOL; high-speed forward flight; flight-mode transition; four-rotor aircraft; fixed-wings

1 引言(Introduction)

近年来, 传统四轴飞行器得到广泛的研究^[1~13]. 与通常的直升机相比, 这种飞行器具有气动布局对称、抗风性强、载荷大、易于控制等优点.但是这种 飞行器与通常的直升机类似, 虽然能够实现垂直起 降、悬停, 但是前飞速度较慢(不具有和固定翼飞机 类似的高速前飞能力).而另一方面, 一般的固定翼 飞行器虽然能够实现高速前飞, 但是不具有垂直起 降和悬停的能力.对此, 本文设计了一种具有垂直起 降、悬停和高速前飞能力的特殊四轴飞行器(其结构 简图如图1 所示).该飞行器能够完成从直升机模态 到固定翼模态的转换, 既能实现垂直起降, 同时又具 有高速前飞的能力.这种飞行器相对于传统的直升 机和多轴飞行器, 具有有效载荷大, 航程远等优势. 该飞行器在飞行过程中有3种模态:垂直起降模态, 转换模态, 前飞模态.

1.1 垂直起降模态(Vertical takeoff and landing mode)

如图1(a)所示,当飞行器处于悬停时或垂直起降

基金项目:国家自然科学基金资助项目(60774008).

状态时,整个飞行器的升力、俯仰、滚转和偏航力矩 均由4个旋翼提供.1,3号旋翼顺时针旋转,2,4号旋 翼逆时针旋转,若增加(减小)1,2号旋翼转速的同 时减小(增加)3,4号旋翼的转速即可提供俯仰力矩, 同样的方法,若增加(减小)1,4号旋翼转速的同时减 小(增加)2,3号旋翼的转速即可提供滚转力矩,若增 加(减小)1,3号旋翼转速的同时减小(增加)2,4号旋 翼的转速即可提供偏航力矩.

1.2 转换模态(Transition mode)

如图1(b)所示, 在飞行器由悬停到前飞的模态转 换过程中, 4个旋翼向前倾转, 飞行器的重力由4个旋 翼和机翼提供的升力共同抵消, 而飞行器前飞所受 阻力由4个旋翼向前的分力抵消, 并同时提供向前的 力使飞行器前向加速, 此时的飞行器的偏航、俯仰 和滚转力矩主要由4个旋翼提供, 但是, 随着旋翼的 倾转角不断增大, 由机翼的襟翼提供俯仰力矩的比 例不断加大, 直到模态转换完成时, 所有的俯仰力矩 均由机翼的襟翼提供. 飞行器由前飞到悬停的模态 转换过程是上述过程的反过程.

收稿日期: 2009-04-16;收修改稿日期: 2009-10-13.

第27卷

1.3 前飞模态(Forward-flight mode)

如图1(c)所示,当飞行器完成模态转换过程后, 飞行器进入前飞模态,4个旋翼已经完全倾转到水平 方向,这时候飞行器的重力完全由机翼升力抵消,而 前飞阻力完全由旋翼的拉力抵消.这时俯仰和滚转 力矩主要由旋翼的襟翼提供,旋翼虽然能提供一些 滚转力矩,但由于此时旋翼的转速相对于垂直起降 阶段大幅度下降,因此只能辅助的提供滚转力矩,而 偏航力矩主要由旋翼提供.

(b) 模态转换(悬停到前飞)

(c) 前飞

Fig. 1 Mode transition illustration of the aircraft

控制方法方面,针对4轴飞行器的姿态稳定和航迹跟踪问题已存在多种控制方法^[1~8].例如:线性化模型PD控制律^[1]、这些控制律仅考虑使四轴飞行器 悬停或三个姿态角小范围(10°左右)内变化时的航迹 跟踪进行控制设计;还有back-stepping方法^[2,3]、滑 模控制^[4~6]、动态逆^[7,8]等方法.本文针对所提出的 飞行器设计了模态转换控制律,它包括航迹跟踪控 制律和姿态控制律两部分.通过仿真试验,检验了控 制律的有效性.

2 数学模型(Mathematic model of the aircraft)

如图2所示, 定义 $I = \{E_x E_y E_z\}$ 为右手惯性 坐标系的单位方向向量, E_z 垂直指向地面. 定义 向量 $p = (x \ y \ z)$ 为机体重心相对于惯性系的位 置在惯性坐标系的投影. $p_b = (x_b \ y_b \ z_b)$ 为机体 重心相对于惯性系的位置在机体系的投影. $A = \{E_y^b E_y^b E_z^b\}$ 为右手机体坐标系, 坐标系的原点是飞 行器的重心(同时通过配重使飞行器因前后翼升力 到飞行器的重心的力矩为零). 机体系的方位由旋转 矩阵 $R: \mathcal{A} \to \mathcal{I}$ 给出, 其中 $R \in \mathbb{R}^{3\times 3}$ 是正交旋转矩 阵. $\mathcal{B} = \left\{ E_x^{\beta} E_y^{\beta} E_z^{\beta} \right\}$ 为左手旋翼坐标系. 旋翼系的 方位由旋转矩阵 $R_\beta: \mathcal{B} \to \mathcal{A}$ 给出, 其中 $R_\beta \in \mathbb{R}^{3\times 3}$ 是正交旋转矩阵. $\dot{p} = (\dot{x} \dot{y} \dot{z})$ 是机体相对于惯性系 的速度在惯性系的投影, $\dot{p}_b = (\dot{x}_b \dot{y}_b \dot{z}_b)$ 是机体相 对于惯性系的速度在机体系的投影, 同时 $\Omega \in \mathcal{A}$ 表 示机体相对于惯性系的角速率在机体系内的投 影. *m*为整个飞行器的质量. $J \in \mathbb{R}^{3\times 3}$ 为飞行器的 转动惯量矩阵(投影到机体系). β 为旋翼的倾转角. L和D分别为机翼产生的总升力和总阻力, α 为机翼 的迎角. $R, R_\beta \pi \alpha$ 可由下式表示^[14]:

$$R = \begin{bmatrix} c_{\psi}c_{\theta} & c_{\psi}s_{\theta}s_{\phi} - s_{\psi}c_{\phi} & c_{\psi}s_{\theta}c_{\phi} + s_{\psi}s_{\phi} \\ s_{\psi}c_{\theta} & s_{\psi}s_{\theta}s_{\phi} + c_{\psi}c_{\phi} & s_{\psi}s_{\theta}c_{\phi} - c_{\psi}s_{\phi} \\ -s_{\theta} & c_{\theta}s_{\phi} & c_{\theta}c_{\phi} \end{bmatrix},$$
(1)
$$R_{\beta} = \begin{bmatrix} c_{\beta} & 0 & s_{\beta} \\ 0 & 1 & 0 \\ s_{\beta} & 0 - c_{\beta} \end{bmatrix},$$
 $\alpha = tg^{-1}(\frac{\dot{z}_{b}}{\dot{x}_{b}}).$ (2)

其中 c_X 表示 $\cos X, s_X$ 表示 $\sin X$.

飞行器受力如图2所示. 根据动力学原理, 得到 机体运动的数学模型如下所示:

$$\begin{aligned} \ddot{p} &= RF/m + gE_{z}, \\ J\dot{\Omega} &= -\Omega \times J\Omega + \tau. \end{aligned} \tag{3}$$

式中: $F \in A$ 是所有作用于飞行器的非保守力的总 和,包括旋翼产生的拉力和机翼产生的升力和阻力. $\tau \in A$ 是飞行器所受的合力矩,包括旋翼旋转产生 的反扭矩、陀螺效应产生的陀螺力矩和旋翼倾转产 生的反力矩.

Fig. 2 Force and reaction torque diagram of the aircraft

每个驱动旋翼的电机产生的驱动力矩记为*τ_i*.同时旋翼的旋转角速度记为ω_i电机产生的驱动力矩与 由空气动力引起的力矩Q_i方向相反.旋翼的动力学 方程^[9]如下:

$$J_{\mathbf{r}}\dot{\omega}_i = \tau_i - Q_i,\tag{4}$$

式中J_r为旋翼绕旋翼旋转轴的转动惯量.

飞行器所受的非保守力总和F由旋翼产生的拉力,机翼产生的升力和阻力组成,其具体的表达式由下面的式(6)和(7)给出.

旋翼在空气中产生的拉力^[9]可由下式给出:

$$f_i = b\omega_i^2, \tag{5}$$

式中b的大小由空气的密度、旋翼叶片的半径、数量和弦长决定, b > 0是一个常数.

旋翼总拉力在机体系上的投影记为T:

$$T = \sum_{i=1}^{4} f_i = b \sum_{i=1}^{4} \omega_i^2.$$
 (6)

飞行器固定机翼产生的总的升力和阻力投影到 机体系记为*L*和*D*可由下式给出:

$$\begin{split} L &= 0.5 C_{\rm L} S \rho \left(\dot{x}_{\rm b}^2 + \dot{z}_{\rm b}^2 \right), \\ C_{\rm L} &= C_{\rm L0} + C_{\rm L\alpha} \alpha + C_{\rm L\delta} \delta, \\ D &= 0.5 C_{\rm D} S \rho \left(\dot{x}_{\rm b}^2 + \dot{z}_{\rm b}^2 \right), \\ C_{\rm D} &= C_{\rm D0} + C_{\rm L} s_{\alpha}. \end{split}$$
(7)

式中: ρ 为空气的密度,S为机翼的总面积, C_{L0} 为机 翼的零攻角升力系数, $C_{L\alpha}$ 为由迎角 α 引起的机翼升 力系数, δ 为标称的襟翼偏转角,由式(9)给出, $C_{L\delta}$ 为 由标称的襟翼偏转角 δ 引起的飞行器机翼的升力系 数.

飞行器的固定机翼有前后两个部分,两部分采用 相同的翼型,前后机翼仅襟翼的面积不同,前后机翼 的襟翼的偏角满足一定条件(如式(9)所示).因此前 后机翼的零攻角升力系数*C*_{L01} = *C*_{L02} = *C*_{L0},由迎 角α引起的机翼升力系数*C*_{Lα1} = *C*_{Lα2} = *C*_{Lα},总的 升力^[14]*L*投影到机体系具体组成可由下式表示:

$$L = L_{1} + L_{2} = 0.5C_{L1}S_{1}\rho\left(\dot{x}_{b}^{2} + \dot{z}_{b}^{2}\right) + 0.5C_{L2}S_{2}\rho\left(\dot{x}_{b}^{2} + \dot{z}_{b}^{2}\right) = 0.5\left(C_{L0} + C_{L\alpha}\alpha + C_{L\delta 1}\delta_{1}\right)S_{1}\rho\left(\dot{x}_{b}^{2} + \dot{z}_{b}^{2}\right) + 0.5\left(C_{L0} + C_{L\alpha}\alpha + C_{L\delta 2}\delta_{2}\right)S_{2}\rho\left(\dot{x}_{b}^{2} + \dot{z}_{b}^{2}\right) = 0.5C_{L}S\rho\left(\dot{x}_{b}^{2} + \dot{z}_{b}^{2}\right),$$
(8)

其中 S_1 为飞行器前部机翼的面积, S_2 为飞行器后部 机翼的面积, δ_1 为飞行器前部机翼的襟翼的偏角, δ_2 为飞行器后部机翼的襟翼的偏角, $C_{L\delta1}$ 为由 δ_1 引 起的飞行器前部机翼的升力系数, $C_{L\delta2}$ 为由 δ_2 引起 的飞行器后部机翼的升力系数. δ_1 和 δ_2 有如下关系:

$$\delta = \delta_1 = -\frac{C_{\mathrm{L}\delta 2}\delta_2 S_2}{C_{\mathrm{L}\delta 1}S_1}, C_{\mathrm{L}\delta} = 0.$$
(9)

总的阻力D投影到机体系具体组成^[14]可由下式 表示:

$$D = D_{1} + D_{2} =$$

$$0.5C_{D1}S_{1}\rho\left(\dot{x}_{b}^{2} + \dot{z}_{b}^{2}\right) + 0.5C_{D2}S_{2}\rho\left(\dot{x}_{b}^{2} + \dot{z}_{b}^{2}\right) =$$

$$0.5\rho\left(\dot{x}_{b}^{2} + \dot{z}_{b}^{2}\right)\left(C_{D0} + (C_{L0} + C_{L\alpha}\alpha + C_{L\delta 1}\delta_{1})s_{\alpha}\right)S_{1} +$$

$$0.5\rho\left(\dot{x}_{b}^{2} + \dot{z}_{b}^{2}\right)\left(C_{D0} + (C_{L0} + C_{L\alpha}\alpha + C_{L\delta 2}\delta_{2})s_{\alpha}\right)S_{2} =$$

$$0.5\rho\left(\dot{x}_{b}^{2} + \dot{z}_{b}^{2}\right)S\left(C_{D0} + C_{L}s_{\alpha}\right),$$
(10)

飞行器所受的总力矩τ由机翼产生的升力引起 的力矩、旋翼旋转运动和机体转动的相对运动引起 的陀螺力矩、旋翼产生的阻尼力矩和机翼拉力引起 的力矩、旋翼倾转运动时产生的反作用力和陀螺力 矩(由旋翼倾转运动和机体转动的相对运动引起)组 成,其具体的表达式则可由下面的式(11)(13)~(15) 给出.

飞行器固定襟翼产生的投影到机体系的俯仰力 矩₇₆可由下式给出:

$$\tau_{\delta} = 0.5 C_{\delta} \delta \rho S \left(\dot{x}_{\rm b}^2 + \dot{z}_{\rm b}^2 \right) E_{\rm y}^b, \tag{11}$$

其中 C_{δ} 为由标称的襟翼偏转角 δ 引起的飞行器俯仰 力矩的系数, τ_{δ} 的具体组成可由下式表示:

$$\tau_{\delta} = (L_1 l_4 - L_2 l_3) E_{\rm y}^b = 0.5 (C_{\rm L0} + C_{\rm L\alpha} \alpha + C_{\rm L\delta1}) S_1 \rho \left(\dot{x}_{\rm b}^2 + \dot{z}_{\rm b}^2 \right) l_4 E_{\rm y}^b - 0.5 (C_{\rm L0} + C_{\rm L\alpha} \alpha + C_{\rm L\delta2}) S_2 \rho \left(\dot{x}_{\rm b}^2 + \dot{z}_{\rm b}^2 \right) l_3 E_{\rm y}^b = 0.5 C_{\delta} \delta \rho S \left(\dot{x}_{\rm b}^2 + \dot{z}_{\rm b}^2 \right) E_{\rm y}^b, \tag{12}$$

式中 $S_1l_4 = S_2l_3, C_{\delta} = (C_{L\delta 1}S_1(l_3 + l_4))/S, l_3$ 为飞 行器后部机翼的升力作用点(作用点在飞行器后部 旋翼的旋转轴上)到中心的距离, l_4 为飞行器前部机 翼的升力作用点(作用点在飞行器前部旋翼的旋转 轴上)到中心的距离.

旋翼相对于机体转动会产生一个陀螺力矩投影 到机体系记为G_b,表达式如下:

$$G_{\rm b} = \sum_{i=1}^{4} J_{\rm r} (\Omega \times R_{\beta} E_{\rm z}^{\beta}) (-1)^{i+1} \omega_i.$$
(13)

由旋翼的拉力引起的力矩和旋翼旋转的反作用 阻尼力矩投影在左手旋翼坐标系**B**记为_{7b},表达式如 下:

$$\tau_{\rm b} = \begin{bmatrix} l_1 b(\omega_2^2 - \omega_1^2) + l_2 b(\omega_3^2 - \omega_4^2) \\ l_4 c_\beta b(\omega_2^2 + \omega_1^2) - l_3 c_\beta b(\omega_3^2 + \omega_4^2) \\ \sum_{i=1}^4 (-1)^{i+1} Q_i \end{bmatrix}, \quad (14)$$

式中 $Q_i = \kappa \omega_i^2$, 是旋翼在空气中旋转引起的空气动 力学反作用的力矩, 决定常数 κ 的因素不仅包括决 定b的因素, 同时还与旋翼叶片的安装角度有关. 由旋翼倾转运动产生的反力矩和陀螺力矩投影 到机体系记为*τ_β*,表达式如下:

$$\tau_{\beta} = R_{\beta} J_{\rm r} \dot{\beta} (\sum_{i=1}^{4} (-1)^{i+1} \omega_i) E_{\rm z}^{\beta} - 4 J_t \ddot{\beta} E_{\rm y}^{b}, \quad (15)$$

式中 $J_{\rm r}$ 为旋翼绕 $E_{\rm v}^{\beta}$ 的转动惯量.

由此通过式(6)和(7),式(11)(13)~(15)可以得到*F* 和τ的表达式:

$$F = R_{\beta} \begin{vmatrix} 0 \\ 0 \\ T \end{vmatrix} + \begin{vmatrix} Ls_{\alpha} - Dc_{\alpha} \\ 0 \\ -Lc_{\alpha} - Ds_{\alpha} \end{vmatrix}, \quad (16)$$

$$\tau = G_{\rm b} + \tau_{\rm b} + R_{\beta}\tau_{\rm b} + \tau_{\beta}.$$
 (17)

本文设计的飞行器在模态转换时,4个旋翼的转速差距很小,同时 J_t 很小,因此 G_b 以及 τ_β 可以看作干扰,在控制律设计中可以忽略不计^[2].仿真试验验证了控制律对此干扰的鲁棒性.从而由式(17)得到:

$$\tau = \tau_{\delta} + R_{\beta}\tau_{\rm b}.\tag{18}$$

3 控制律设计(Design of control law)

3.1 航迹跟踪控制律(Control law design for tracking trajectory)

期望的前飞速度、高度和侧向位置信息分别为: *x*_d, *y*_d, *z*_d. 定义前飞速度、高度和侧向位置的跟踪 误差分别为:

$$e_1 = \dot{x} - \dot{x}_{d}, \ e_2 = y - y_{d}, \ e_3 = z - z_{d},$$

 $e_4 = \dot{y} - \dot{y}_{d} = \dot{y}, \ e_5 = \dot{z} - \dot{z}_{d} = \dot{z}.$

定义误差系统:

$$\dot{e}_1 = u_1/m,\tag{19}$$

$$\dot{e}_2 = e_4, \dot{e}_4 = u_2/m, \tag{20}$$

$$\dot{e}_3 = e_5, \dot{e}_5 = u_3/m + g.$$
 (21)

定理1 针对系统(19)~(21), 采用如下控制律:

$$RF = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} -mk_1e_1 \\ -2mk_2^2e_2 - 2mk_2e_4 \\ -2mk_3^2e_3 - 2mk_3e_5 - mg \end{bmatrix},$$
(22)

其中: k₁ > 0, k₂ > 0, k₃ > 0, 从而系统(19)~(21)渐 近收敛到

$$e_1 = 0, e_2 = 0, e_3 = 0, e_4 = 0, e_5 = 0.$$

3.2 期望拉力、姿态和倾转角的求解(Solving the desired thrust, attitude and tilting angle)

这里期望
$$\theta_d = \dot{\theta}_d = 0$$
和 $\dot{\psi} = \dot{\phi}_d = 0$. 根据式(16)

和(22),可以得到:

$$\begin{bmatrix} T_{d}s_{\beta_{d}} \\ (T_{d}c_{\beta_{d}} + (Lc_{\alpha} + Ds_{\alpha}))s_{\phi_{d}} \\ -(T_{d}c_{\beta_{d}} + (Lc_{\alpha} + Ds_{\alpha}))c_{\phi_{d}} \end{bmatrix} = \\ \begin{bmatrix} -mk_{1}e_{1} - Ls_{\alpha} + Dc_{\alpha} \\ -2mk_{2}^{2}e_{2} - 2mk_{2}\dot{y} \\ -2mk_{3}^{2} - 2mk_{3}\dot{z} - mg \end{bmatrix},$$
(23)

由上式可以得到:

$$\phi_{\rm d} = -({\rm tg})^{-1} \left(\frac{-2mk_2^2 e_2 - 2mk_2 \dot{y}}{-2mk_3^2 e_3 - 2mk_3 \dot{z} - mg} \right), \qquad (24)$$

$$\beta_{\rm d} =$$

$$(tg)^{-1} \left(\frac{-2mk_1e_1 - Ls_{\alpha} + Dc_{\alpha}}{\frac{2mk_3^2e_3 + 2mk_3\dot{z} + mg}{c_{\phi_d}} - (Lc_{\alpha} + Ds_{\alpha})} \right),$$
(25)

$$T_{\rm d} = \sqrt{\Delta},$$
 (26)

其中:

$$\begin{split} \Delta &= (-mk_1e_1 - Ls_{\alpha} + Dc_{\alpha})^2 + \\ &(-2mk_2^2e_2 - 2mk_2\dot{y} - (Lc_{\alpha} + Ds_{\alpha})s_{\phi_{\rm d}})^2 + \\ &(-2mk_3^2 - 2mk_3\dot{z} - mg - (Lc_{\alpha} + Ds_{\alpha})c_{\phi_{\rm d}})^2. \end{split}$$

下面设计姿态控制律,使飞行器达到期望姿态.

3.3 姿态控制律(Design of attitude control law)

根据上面给出的期望姿态: $\eta_d = (\phi_d \ \theta_d \ \psi_d)^T$, $\dot{\eta}_d = 0$.

定义姿态的误差: $e_{\eta} = \eta - \eta_{d}, e_{\dot{\eta}} = \dot{\eta}.$ 定义误差系统:

$$\begin{cases} \dot{e}_{\eta} = e_{\dot{\eta}}, \\ \dot{e}_{\dot{\eta}} = \ddot{\eta} = W^{-1}J^{-1}(-\Omega \times J\Omega + \tau) + & (27) \\ W^{-1}\dot{W}W^{-1}\Omega. \end{cases}$$

定理 2 针对系统(27),设计如下控制律

$$\tau = J(W(-2k^2e_\eta - 2ke_{\dot{\eta}}) + \dot{W}W^{-1}\Omega) +$$

 $\Omega \times J\Omega,$ (28)

其中 $k > 0, e_{\eta} = \eta - \eta_{\mathrm{d}},$

$$W = \begin{bmatrix} 1 & 0 & -s_{\theta} \\ 0 & c_{\phi} & c_{\theta}s_{\phi} \\ 0 - s_{\phi} & c_{\theta}c_{\phi} \end{bmatrix},$$

从而 $e_{\eta} = 0$, $\dot{\eta} = 0$ 是渐近稳定.

证 把式(28)代入(27)中,易证该结论. 满足(28)式中的τ实际上是期望的控制力矩,为 了表达此层含义,把它重新记为*τ*_d.

综上所述,由式(26)和式(28)可以得到:

$$\begin{bmatrix} T_{\rm d} \\ \tau_{\rm d} \end{bmatrix} = \begin{bmatrix} \sqrt{\Delta} \\ Q \end{bmatrix}, \qquad (29)$$
$$\begin{bmatrix} T_{\rm d} \\ \tau_{\rm d} \end{bmatrix} = \begin{bmatrix} [b \ b \ b \ b] \\ R_{\beta}H \end{bmatrix} \begin{bmatrix} \omega_{1\rm d}^{2} \\ \omega_{2\rm d}^{2} \\ \omega_{3\rm d}^{2} \\ \omega_{4\rm d}^{2} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ F \\ 0 \end{bmatrix}, \qquad (30)$$

其中:

$$Q = J(W(-2k^2e_{\eta} - 2k\dot{\eta}) + \dot{W}W^{-1}\Omega) + \Omega \times J\Omega,$$

$$H = \begin{bmatrix} -l_1b & l_1b & l_2b & -l_2b \\ l_4c_{\beta}b & l_4c_{\beta}b & -l_3c_{\beta}b - l_3c_{\beta}b \\ \kappa & -\kappa & \kappa & -\kappa \end{bmatrix},$$

$$F = 0.5C_{\delta}\delta_{d}\rho S(\dot{x}_{\rm h}^2 + \dot{z}_{\rm h}^2).$$

在模态转换过程中,当前飞速度比较小时(此时 $\beta \ll \pi/2$),可令 $\delta_d = 0$,此时的力矩可全部由旋翼提 供,直接求解上式即可得到期望的

$$\{\omega_{1d} \ \omega_{2d} \ \omega_{3d} \ \omega_{4d} \ \beta_d \ \delta_d\}.$$

当前飞速度达到一定值时,可由如下方法得到期望的 δ_{d} .

令
$$0.5C_{\delta}\delta_{d}\rho S\left(\dot{x}_{b}^{2}+\dot{z}_{b}^{2}\right)= au_{y,d}(1-c_{\beta}),$$
得到
 $\delta_{d}=rac{2 au_{y,d}(1-\cos\beta)}{
ho S(\dot{x}_{b}^{2}+\dot{z}_{b}^{2})C_{\delta}},$
(31)

$$\begin{bmatrix} \omega_{1d}^{2} \\ \omega_{2d}^{2} \\ \omega_{3d}^{2} \\ \omega_{4d}^{2} \end{bmatrix} = M^{-1} \begin{bmatrix} T_{d} \\ R_{\beta}^{T} \tau_{d} \end{bmatrix}, \qquad (32)$$

式中:

$$M = \begin{bmatrix} b & b & b & b \\ -l_1 b & l_1 b & l_2 b & -l_2 b \\ l_4 b & l_4 b & -l_3 b & -l_3 b \\ \kappa & -\kappa & \kappa & -\kappa \end{bmatrix}.$$

容易验证,上述的M为满秩矩阵,从而得到了原始的控制输入{ $\omega_{1d} \omega_{2d} \omega_{3d} \omega_{4d} \beta_d \delta_d$ }.

下面给出实现这些控制输入的电机和舵机的控制律.

4 电机和舵机控制(Motor and servo control law)

电机模型 $J_{\mathbf{r}}\dot{\omega}_{i} = \tau_{i} - \kappa \omega_{i}^{2},$ 定义 $\tilde{\omega}_{i} = \omega_{i} - \omega_{i,d},$ 得到

$$\dot{\tilde{\omega}}_i = J_{\rm r}^{-1} \left(\tau - \kappa \omega_i^2 \right).$$

考虑如下控制律:

$$\tau_i = -J_{\rm r} k_\omega \tilde{\omega}_i + \kappa \omega_i^2, \tag{33}$$

得到 $\dot{\tilde{\omega}}_i = -k_{\omega}\tilde{\omega}_i$,从而保证 $\tilde{\omega}_i$ 渐近收敛到零. β 和 δ 的动态模型如下^[14]:

$$J_{\rm t}\ddot{\beta} = M_{\beta}, \ \ J_{\delta}\ddot{\delta} = M_{\delta} - B\dot{\delta} - C\delta.$$
 (34)

式中*J*_δ 为襟翼绕转动轴的转动惯量, 采用类似式 (33)中的控制律结构, 可以容易设计出使β和δ 渐近 收敛到期望值的控制律.

5 仿真结果(Simulation results)

结合飞行器和控制器的数学模型进行仿真,首先 给出搭建的飞行器原型机必要的仿真参数.

悬停状态时:
姿态角
$$\eta = (0 \ 0 \ 0)^{T}$$
;
位置 $p = (0 \ 0 \ 0)^{T}$;
速度 $\dot{p} = (0 \ 0 \ 0)^{T}$.
旋翼转速、倾转角、襟翼转角为:

 $(\omega_1 \ \omega_2 \ \omega_3 \ \omega_4 \ \beta \ \delta) =$

 $(310.1 \ 310.1 \ 392.2 \ 392.2 \ 0 \ 0).$

完成模态转换处于高速前飞时:

姿态角 $\eta = (0 \ 0 \ 0)^{\mathrm{T}};$

位置y = 0, z = 0;

速度 $\dot{p} = (50 \ 0 \ 0)^{\mathrm{T}}.$

旋翼转速、倾转角、襟翼转角为:

$$(\omega_1 \ \omega_2 \ \omega_3 \ \omega_4 \ eta \ \delta) =$$

 $(74.4 \ 74.4 \ 94.1 \ 94.1 \ \pi/2 \ 0).$

表1 仿真参数表

Table 1	Parameters for simulation

变量	值	变量	值
m	5 kg	S	0.1 m^2
g	10 m/s^2	ho	1.225 kg/m^3
l_1	0.25 m	$C_{\rm L0}$	0.32
l_2	0.4 m	$C_{\rm D0}$	0.002
l_3	0.25 m	$C_{\mathrm{L}\alpha}$	0.7
l_4	0.4 m	$J_{ m r}$	$5 \times 10^{-3} \mathrm{kg} \cdot \mathrm{m}^2$
$b 1 \times 10^{-4} \text{ kg·m}$		$J_{ m t}$	$10^{-3} \text{ kg} \cdot \text{m}^2$
κ 1	$ imes 10^{-5} \text{ kg}{\cdot}\text{m}$	J_{δ}	$10^{-3} \text{ kg} \cdot \text{m}^2$
C_{δ}	0.05	J di	$ag\{0.2, 0.2, 0.4\} \text{ kg} \cdot \text{m}^2$

本文仿真中,控制输入由式(31)和(32)计算得出, 而(31)和(32)中的 τ_d 是把 G_b 以及 τ_β 忽略了的,所以在 仿真计算中是把 G_b 以及 τ_β 看作干扰的,进而得到对 应的仿真结果如图3和图4所示.从图中可以看出,本 文设计的控制律对此干扰具有良好的鲁棒性. 如图3所示, 在模态转换完成后, 前飞状态下, 旋 翼提供的拉力远小于悬停时的拉力, 因此在相同的 巡航速度状态下, 与直升机相比, 本文的飞行器可以 节省大量的燃料, 这样可以提高飞行器的巡航时间 和飞行半径.

如图4所示,飞行器可以快速稳定地实现从水平 前飞到悬停的模态转换.

综上所述,飞行器可以很好地完成垂直起降到前 飞的模态转换,成功地完成了传统的直升机到固定 机翼飞行器之间的转换.

Fig. 3 Simulation results of the transition from hovering to forward-flight

6 结论(Conclusions)

本文设计的可垂直起降高速前飞的飞行器同传 统的直升机相比,不仅具有悬停的能力,而且具有前 飞速度大的特点.另外,具有更大的有效载荷,在巡 航时,耗油率更低.

参考文献(References):

 PONDS P, MAHONY R, HYNES P, et al. Design of a four-rotor aerial robot[C] //Proceeding of 2002 Australisian Conference on Roboteics and Automation. Auckland: Australisian Robotics and Automation Association, 2002: 145 – 150.

- [2] KENDOUL F, FANTONI I, LOZANO R. Modeling and control of a small autonomous aircraft having two tilting rotors[J]. *IEEE Transactions on Robotics*, 2006, 22(6): 1297 – 1302.
- [3] MADANI T, BENALLEGUE A. Control of a quadrotor minihelicopter via full state backstepping technique[C] //Proceedings of the 45th IEEE Conference on Decision and Control. San Diego, CA: IEEE, 2006: 1515 – 1520.
- [4] EFE M O. Robust low altitude behavior control of a quadrotor rotorcraft through sliding modes[C] //Proceeding of the 15th Mediterranean Conference on Control and Automation. Athens, Greece: IEEE, 2006: 783 – 794.
- [5] WASLANDER L S, HOFFMANN M G, JANG S J, et al. Multi-agent quad-rotor testbed control design: integral sliding mode vs. reinforcement learning[C] //2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton, Alberta, Canada: IEEE, 2005: 3712 – 3717.
- [6] XU R, ÖZGUNER Ü. Sliding mode control of a quadrotor helicopter[C] //Proceedings of the 45th IEEE Conference on Decision and Control. San Diego, CA: IEEE, 2006: 4957 – 4962.
- [7] EARL G M, ANDREA D R. Real-time attitude estimation techniques applied to a four rotor helicopter[C] //Proceeding of the 43rd IEEE Conference on Decision and Control. Atlantis, Paradise Islandm, Bahamas: IEEE, 2004: 3956 – 3961.
- [8] FELIX M C. A two level non-linear inverse control structure for rotorcraft trajectory tracking[C] //Proceedings of the 26th Chinese Control Conference. Zhangjiajie, Hunan, China: IEEE, 2007: 312 – 325.
- [9] TAYEBI A, MCGILVRAY S. Attitude stabilization of a four-rotor aerial robot[C] //Proceeding of the 43rd IEEE Conference on Decision and Control. Atlantis, Paradise Island, Bahamas: IEEE, 2004: 1216 – 1221.

- [10] SALAZAR-CRUZ S, PALOMINO A, LOZANO R. Trajectory tracking for a four rotor mini-aircraft[C] //Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005. Seville, Spain: IEEE, 2005: 2505 – 2510.
- [11] CASTILLO P, DZUL A, LOZANO R. Real-time stabilization and tracking of a four-rotor mini rotocraft[J]. *IEEE Transactions on Con*trol Systems Technology, 2004, 12(4): 510 – 516.
- [12] TAYEBI A, MCGILVRAY S. Attitude stabilization of a VTOL quadrotor aircraft[J]. *IEEE Transactions on Control Systems Technology*, 2006, 14(3): 562 – 571.
- [13] ZEMALACHE K M, BEJI L, MARREF H. Control of an underactuated system: Application to a four rotors rotorcraft[C] //Proceeding of the 44th IEEE Conference on Robotics and Bilmimetics. Shenyang, China: IEEE, 2005: 404 – 409.
- [14] 张明廉主编,飞行控制系统,北京:国防工业出版社,1994.
 (ZHANG Minglian. Automatic Control Theory[M]. Beijing: Higher Education Press, 1994.)

作者简介:

樊鹏辉 (1984—), 男, 硕士研究生, 研究方向为多轴飞行器的 设计与控制, E-mail: fphbuaa@126.com;

王新华 (1975—), 男, 副教授, 研究方向为新型飞行器设计及 非线性延迟系统, E-mail: wangxinhua@buaa.edu.cn;

蔡开元 (1965—), 男, 博士生导师, 研究方向包括软件可靠性 与测试、自主飞行控制、软件控制论, E-mail: kycai@buaa.deu.cn.