文章编号:1000-8152(2010)08-0991-10

自治飞艇动力学建模及反馈控制

刘 屿1,2, 邬依林1,3, 胡跃明1

(1. 华南理工大学精密电子制造装备教育部工程研究中心,广东广州 510640;

2. 加拿大肯考迪娅大学 机械工程系, 魁北克 蒙特利尔 H3G 1M8; 3. 广东教育学院 计算机科学系, 广东 广州 510310)

摘要:在Kirchhoff方程和Newton-Euler理论基础上,推导出一种通用符合实际的、带有气囊和压块的飞艇六自由 度动力学模型,并对该模型实施了状态量和控制量的非线性反馈变换,同时利用最小相位系统特性,构造飞艇反馈 线性化动力学系统.在此基础上,分别研究了飞艇在纵向平面内的平衡飞行可行性和稳定性,以及平衡航迹的镇定 和期望输出的跟踪.仿真结果和样机试飞都验证了理论分析的正确性和可靠性.

关键词: 飞艇动力学建模; 气囊和压块; 反馈控制; 平衡航迹; 零动态; 最小相位系统中图分类号: V274 文献标识码: A

Autonomous dynamics-modeling and feedback control for an airship

LIU Yu^{1,2}, WU Yi-lin^{1,3}, HU Yue-ming¹

(1. Ministry of Education Engineering Research Center of Precise Electronic Manufacturing Equipment,

South China University of Technology, Guangzhou Guangdong 510640, China;

2. Department of Mechanical Engineering, Concordia University, Montreal QC H3G 1M8, Canada;

3. Department of Computer Science, Guangdong Education Institute, Guangzhou Guangdong 510310, China)

Abstract: By Kirchhoff equations and Newton-Euler laws, we developed a general and practical dynamic model with six degrees of freedom for an airship equipped with ballonets and ballast. A nonlinear feedback is used to implement the transformation of states and control variables, and the minimum-phase system property is adopted in building the feedback-linearized dynamic model for the airship. On this basis, we investigate the feasibility and the stability of the equilibrium flight of the airship in a longitudinal plane, and the stabilization of the equilibrium flying paths as well as the tracking of the desired outputs. The simulation results and the prototype test results verify the theoretical analysis and confirm the reliability.

Key words: airship dynamics modeling; ballonets and ballast; feedback control; equilibrium paths; zero dynamic; minimum phase system

1 引言(Introduction)

平流层自治飞艇作为一种低速,甚至静止的空中 平台,在通信、军事、空间开发与监控等领域具有广 泛尚未开发的应用前景^[1~4].自治飞艇系统的开发 与研究,不仅需要能够描述飞艇内在物理机理的动 力学模型,还需要对建立的模型及其性能进行研究 分析,以便对系统采用先进的控制方法.

文献[1,2]描述了直接利用势流理论和Kirchhoff方程经典结论而建立的飞艇动力学模型,文献 [3]给出飞艇某部分的建模与控制研究,但这两类模 型都没有考虑升降气囊和压块的存在,以及风速和 干扰气流的影响;文献[4]虽描述到压块和气囊,却没 有将气囊从机体中分离出来,且同样没有考虑风速 和干扰气流的影响;而文献[5]则研究了先进控制方

法在飞艇系统中的应用.

本文研究不仅参考航空器研究方法^[6],而且将更 多的参考潜水器研究成果^[7,8].首先,建立更通用符 合实际的、带有气囊和压块的飞艇动力学模型,该 模型将克服上述模型中存在的缺陷,同时还设计了 飞艇气动力F_A和气动力矩M_A的计算公式,该公式 将使飞艇的平衡航迹设计成为可能.其次,对建立的 模型实施状态和控制量的非线性反馈变换,从而增 加飞艇系统的稳定域,为飞艇内部质量提供悬架系 统.再次,运用建立的飞艇模型,研究了飞艇的动态 性能:1)平衡航迹的设计;2)通过构造飞艇最小相位 系统和设计控制器,研究平衡航迹的镇定和期望输 出的跟踪;3)研究压块和气囊的耦合动力学.最后, 通过数字仿真验证了上述设计和分析的正确性和可

收稿日期: 2009-04-24; 收修改稿日期: 2009-07-13.

基金项目:国家自然科学基金资助项目(60835001);国家建设高水平大学公派研究生基金资助项目.

992 靠性.

2 动力学建模(Dynamic modeling)

本文研究的飞艇除了有一般飞艇所配备的升降 陀、方向陀和推进器以外,还配备有压块和气囊,压 块也将用于飞艇的姿态控制,气囊用于调节飞艇的 升降,且气囊和压块的耦合运动可使飞艇在无需推 进器工作的情况下前行,这样可节约更多能量,对延 长飞艇寿命至关重要.

2.1 坐标系和质量(Coordinates and mass)

如图1所示,机体系{*O*}建立在机体的浮力中心, *e*₁,*e*₂和*e*₃分别为动坐标系3个轴向的单位向量,惯 性系{*o*}建立在地球表面某一点,*i*,*j*和*k*分别为惯性 系3个轴向的单位向量.

图 1 飞艇坐标系及质量定义 Fig. 1 Airship coordinates and mass definitions

设压块为位置 $r_y = [r_{y1} r_{y2} r_{y3}]^T$ 可变而质量 m_y 不可变的质点, 气囊为质量 m_q 可变而位置 r_q $= [r_{q1} r_{q2} r_{q3}]^T$ 不可变的质点, 均匀分布的机壳为位 置 r_j 和质量 m_j 均不可变的质点, 则飞艇总质量 $m_h = m_s + m_y = m_j + m_q + m_y$, 其中 $m_s = m_j + m_q$ 为 静止质量. 若飞艇有多个气囊, 则可以通过换算最终 用一个质点来替代.

2.2 气动力和气动力矩(Aerodynamics and aerodynamic torque)

式(1)和式(2)为文献[1]定义的F_A和M_A计算模型, 而文献[9]给出了其另一种简化的计算模型, 但这两种模型都未考虑风速和空气的影响, 且文献[9]中模型也未考虑滚转角 \phi 对F_A和M_A的影响.

$$F_{\rm A} = [X_{\rm a} Y_{\rm a} Z_{\rm a}]^{\rm T} = Q \Lambda^{2/3} [C_{\rm X} C_{\rm Y} C_{\rm Z}]^{\rm T}, \quad (1)$$

$$M_{\rm A} = [L_{\rm a} M_{\rm a} N_{\rm a}]^{\rm T} = Q \Lambda [C_{\rm l} C_{\rm m} C_{\rm n}]^{\rm T},$$
 (2)

其中:阻力X_a、侧力Y_a和升力Z_a分别为F_A在速度坐标系上的分量,滚转力矩L_a、俯仰力矩M_a和偏航力矩N_a分别为M_A在机体坐标系上的分量,Q为动压, A为飞艇体积.

同时,作为流体的空气肯定具有黏性,那么对于空气的旋转/黏性阻力,可用飞艇在机体系中角速

度 $\Omega = [p q r]^{\mathrm{T}}$ 的一次型和二次型表示^[10]: $M_{\mathrm{A}} = Q\Lambda [C_{\mathrm{l}} C_{\mathrm{m}} C_{\mathrm{n}}]^{\mathrm{T}} + K_{1}\Omega + \Omega K_{2}\Omega,$ (3)

其中 K_1 = diag{ K_{11} , K_{12} , K_{13} }和 K_2 = diag{ K_{21} , K_{22} , K_{23} }分别为一次型和二次型旋转/黏性阻力系数矩阵, 若无需考虑空气的粘性, 则令 $K_1 = K_2 = 0$ 即可.

设升降舵和方向舵控制量为:

$$\begin{split} u_{\delta} &= [u_{\delta ea} \; u_{\delta ed} \; u_{\delta ra} \; u_{\delta rd}]^{\mathrm{T}} = \\ [\delta_{el} + \delta_{er} \; \; \delta_{el} - \delta_{er} \; \; \delta_{rb} + \delta_{rt} \; \; \delta_{rb} - \delta_{rt}]^{\mathrm{T}}, \end{split}$$

其中: δ_{rt} 和 δ_{rb} 为上下方向舵偏角, δ_{el} 和 δ_{er} 为左右升降舵偏角.那么,受文献[7~9]的启发,以及借鉴文献[6,10]的翼型理论和流势论成果,式(1)和(3)中系数 $C_x, C_y, C_z, C_l, C_m, C_n$ 的计算模型可为

$$\begin{cases} C_{\rm X} = C_{\rm X0} + C_{\rm X1}(\alpha^2 + \beta^2), \\ C_{\rm Y} = C_{\rm Y0} + C_{\rm Y1}(\phi + \beta) + C_{\rm Y\delta}u_{\delta \rm ra}, \\ C_{\rm Z} = C_{\rm Z0} + C_{\rm Z1}(\alpha + \phi) + C_{\rm Z\delta}u_{\delta \rm ea}, \\ C_{\rm I} = C_{\rm I0} + C_{\rm I1}\phi + C_{\rm I\delta}(u_{\delta \rm rd} + u_{\delta \rm ed}), \\ C_{\rm m} = C_{\rm m0} + C_{\rm m1}\alpha + C_{\rm m\delta}u_{\delta \rm ea}, \\ C_{\rm n} = C_{\rm n0} + C_{\rm n1}\beta + C_{\rm n\delta}u_{\delta \rm ra}, \end{cases}$$
(4)

其中: C_{X0}, C_{Y0}, C_{Z0}, C_{l0}, C_{m0}和C_{n0}为飞艇在平衡 条件下的气动力系数, 其他C_{(·})均为气动导数, 其值 可依据文献[11]求得, α和β分别为飞艇的迎角和侧 滑角. 需指出: 在飞艇具有较小姿态角和气流角时, 模型式(4)具有更好的效果和精度, 但对一般情况, 该 模型都能满足分析研究的要求^[6].

在机体系中, 设 $V_{w} = [u_{w} v_{w} w_{w}]^{T}$ 为干扰气流线 速度, $V = [u v w]^{T}$ 为飞艇飞行线速度, 则飞艇相对 于气流的线速度为 V_{a} : $V_{a} = [u_{a} v_{a} w_{a}]^{T} = V - V_{w}$, 其中 ρ 为空气密度, 则动压可表示为

$$Q = 0.5\rho V_{\rm a}^2.$$
 (5)

将式(4)和(5)分别带入式(1)和式(3)即得到本文 所建立的F_A和M_A计算模型.

2.3 运动学(Kinematics)

如图1所示,设t时刻,惯性系原点o至动坐标系 原点O的矢量 $b = [b_1 \ b_2 \ b_3]^T \in \mathbb{R}^3$ 即为飞艇在惯性 系中的位置矢量, \mathbb{R}^3 为欧氏空间,设动坐标系相对 于惯性系的姿态为 $R \in SO(3), SO(3)$ 为Lie群空间, 其中R可由飞艇RPY角(即滚转角 ϕ 、俯仰角 θ 和偏航 角 ψ)表示,则飞艇运动学方程为

$$\dot{R} = R\hat{\Omega}, \ \dot{b} = RV.$$
 (6)

若任意 $a, b \in \mathbb{R}^3$, 定义算子([^]): $a \times b = \hat{a}b$.

2.4 动力学(Dynamics)

与传统飞行器相比,飞艇具有很大的体积/质量 比,当飞艇在空气中运动时,其附加质量和惯性不能 忽略,也是这类流体动力的一个重要特点:它们只能 与飞艇运动一起求得.因此将飞艇与其周围流体构 成的系统记为"飞艇-流体"系统,本节根据Newton-Euler理论推导飞艇的动力学方程.

2.4.1 动能(Kinetic energy)

在机体系, 设 $\Omega_{\rm w} = [p_{\rm w} q_{\rm w} r_{\rm w}]^{\rm T}$ 为干扰气流角速度, 则飞艇相对于气流的角速度为 $\Omega_{\rm a} = \Omega - \Omega_{\rm w}$ $= [p_{\rm a} q_{\rm a} r_{\rm a}]^{\rm T}, 若定义$

$$\begin{split} \boldsymbol{x}_{\mathrm{w}} &= [\boldsymbol{V}_{\mathrm{w}} \ \boldsymbol{\varOmega}_{\mathrm{w}}]^{\mathrm{T}}, \boldsymbol{x} = [\boldsymbol{V} \ \boldsymbol{\varOmega}]^{\mathrm{T}}, \\ \boldsymbol{x}_{\mathrm{a}} &= [\boldsymbol{V}_{\mathrm{a}} \ \boldsymbol{\varOmega}_{\mathrm{a}}]^{\mathrm{T}} = \boldsymbol{x} - \boldsymbol{x}_{\mathrm{w}}, \end{split}$$

*m*_w为飞艇置换气流的质量,*I*₃为三阶单位矩阵,则 机体周围流体的动能*T*_f以及飞艇所置换气流的动 能*T*_w为:

$$T_{\rm f} = \frac{x_{\rm a}^{\rm T}}{2} \begin{bmatrix} M_{\rm f} \ \Theta_{\rm f}^{\rm T} \\ \Theta_{\rm f} \ J_{\rm f} \end{bmatrix} x_{\rm a},$$

$$T_{\rm w} = \frac{x_{\rm a}^{\rm T}}{2} \begin{bmatrix} m_{\rm w} I_{\rm 3} \ \Theta_{\rm w}^{\rm T} \\ \Theta_{\rm w} \ J_{\rm w} \end{bmatrix} x_{\rm a} - \frac{x^{\rm T}}{2} \begin{bmatrix} m_{\rm w} I_{\rm 3} \ \Theta_{\rm w}^{\rm T} \\ \Theta_{\rm w} \ J_{\rm w} \end{bmatrix} x,$$
(7)

其中: $M_{\rm f}$, $J_{\rm f}$ 和 $\Theta_{\rm f}$ 分别为飞艇附加质量、附加惯性和附加静力矩矩阵, $J_{\rm w}$ 和 $\Theta_{\rm w}$ 分别为干扰气流动能张量的分量^[12]. 若设 $r_{\rm s}$ 和 $J_{\rm s}$ 分别为静止质量 $m_{\rm s}$ 在机体系中的位置向量和惯性矩阵, 则 $m_{\rm s}$ 的动能 $T_{\rm s}$ 可以表示为飞艇速度的二次型函数:

$$T_s = \frac{x^{\mathrm{T}}}{2} \begin{bmatrix} m_{\mathrm{s}} I_3 & -m_s \hat{r}_{\mathrm{s}} \\ m_s \hat{r}_{\mathrm{s}} & J_{\mathrm{s}} \end{bmatrix} x.$$
(9)

若设J_j为m_j在机体系的惯性矩阵,上式中:

$$r_{\rm s} = \frac{m_{\rm j} r_{\rm j} + m_{\rm q} r_{\rm q}}{m_{\rm j} + m_{\rm q}}, J_{\rm s} = J_{\rm j} - m_{\rm q} \hat{r}_{\rm q} \hat{r}_{\rm q}.$$
 (10)

设v_s为质量m_s在机体系的绝对速度:

$$v_{\varsigma} = V + \dot{r}_{\varsigma} + \hat{\Omega}r_{\varsigma}, \varsigma = y, q.$$
(11)

同理, 压块和气囊的动能Ty和Tg为:

$$T_{\varsigma} = 0.5m_{\varsigma} \|v_{\varsigma}\|^{2} = \frac{m_{\varsigma}}{2} \begin{bmatrix} x\\ \dot{r}_{\varsigma} \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} I_{3} & -\hat{r}_{\varsigma} & I_{3}\\ \hat{r}_{\varsigma} & -\hat{r}_{\varsigma}\hat{r}_{\varsigma} & \hat{r}_{\varsigma}\\ I_{3} & -\hat{r}_{\varsigma} & I_{3} \end{bmatrix} \begin{bmatrix} x\\ \dot{r}_{\varsigma} \end{bmatrix}, \quad (12)$$

其中 $\varsigma = y, q.$ 则整个刚体-流体系统的总动能为

 $T_{\rm h} = T_{\rm s} + T_{\rm q} + T_{\rm y} + T_{\rm f} + T_{\rm w} = 0.5 \mathscr{X} H \mathscr{X}^{\rm T}, \quad (13)$ 其中: $\mathscr{X} = [V \ \Omega \ V_{\rm w} \ \Omega_{\rm w} \ \dot{r}_{\rm y} \ \dot{r}_{\rm q}], H$ 为 6×6 阶矩阵.

2.4.2 动量(Momentum)

在惯性系,设 τ 和π分别为飞艇-流体系统的总 动量和总角动量, τ_y 和 τ_q 分别为压块和气囊动量, F_p 和 $r_p = [r_{p1} r_{p2} r_{p3}]^T$ 分别为推进器的推力及其位 置矢量在机体系中的表示, R_{ag} 表示速度系与惯性系 之间的转换矩阵,则根据牛顿定理得

$$\begin{cases} \dot{\tau} = f_{\rm e} + R_{\rm ag}F_{\rm A} + RF_{\rm p}, \\ \dot{\pi} = \iota_{\rm fe} + R(M_{\rm A} + r_{\rm p} \times F_{\rm p}), \\ \dot{\tau}_{\varsigma} = m_{\varsigma}gk + f_{\varsigma}, \varsigma = y, q, \end{cases}$$
(14)

其中: f_e 为除 F_A 和 F_p 以外的其他作用在飞艇-流体 系统的总外力, ι_{fe} 为与之对应的总外力矩, f_c 为机 体作用在质量 m_s 上的总"内"力, 重力 $m_s gk$ 为质 量 m_s 所受的唯一外力, 其中 $\varsigma = y, q$.

在机体系,设 Γ 和 Π 分别为飞艇-流体系统的 总动量和总角动量, $\Gamma_y = [\Gamma_{y1} \Gamma_{y2} \Gamma_{y3}]^T$ 和 $\Gamma_q = [\Gamma_{q1} \Gamma_{q2} \Gamma_{q3}]^T$ 分别为压块和气囊的动量,根据机体 系与惯性系关系得

$$\tau = R\Gamma, \pi = R\Pi + b \times \tau, \tau_{\varsigma} = R\Gamma_{\varsigma}, \quad (15)$$

対上式求导, 且将式(6)和(14)带入, 得:

$$\begin{cases}
\dot{\Gamma} = R^{\mathrm{T}}(f_{\mathrm{e}} + R_{\mathrm{ag}}F_{\mathrm{A}}) + F_{\mathrm{p}} - \hat{\Omega}\Gamma, \\
\dot{\Pi} = M_{\mathrm{A}} + \hat{r}_{\mathrm{p}}F_{\mathrm{p}} + R^{\mathrm{T}}(\iota_{\mathrm{fe}} - \hat{b}f_{\mathrm{e}}) - \\
\hat{\Omega}\Pi - \hat{V}\Gamma
\end{cases}$$
(16)

$$\left(\dot{\Gamma}_{\varsigma} = R^{\mathrm{T}}(m_{\varsigma}gk + f_{\varsigma}) - \hat{\Omega}\Gamma_{\varsigma}, \varsigma = y, q. \right)$$

2.5 模型(Model)

则式(17)可表示为

基于以上研究,本节将推导飞艇的模型. 根据动 量与动能的关系,对式(13)求偏导得

$$[\Gamma \Pi \Gamma_{y} \Gamma_{q}]^{T} = \begin{bmatrix} \frac{\partial T_{h}}{\partial V} & \frac{\partial T_{h}}{\partial \Omega} & \frac{\partial T_{h}}{\partial \dot{r}_{y}} & \frac{\partial T_{h}}{\partial \dot{r}_{q}} \end{bmatrix}^{T}.$$
 (17)

若近似认为飞艇有3个对称面,则 $\Theta_{\rm f} = \Theta_{\rm w} = 0$, 且 $J_{\rm f}, J_{\rm j}, J_{\rm w}$ 和 $M_{\rm f}$ 均为对角矩阵,若令

$$\begin{split} M &= M_{\rm f} + m_{\rm j} I_3 = {\rm diag}\{M_1, M_2, M_3\},\\ J &= J_{\rm f} + J_{\rm j} = {\rm diag}\{J_1, J_2, J_3\},\\ M_{\rm wf} &= M_{\rm f} + m_{\rm w} I_3 = {\rm diag}\{M_{wf1}, M_{wf2}, M_{wf3}\},\\ J_{\rm wf} &= J_{\rm f} + J_{\rm w} = {\rm diag}\{J_{wf1}, J_{wf2}, J_{wf3}\}. \end{split}$$

$$[V \ \Omega \ \dot{r}_{\rm y} \ \dot{r}_{\rm q}]^{\rm T} = \mathcal{H}[\Gamma \ \Pi \ \Gamma_{\rm y} \ \Gamma_{\rm q}]^{\rm T} + \mathcal{H}\mathfrak{U}[V_{\rm w} \ \Omega_{\rm w}]^{\rm T},$$
(18)

其中:

$$\mathfrak{U} = \begin{bmatrix} M_{\mathrm{wf}} & 0 & 0 & 0\\ 0 & J_{\mathrm{wf}} & 0 & 0 \end{bmatrix}^{\mathrm{T}}$$

$$\begin{aligned} \mathcal{H} &= \\ \begin{bmatrix} \frac{1}{M} & 0 & -\frac{1}{M} & -\frac{1}{M} \\ 0 & \frac{1}{J} & -\frac{\hat{r}_{y}}{J} & -\frac{\hat{r}_{q}}{J} \\ -\frac{1}{M} & \frac{\hat{r}_{y}}{J} & \frac{1}{m_{y}} + \frac{1}{M} - \frac{\hat{r}_{y}\hat{r}_{y}}{J} & \frac{1}{M} - \frac{\hat{r}_{y}\hat{r}_{q}}{J} \\ -\frac{1}{M} & \frac{\hat{r}_{q}}{J} & \frac{1}{M} - \frac{\hat{r}_{q}\hat{r}_{y}}{J} & \frac{1}{m_{q}} + \frac{1}{M} - \frac{\hat{r}_{q}\hat{r}_{q}}{J} \end{bmatrix} \end{aligned}$$

再对式(18)求导,可得

$$\begin{bmatrix} \dot{V} \ \dot{\Omega} \ \ddot{r}_{y} \ \ddot{r}_{q} \end{bmatrix}^{\mathrm{T}} = \\ \dot{\mathcal{H}} \begin{bmatrix} \Gamma \ \Pi \ \Gamma_{y} \ \Gamma_{q} \end{bmatrix}^{\mathrm{T}} + \mathcal{H} \mathfrak{U} \begin{bmatrix} \dot{V}_{w} \ \dot{\Omega}_{w} \end{bmatrix}^{\mathrm{T}} + \\ \dot{\mathcal{H}} \mathfrak{U} \begin{bmatrix} V_{w} \ \Omega_{w} \end{bmatrix}^{\mathrm{T}} + \mathcal{H} \begin{bmatrix} \dot{\Gamma} \ \dot{\Pi} \ \dot{\Gamma}_{y} \ \dot{\Gamma}_{q} \end{bmatrix}^{\mathrm{T}}.$$
(19)

若以作用在飞艇上的力为控制输入,设飞艇输入 控制量为 $u_{\rm c} = [u_{\delta} u_{\rm p} u_{\rm y} u_{\rm q}]^{\rm T}$,其中 u_{δ} 在2.2节已定 义,其他控制分量定义为

$$[u_{\rm p} \ u_{\rm y} \ u_{\rm q}] = [F_{\rm p} \ \dot{\Gamma}_{\rm y} \ \dot{\Gamma}_{\rm q}], \qquad (20)$$

 ${\mbox{$\ddagger$}} {\mbox{$\ddagger$}} {\mbox{$1$}} {\$

气囊的控制输入则以气囊充放气变化率定义,其 最直接的体现就是气囊的质量变化:

$$u_{\rm b} = \dot{m}_{\rm q}.\tag{21}$$

综合式(6)(16)~(21),即可以得到将气囊和压块 从机体分开、包含空气黏性影响和干扰气流影响的 飞艇六自由度(6DOF)完整模型:

 $\begin{bmatrix} \dot{R} \ \dot{b} \ \dot{V} \ \dot{\Omega} \ \dot{r}_{y} \ \dot{r}_{q} \ \dot{\Gamma}_{y} \ \dot{\Gamma}_{q} \ \dot{m}_{q} \end{bmatrix}^{\mathrm{T}} = \\ \begin{bmatrix} R\hat{\Omega} \ RV \ M^{-1} \mathscr{F} \ J^{-1} \mathscr{T} \ \mathscr{V}_{y} \ \mathscr{V}_{q} \ u_{y} \ u_{q} \ u_{b} \end{bmatrix}^{\mathrm{T}},$ (22) $\vdots \oplus :$

$$\begin{split} \mathcal{V}_{\varsigma} &= m_{\varsigma}^{-1} \Gamma_{\varsigma} - V + \hat{r}_{\varsigma} \Omega, \\ \mathscr{F} &= (MV - M_{\rm wf} V_{\rm w} + \sum \Gamma_{\varsigma}) \times \Omega + u_{\rm p} - \sum u_{\varsigma} + \\ R_{\rm ab} F_{\rm A} + R^{\rm T} f_{\rm e} + M_{\rm wf} \dot{V}_{\rm w} + \bar{m} g R^{\rm T} k, \\ \mathscr{T} &= [J\Omega - J_{\rm wf} \Omega_{\rm w} + \sum (\hat{r}_{\varsigma} \Gamma_{\varsigma})] \times \Omega + \sum (\hat{\Omega} r_{\varsigma}) \times \Gamma_{\varsigma} + \\ J_{\rm wf} \dot{\Omega}_{\rm w} + \hat{r}_{\rm p} u_{\rm p} - \sum (\hat{r}_{\varsigma} u_{\varsigma}) + g R^{\rm T} k \sum (m_{\varsigma} \hat{r}_{\varsigma}) + \\ M_{\rm A} + (MV - M_{\rm wf} V_{\rm w}) \times V + R^{\rm T} (\iota_{\rm fe} - \hat{b} f_{\rm e}). \end{split}$$

其中: $\varsigma = y, q; M_{wf}\dot{V}_w \pi J_{wf}\dot{\Omega}_w$ 可理解为气流作用 在飞艇上的力和力矩, $\bar{m} = m_h - m_w$ 可理解为飞艇 的"静升力", $R_{ab} \in SO(3)$ 为速度系与机体系之 间的转换矩阵.需指出:在计算上式时,因为机体系 原点位于浮力中心,所以浮力不产生转动惯量,因质 量 m_j "均匀分布",所以 $r_j = 0, m_j$ 也不产生转动惯 量(默认体积中心和浮力中心重合), f_e 中不再包括有 重力、浮力以及风的作用力.

然而在研究飞艇性能时,为了降低模型维数,往 往作一些合理可行的假设^[4,8]:若将多个气囊均匀 对称安排在浮心的周围, 使各个气囊位置矢量和 为零($r_q = 0$), 则根据式(10)(12)和(20)可知 $r_s = 0$, $T_q = 0$ 和 $u_q = 0$ (即 T_q 和 u_q 将不存在), 那么简化后 的飞艇模型为

$$[\dot{R}\,\dot{b}\,\dot{V}\,\dot{\Omega}\,\dot{r}_{y}\,\dot{\Gamma}_{y}\,\dot{m}_{q}]^{\mathrm{T}} = [R\hat{\Omega}\,RV\,M^{-1}\mathscr{F}_{s}\,J^{-1}\mathscr{T}_{s}\,\mathscr{V}_{y}\,u_{y}\,u_{b}]^{\mathrm{T}},\quad(23)$$

其中:

$$\begin{split} \mathscr{V}_{\mathbf{y}} &= m_{\mathbf{y}}^{-1} \boldsymbol{\Gamma}_{\mathbf{y}} - V + \hat{r}_{\mathbf{y}} \boldsymbol{\Omega}, \\ \mathscr{F}_{\mathbf{s}} &= (MV - M_{\mathrm{wf}} V_{\mathrm{w}} + \boldsymbol{\Gamma}_{\mathbf{y}}) \times \boldsymbol{\Omega} + u_{\mathrm{p}} - u_{\mathbf{y}} + \\ R_{\mathrm{ab}} F_{\mathrm{A}} + R^{\mathrm{T}} f_{\mathrm{e}} + M_{\mathrm{wf}} \dot{V}_{\mathrm{w}} + \bar{m} g R^{\mathrm{T}} k, \\ \mathscr{T}_{\mathbf{s}} &= (J \boldsymbol{\Omega} - J_{\mathrm{wf}} \boldsymbol{\Omega}_{\mathrm{w}} + \hat{r}_{\mathbf{y}} \boldsymbol{\Gamma}_{\mathbf{y}}) \times \boldsymbol{\Omega} + (\hat{\boldsymbol{\Omega}} r_{\mathbf{y}}) \times \boldsymbol{\Gamma}_{\mathbf{y}} + \\ J_{\mathrm{wf}} \dot{\boldsymbol{\Omega}}_{\mathrm{w}} + \hat{r}_{\mathrm{p}} u_{\mathrm{p}} - \hat{r}_{\mathbf{y}} u_{\mathbf{y}} + m_{\mathbf{y}} \hat{r}_{\mathbf{y}} g R^{\mathrm{T}} k + M_{\mathrm{A}} + \\ (MV - M_{\mathrm{wf}} V_{\mathrm{w}}) \times V + R^{\mathrm{T}} (\iota_{\mathrm{fe}} - \hat{b} f_{\mathrm{e}}). \end{split}$$

2.6 反馈控制变换(Feedback control transform)

基于3.4节对飞艇稳定性和能控性的分析,为得 到更为有效的飞艇动力学模型,对模型式(22)实施 状态和控制量的非线性反馈变换,通过变换将压块 和气囊的控制量由力转换为运动加速度和由充放气 率转换为充放气加速度,变换后飞艇系统的平衡航 迹将是稳定的,同时变换也为飞艇内部质量提供悬 架系统,防止压块因飞艇运动而在飞艇内运动.

将式(22)中的第5和第6项进行求导,得

$$\ddot{r}_{\varsigma} = m_{\varsigma}^{-1} \dot{\Gamma} - \dot{V} - \dot{\Omega} r_{\varsigma} - \hat{\Omega} \dot{r}_{\varsigma} \cdot \varsigma = y, q, \quad (24)$$

将式(19)和式(22)相关项带入上式,得如下形式:

$$\ddot{r} = [\ddot{r}_{y} \ \ddot{r}_{q}]^{\mathrm{T}} = \mathscr{P}(x) + \mathscr{C}(x)[u_{y} \ u_{q}]^{\mathrm{T}}, \quad (25)$$

其中: $\mathscr{P}(x) = [\mathscr{P}_{y} \mathscr{P}_{q}]^{T}$ 为漂移向量场, $\mathscr{C}(x)$ 为控制向量场. 若选择反馈控制律:

$$[u_{\mathbf{y}} u_{\mathbf{q}}]^{\mathrm{T}} = \mathscr{C}^{-1}(x)[U - \mathscr{P}(x)], \qquad (26)$$

其中 $U = [U_y U_q]^T$, $\mathscr{C}^{-1}(x)$ 的存在性可以通过直接 计算验证(如式(33)). 将式(26)带入式(25)可得

$$\ddot{r} = U \Rightarrow [\ddot{r}_{y} \ \ddot{r}_{q}]^{\mathrm{T}} = [U_{y} \ U_{q}]^{\mathrm{T}}.$$
 (27)

由上式可知,当选择式(26)为反馈控制律时,压 块和气囊的控制量已由力转换为其运动加速度.

计算式(26)可得如下方程:

 $[u_{y} u_{q}]^{T} = \mathscr{C}^{-1}(x)[U - \mathscr{P}(x)] = [\mathscr{Q}_{y} \mathscr{Q}_{q}]^{T}.$ (28) 若设 \mathscr{C}_{ii}^{-1} 为矩阵 $\mathscr{C}^{-1}(x)$ 元素, 则有:

$$\begin{aligned} \mathcal{Q}_{y} &= \mathscr{C}_{11}^{-1}(U_{y} - \mathscr{P}_{y}) + \mathscr{C}_{12}^{-1}(U_{q} - \mathscr{P}_{q}), \\ \mathcal{Q}_{q} &= \mathscr{C}_{21}^{-1}(U_{y} - \mathscr{P}_{y}) + \mathscr{C}_{22}^{-1}(U_{q} - \mathscr{P}_{q}). \\ \Diamond U_{b} \end{pmatrix} \\ & (\delta U_{b} \end{pmatrix} \\ \end{aligned}$$

加速度:

$$U_{\rm b} = \ddot{m}_{\rm q},\tag{29}$$

将控制律式(28)带入模型式(22), 再结合式(29), 可得经非线性反馈转换后的飞艇模型:

$$\begin{bmatrix} \dot{R} \, \dot{b} \, \dot{V} \, \dot{\Omega} \, \dot{r}_{y} \, \dot{r}_{q} \, \ddot{r}_{y} \, \ddot{r}_{q} \, \ddot{m}_{q} \end{bmatrix}^{\mathrm{T}} = \\ \begin{bmatrix} R \hat{\Omega} \, RV \, M^{-1} \tilde{\mathscr{F}} \, J^{-1} \tilde{\mathscr{T}} \, \dot{r}_{y} \, \dot{r}_{q} \, U_{y} \, U_{q} \, U_{b} \end{bmatrix}^{\mathrm{T}}, \quad (30)$$

将式(17)中 Γ_y 和 Γ_q 以及式(28)中 \mathcal{Q}_y 和 \mathcal{Q}_q 的表达式, 分别替换 \mathcal{P} 和 \mathcal{T} 中的 Γ_y 和 Γ_q 以及 u_y 和 u_q ,即得到此 处与之对应的 $\tilde{\mathcal{P}}$ 和 $\tilde{\mathcal{T}}$,这里不再列出.

3 飞艇动态稳定性分析(Stability analysis of airship dynamics)

气囊、压块、飞艇内部各质量之间的动力学非线 性耦合,以及飞艇与空气的非线性耦合等因素影响, 使本文的飞艇模型不可能按照文献[2]的分析,即将 飞艇运动完全的分为纵向运动和横向运动.但是,根 据航空器的惯例研究方法,可以通过将飞艇运动限 制在某一平面内分析其性能.

本节基于模型研究成果,在纵向平面内,探讨飞艇仅由压块和气囊耦合驱动时,飞艇按照期望航迹角和飞行速度平衡飞行的动态稳定性问题,研究从两方面进行:1)设计飞艇平衡航迹,探讨压块和气囊耦合控制输入;2)基于最小相位系统特性,探讨飞艇平衡航迹的镇定和期望输出的跟踪.

3.1 压块和气囊运动设计(Motion design of ballonets and ballast)

飞艇压块初始状态处于浮心正下方,且压块不能沿e₃轴向运动,即r_{y3}为定值,因为r_{y3}的不同取值将 直接影响飞艇稳定性,文献[7]已作了详细阐述,而气 囊位于浮心.二者的运动设计如下:

这里只阐述压块的运动设计,而气囊的充放气运动与此完全类似.设压块从某一位置(A点)运动到另一位置(C点),取B点为A,C两点的中点,那么设计的运动为:压块从A到B是以加速度为a的匀加速运动,从B到C是以加速度为a的匀减速运动,设压块调整时间为t_z,即整个运动过程所花费的时间.这样设计的优点:在运动的起点和终点,压块的速度都为零,尽量避免了压块运动给飞艇带来的动量冲击,使系统运行更加平稳.

3.2 纵向平面模型(Longitudinal model)

飞艇纵向平面模型也有两种形式,它们分别是 式(23)和式(30)在纵向平面的具体化,这两种模型分 别用于不同的研究.当飞艇运动被限制在纵向平面 时,则有

$$\psi = \phi = v = v_{\rm w} = b_2 = p = r = p_{\rm w} = r_{\rm w} = r_{\rm y2} = r_{\rm y2} = \Gamma_{\rm y2} = u_{\rm y2} = r_{\rm p2} = u_{\rm p2} = 0,$$

将其带入模型式(23),可得飞艇纵向平面运动模型:

$$\begin{cases} \dot{u} = M_1^{-1}(X_{\rm u} - u_{\rm y1}), \\ \dot{w} = M_3^{-1}(X_{\rm w} - u_{\rm y3}), \\ \dot{q} = J_2^{-1}(Y_{\rm q} + Y_{\rm q}'), \\ \dot{r}_{\rm y1} = m_{\rm y}^{-1}\Gamma_{\rm y1} - u - r_{\rm y3}q, \\ \dot{r}_{\rm y3} = m_{\rm y}^{-1}\Gamma_{\rm y3} - w + r_{\rm y1}q, \end{cases}, \begin{cases} \dot{\theta} = q, \\ \dot{\Gamma}_{\rm y1} = u_{\rm y1}, \\ \dot{\Gamma}_{\rm y3} = u_{\rm y3}, \\ \dot{m}_{\rm q} = u_{\rm b}, \end{cases}$$
(31)

其中:

$$\begin{split} Y'_{\rm q} &= r_{\rm y1} u_{\rm y3} - r_{\rm y3} u_{\rm y1}, \\ X_{\rm u} &= -M_3 wq + M_{wf3} w_{\rm w} q - \Gamma_{\rm y3} q + M_{wf1} \dot{u}_{\rm w} + \\ X_{\rm a} \cos \alpha - Z_{\rm a} \sin \alpha - \bar{m} g \sin \theta, \\ X_{\rm w} &= M_1 uq - M_{wf1} u_{\rm w} q + \Gamma_{\rm y1} q + M_{wf3} \dot{w}_{\rm w} + \end{split}$$

 $X_a \sin \alpha + Z_a \cos \alpha + \bar{m}q \cos \theta$,

$$Y_{q} = (M_{3} - M_{1})uw - M_{wf3}w_{w}u + M_{wf1}u_{w}w + J_{wf2}\dot{q}_{w} + M_{a} - (r_{y1}\Gamma_{y1} + r_{y3}\Gamma_{y3})q - m_{y}g(r_{y3}\sin\theta + r_{y1}\cos\theta).$$

按照2.6节的方法对模型式(31)实施状态和控制 量非线性反馈变换,由式(31)中第1式的最后两项得 飞艇内部移动质量的加速度:

$$\ddot{r}_{y} = \begin{bmatrix} \ddot{r}_{y1} \\ \ddot{r}_{y3} \end{bmatrix} = \begin{bmatrix} m_{y}^{-1} \dot{\Gamma}_{y1} - \dot{u} - \dot{r}_{y3}q - r_{y3}\dot{q} \\ m_{y}^{-1} \dot{\Gamma}_{y3} - \dot{w} + \dot{r}_{y1}q + r_{y1}\dot{q} \end{bmatrix}.$$
 (32)

若将式(31)相关项带入上式,结合式(27),最终 式(32)可表示成如下形式:

 $U_{y} = \ddot{r}_{y} \Rightarrow [U_{y1} U_{y3}]^{T} = -\mathscr{P}_{y} + \mathscr{C}[u_{y1} u_{y3}]^{T}, (33)$ $\ddagger \oplus :$

$$\begin{split} \mathscr{P}_{\mathbf{y}} &= [\mathscr{P}_{\mathbf{y}1} \ \mathscr{P}_{\mathbf{y}2}]^{\mathrm{T}} = \\ & \begin{bmatrix} \frac{X_{\mathbf{u}}}{M_1} + \dot{r}_{\mathbf{y}3}q + \frac{r_{\mathbf{y}3}Y_{\mathbf{q}}}{J_2} \\ \frac{X_{\mathbf{w}}}{M_3} - \dot{r}_{\mathbf{y}1}q - \frac{r_{\mathbf{y}1}Y_{\mathbf{q}}}{J_2} \end{bmatrix}, \\ & \mathscr{C} &= \begin{bmatrix} d_1 + b_3 & s \\ s & d_3 + b_1 \end{bmatrix}, \end{split}$$

其中:

$$\begin{split} b_1 &= \frac{r_{y1}r_{y1}}{J_2}, b_3 = \frac{r_{y3}r_{y3}}{J_2}, s = \frac{r_{y1}r_{y3}}{J_2} \\ d_1 &= \frac{m_y + M_1}{m_y M_1}, d_3 = \frac{m_y + M_3}{m_y M_3}. \end{split}$$

根据上式,反馈控制律可选为 $[u_{y1} u_{y3}] = \mathscr{C}^{-1}(U_y + \mathscr{P}_y) =$

第8期

$$\frac{1}{|\mathscr{C}|} \begin{bmatrix} (d_3+b_1)(\mathscr{P}_{y1}+U_{y1})-s(\mathscr{P}_{y3}+U_{y3})\\ -s(\mathscr{P}_{y1}+U_{y1})+(d_1+b_3)(\mathscr{P}_{y3}+U_{y3}) \end{bmatrix} . (34)$$

将式(34)分别带入式(31)的前3项得: 1 $d_0 + m d_0 h_0 + h_1$ s

$$\dot{u} = \frac{1}{M_1|\mathscr{C}|} \left[\frac{a_3 + m_y a_3 b_3 + b_1}{m_y} X_u + \frac{s}{M_3} X_w - \frac{d_3 r_{y3}}{J_2} Y_q - (d_3 + b_1)(\dot{r}_{y3}q + U_{y1}) - s(\dot{r}_{y1}q - U_{y3}) \right],$$
(35)

$$\dot{w} = \frac{1}{M_3|\mathscr{C}|} \left[\frac{s}{M_1} X_{\rm u} + \frac{d_1 + m_{\rm y} d_1 b_1 + b_3}{m_{\rm y}} X_{\rm w} + \frac{d_1 r_{\rm y1}}{J_2} Y_{\rm q} + \right]$$

$$(d_1 + b_3)(\dot{r}_{y1}q - U_{y3}) + s(\dot{r}_{y3}q + U_{y1})], \quad (36)$$

$$1 \qquad d_3r_{y3} \qquad d_1r_{y1} \qquad d_1$$

由式(27)、式(29)和式(31)可得

$$\ddot{m}_{\rm q} = U_{\rm b}, \ddot{r}_{\rm y} = U_{\rm y}, \ \dot{\theta} = q.$$
 (38)

则式(35)~(38)描述的即是经非线性反馈变换后 的飞艇纵向平面模型.

3.3 平衡航迹设计(Equilibrium flight design)

本节通过给定的期望航迹角ξ_e和期望飞行速度 V_e来设计飞艇的平衡航迹^[8].本文中带有下标"e" 的变量均为飞艇在平衡航行状态下的变量值,图2为 相关变量间的关系图.

1 Ig. 2 Relations among the variables of v, v, α , ζ

因 $V_{\rm e} = V_{\rm ae} + V_{\rm we}$,即对于给定的 $V_{\rm e}$,其中已经 包含干扰气流的速度,由纵向平面模型的第1种形式 可推导飞艇稳定航行的条件.令式(31)等号左边为 "0",且含 $u_{\rm w}$ 和 $w_{\rm w}$ 的项将不存在:

$$\begin{cases} 0 = X_{ae} \cos \alpha_{e} - Z_{ae} \sin \alpha_{e} - \bar{m}_{e} g \sin \theta_{e}, \\ 0 = X_{ae} \sin \alpha_{e} + Z_{ae} \cos \alpha_{e} + \bar{m}_{e} g \cos \theta_{e}, \\ 0 = (M_{3e} - M_{1e}) u_{e} w_{e} + M_{ae} - \\ m_{y} g (r_{y3e} \sin \theta_{e} + r_{y1e} \cos \theta_{e}), \\ 0 = m_{y}^{-1} \Gamma_{y1e} - u_{e} = m_{y}^{-1} \Gamma_{y3e} - w_{e}, \\ 0 = q_{e} = u_{y1e} = u_{y3e} = u_{be}. \end{cases}$$
(39)

上式的前两项可以改写为

$$\mathcal{R}_{\alpha}[X_{\mathrm{ae}} \ Z_{\mathrm{ae}}]^{\mathrm{T}} = \mathcal{R}_{\theta}[0 \ \bar{m}_{\mathrm{e}}g]^{\mathrm{T}}, \qquad (40)$$

其中:

$$\mathcal{R}_{\alpha} = \begin{bmatrix} \cos \alpha_{e} - \sin \alpha_{e} \\ \sin \alpha_{e} & \cos \alpha_{e} \end{bmatrix}, \mathcal{R}_{\theta} = \begin{bmatrix} -\cos \theta_{e} & \sin \theta_{e} \\ -\sin \theta_{e} - \cos \theta_{e} \end{bmatrix}.$$
很明显, $\mathcal{R}_{\alpha} 和 \mathcal{R}_{\theta} 都属 \mp SO(3)$, 由上式得

$$\begin{bmatrix} 0 & \bar{m}_{e}g \end{bmatrix}^{T} = \mathcal{R}_{\theta}^{T} \mathcal{R}_{\alpha} [X_{ae} \ Z_{ae}]^{T} =$$

$$Q_{e} \Lambda^{\frac{2}{3}} \begin{bmatrix} -\cos \xi_{e} - \sin \xi_{e} \\ \sin \xi_{e} & -\cos \xi_{e} \end{bmatrix} \begin{bmatrix} C_{X0} + C_{X1} \alpha_{e}^{2} \\ C_{Z0} + C_{Z1} \alpha_{e} \end{bmatrix}.$$
(41)

$$\overline{A} C_{X1} \neq 0 \Re \cos \xi_{e} \neq 0$$
, 由上式第1式可得

$$\alpha_{e}^{2} + \frac{C_{Z1} \tan \xi_{e}}{C_{X1}} \alpha_{e} + \frac{C_{X0} + C_{Z0} \tan \xi_{e}}{C_{X1}} = 0.$$
(42)

若上式中
$$\alpha_{\rm e}$$
有解, 则需
$$\Delta = \frac{C_{\rm Z1}^2 \tan^2 \xi_{\rm e}}{C_{\rm X1}^2} - \frac{C_{\rm X0} + C_{\rm Z0} \tan \xi_{\rm e}}{0.25C_{\rm X1}} \ge 0.$$
(43)

$$\xi_{e} \in \{\{\arctan[\frac{2C_{X1}}{C_{Z1}}(\frac{C_{Z0}}{C_{Z1}} + \sqrt{\frac{C_{Z0}^{2}}{C_{Z1}^{2}} + \frac{C_{X0}}{C_{X1}}})], \frac{\pi}{2}\} \cup \{-\frac{\pi}{2}, \arctan[\frac{2C_{X1}}{C_{Z1}}(\frac{C_{Z0}}{C_{Z1}} - \sqrt{\frac{C_{Z0}^{2}}{C_{Z1}^{2}} + \frac{C_{X0}}{C_{X1}}})]\}\}.$$

$$(44)$$

那么根据建立阻力的计算模型的原则^[6], ξ_e在满 足式(44)条件下, α_e取式(42)解值中较小的值:

$$\alpha_{\rm e} = -0.5C_{\rm X1}^{-1}C_{\rm Z1}\tan\xi_{\rm e} + \sqrt{\frac{C_{\rm Z1}^2\tan^2\xi_{\rm e}}{4C_{\rm X1}^2} - \frac{C_{\rm X0} + C_{\rm Z0}\tan\xi_{\rm e}}{C_{\rm X1}}}.$$
 (45)

(46)

若 $\cos \xi_{\rm e} = 0$,则由式(41)的第1式可得 $\alpha_{\rm e} = -C_{\rm Z0}C_{\rm Z1}^{-1}.$

通过式(41)的第2式可求得

解上式得·

$$\bar{m}_{\rm e} = Q_{\rm e} \Lambda^{2/3} g^{-1} [(C_{\rm X0} + C_{\rm X1} \alpha_{\rm e}^2) \sin \xi_{\rm e} - (C_{\rm Z0} + C_{\rm Z1} \alpha_{\rm e}) \cos \xi_{\rm e}].$$
(47)

当cos
$$\theta_{\rm e} \neq 0$$
时,由式(39)中第3项可得
 $r_{\rm y1e} = (m_{\rm y}g\cos\theta_{\rm e})^{-1}[(M_{3e} - M_{1e})u_{\rm e}w_{\rm e} + Q_{\rm e}\Lambda(C_{\rm m0} + C_{\rm m1}\alpha_{\rm e})] - r_{\rm y3e}\tan\theta_{\rm e}.$ (48)

此时,只需确定 r_{y1e} 的值,而 r_{y1e} 可取的最大值或最 小值由飞艇的结构决定,那么当知道 r_{y1e} 的最大值或 最小值后,则得可求得 θ_e 的最小值或最大值.

若当
$$\cos \theta_{\rm e} = 0$$
时,由式(39)中第3项可得
 $r_{\rm y3e} = \frac{(M_{3e} - M_{1e})u_{\rm e}w_{\rm e} + Q_{\rm e}\Lambda(C_{\rm m0} + C_{\rm m1}\alpha_{\rm e})}{m_{\rm y}g}.$ (49)

若系统满足上式条件时,则ry1为自由参数,这也

是不愿意看到的情况,因为r_{y1}不同取值同样将决定 系统的稳定性^[7].

3.4 稳定性和能控性(Stability and controllability)

探讨飞艇系统式(31)在平衡航迹处的稳定性和 能控性,可借鉴文献[2]中的小扰动方法,类似的将该 模型在平衡航迹处线性化.对于小扰动,可将扰动运 动参数与稳定航迹运动参数间差值高于一阶的小量 即所谓的高阶小项略去,根据小扰动原理:

$$\eta = \eta_{\rm e} + \Delta \eta, \tag{50}$$

其中: $\eta = \theta, q, u, w, r_{y1}, r_{y3}, \Gamma_{y1}, \Gamma_{y3}, m_q, u_{y1}, u_{y3}, u_b$ 为扰动运动参数, η_e 为稳定航迹运动参数, η 为小 扰动量.那么模型式(31)可线性化为

$$\dot{x}_1 = A_1 x_1 + B_1 u_1, \tag{51}$$

其中:

$$\begin{aligned} x_{\rm l} &= [\theta \; q \; u \; w \; r_{\rm y1} \; r_{\rm y3} \; \Gamma_{\rm y1} \; \Gamma_{\rm y3} \; m_{\rm q}]^{\rm T}, \\ u_{\rm l} &= [u_{\rm y1} \; u_{\rm y3} \; u_{\rm b}]^{\rm T}, \end{aligned}$$

 A_l 为9阶方阵, B_l 为9×3阶矩阵.

将表2和表3中各段的飞艇平衡参数分别带入矩 阵 A_1 和 B_1 ,运用劳斯判据和能控性判定矩阵 Q_c 可以 验证得:飞艇系统的平衡航迹是不稳定的(在各个平 衡航迹段中, A_e 都有位于右半复平面的特征值),但 它却是能控的(rank(Q_c) = 9).

3.5 镇定平衡航迹(Stabilizing equilibrium paths)

飞艇平衡航迹的能控性,为飞艇平衡航迹的镇 定提供了可能,本节利用最小相位系统特性,推导一 种控制律,当选择适当的系统输出时,该控制律可认 为是对非线性系统式(35)~式(38)实施多输入多输 出(MIMO)反馈线性化变换,同时该控制律将实现飞 艇平衡航迹的镇定,以及飞艇压块和气囊运动轨迹 的跟踪.

若定义 $\chi = [\chi_1 \ \chi_2 \ \chi_3 \ \chi_4 \ \chi_5 \ \chi_6]^{\mathrm{T}} = [r_{y1} - r_{y1e} \ \dot{r}_{y1} \ r_{y3} - r_{y3e} \ \dot{r}_{y3} \ m_q - m_{qe} \ \dot{m}_q]^{\mathrm{T}} \ \pi \ \mu = [u \ w \ q \ \theta]^{\mathrm{T}}$ 系统的输出为 $y_o(t) = [\chi_1 \ \chi_3 \ \chi_5]^{\mathrm{T}}, 则$ 多输入多输出线性飞艇系统可以表示为:

$$\dot{\chi} = \mathscr{W}\chi + \mathscr{D}\gamma, \ \dot{\mu} = \kappa(\mu, \chi, \gamma),$$
 (52)

其中: $\mu = [U_{y1}, U_{y3}, U_b]^T$, κ 为非线性向量场, 其元素由式(35)~(38)构成, 若设 \mathscr{W}_{ij} 为6阶方阵 \mathscr{W} 的元素, \mathscr{D}_{ij} 为6×3阶矩阵 \mathscr{D} 的元素, 则有 $\mathscr{W}_{12} = \mathscr{W}_{34} = \mathscr{W}_{56} = \mathscr{D}_{21} = \mathscr{D}_{42} = \mathscr{D}_{63} = 1$, 其他元素均为零.

对于飞艇系统式(52), 当给定 r_{y1e} , r_{y3e} 和 m_{qe} 时, 若系统处于平衡状态, 也就意味着 $\mu = \mu_{e}$, $\chi = 0$ 和 $\gamma = 0$, 那么控制系统的零动态可表示为

$$\dot{\mu} = \kappa(\mu_{\rm e}, 0, 0).$$
 (53)

对于"脚重(bottom-heavy)"特性充分的飞艇系统^[7],其零动态(式(53))将是指数稳定的,所以飞艇系统(52)即为最小相位系统,那么可运用文献[13]中的经典结论,若选择线性控制律 $\gamma = \varpi \chi$,则全动态得以指数稳定.

对于本文描述的飞艇系统,由表1可知: $r_{y3} = 3 \text{ m}, \exists r_{y1}|_{t=0} = 0 \text{ m}, 根据文献[7]的研究成果,可以$ 判定本文的飞艇系统为"脚重"特性充分.

定理1 对于任意给定的 μ_{e} ,反馈线性化动态控制系统式(52)都是一个局部指数稳定的零动态式(53),若取 $\gamma = \varpi \chi$,则 $\mathcal{W} + \mathscr{D} \varpi$ 为霍尔维茨(Hurwitz)矩阵,那么 $(\mu, \chi) = (\mu_{e}, 0)$ 即为闭环动态的一个局部指数稳定平衡点.

证 在(μ_e,0)点,反馈线性化控制系统式(52)的 雅克比矩阵为

$$\begin{bmatrix} \frac{\partial \kappa}{\partial \mu_{e}} & \frac{\partial \kappa}{\partial \chi_{e}} \\ 0 & \mathscr{W} + \mathscr{D}\varpi \end{bmatrix}.$$
 (54)

由于上式为上三角形矩阵, $\mathscr{W} + \mathscr{D}\varpi$ 为霍尔维茨 (Hurwitz)矩阵, 则($\frac{\partial \kappa}{\partial \mu}$)_e和 $\mathscr{W} + \mathscr{D}\varpi$ 的特征值即为飞 艇闭环控制系统的特征值, 按照上述定理的假设, 那 么($\mu_{e}, 0$)就是闭环动态的一个局部指数稳定平衡点. 证毕.

可以选择比例微分(PD)控制器作为飞艇系统的 压块和气囊输入控制律,若ω(.)为负常数,则有

$$\begin{cases} U_{y1} = \varpi_{p1}(r_{y1} - r_{y1e}) + \varpi_{d1}\dot{r}_{y1}, \\ U_{y3} = \varpi_{p3}(r_{y3} - r_{y3e}) + \varpi_{d3}\dot{r}_{y3}, \\ U_{b} = \varpi_{p4}(m_{q} - m_{qe}) + \varpi_{d4}\dot{m}_{q}. \end{cases}$$
(55)

4 数字仿真(Simulation)

通过给定期望航迹角ξ_e和飞行速度V_e,验证飞 艇模型的正确性、平衡航迹飞行的可行性和稳定 性、压块和气囊的耦合动力学、平衡航迹的镇定和 期望输出的跟踪.图3为给定航迹和干扰气流示意 图,倾角75°的干扰气流风向由右向左,航迹拥有4个 稳定航迹段和3个转换航迹段,每个转换段航迹角变 化量为:-40°,50°,-60°;表1为飞艇参数值,所有参 数单位均采用国际标准制或是无纲量.

998							控	制 理	论与应	立 用				5 5	第 27 卷
表1 飞艇参数值															
Table 1Airship parameter values															
g	$m_{\rm y}$	$m_{\rm j}$	$m_{\rm w}$	Λ	$V_{\rm e}$	$r_{\rm y3}$	ρ	$C_{\rm X1}$	$C_{\rm Z1}$	$C_{\rm m1}$	$C_{\rm X0}$	$C_{\rm Y1}$	C_{l1}	C_{n1}	$J_{\rm f11}$
9.8	100	385	550	500	2.0	3.0	1.29	-2.4611	-9.8443	-1.5504	-0.2461	-4.9222	-1.5504	1.5504	14700
$J_{\rm f2}$	$_{2}$ J_{f33}	$M_{\rm f11}$	$M_{\rm f22}$	M_{f33}	$C_{\rm Z0}$	C_{10}	$C_{\rm m0}$	C_{n0}	K_{11}	K_{12}	K_{13}	K_{21}	K_{22}	K_{23}	
1470	0 14700	1250	1250	1250	0	0	0	0	-300	-300	-300	-300	-300	-300	

4.1 平衡航迹和模型验证(Verifying the equilibrium paths and model)

飞行速度 $V = V_a + V_w$,对于给定的 V_e ,($V_{ae} + V_{we}$)是作为一个整体存在,这样就很难分析单个速度(V_{ae} 或 V_{we}),特别是干扰气流 V_{we} 对飞艇平衡稳定飞行的影响.那么可以"逆向"验证,其目的是将 V_{we} 从 V_e 中分离出来:1)首先令 $V_{we} = 0$,此时 $V_e = V_{ae}$,可认为 V_w 不存在;2)其次在满足1)中 V_{ae} 不变的情况下,再加入干扰气流 V_{we} .表2和表3即是应用3.3节的研究成果而计算的变量平衡状态值,它们分别对应上述两种情况.

表 2 稳定飞行参数 Table 2 Parameters of steady flight

			•	U
变量	上行	下行	上行	下行
$\xi_{ m e}/(^{\circ})$	20	-20	30	-30
$V_{\rm a}/({\rm m}\cdot{\rm s}^{-1})$	2.0	2.0	2.0	2.0
$\alpha_{ m e}/(^{\circ})$	-4.141	4.141	-2.5293	2.5293
$ heta_{ m e}/(^{\circ})$	15.859	-15.859	27.4707	-27.4707
$u_{\rm e}/({\rm m}\cdot{\rm s}^{-1})$	1.9948	1.9948	1.9981	1.9981
$w_{\rm e}/({\rm m}\cdot{\rm s}^{-1})$	-0.1444	0.1444	-0.0883	0.0883
$r_{\rm y1e}/{\rm m}$	-0.6989	0.6989	-1.4582	1.4582
$m_{ m qe}/ m kg$	52.4427	77.5573	56.6776	73.3224

表 3 稳定飞行参数 Table 3 Parameters of steady flight

变量	上行	下行	上行	下行
$V_{\rm a}/({\rm m}\cdot{\rm s}^{-1})$	2.0	2.0	2.0	2.0
$\alpha_{ m e}/(^{\circ})$	-4.6001	2.3191	-2.3622	1.5230
$ heta_{ m e}/(^{\circ})$	13.7379	-29.8004	29.2998	-41.9223
$u_{\rm e}/({\rm m}\cdot{\rm s}^{-1})$	1.4977	1.6826	1.5013	1.7609
$w_{\rm e}/({\rm m}\cdot{\rm s}^{-1})$	-0.1205	0.0681	-0.0619	0.0468
$r_{\rm y1e}/{\rm m}$	-0.6382	1.6507	-1.6291	2.6373
$m_{ m qe}/ m kg$	57.2060	70.5316	60.5367	69.6368

图4~6为数字仿真结果,其中 $t_z = 10$ s. 实线对应情况1) (即 $V_w = 0$),虚线对应情况2) (即加入干扰气流 $V_w = 0.5$ m/s),它们分别为各变量随时间变化图,以及飞艇的空间位置变化图,图5可视为降

阶后的控制输入量变化图,即压块和气囊调整变 化图,图6为飞艇在惯性系中的位置图.

因图4,5中各变量都能很好的收敛到表2,3中对 应的值,所以无论有无干扰气流,飞艇在经过转换 飞行段后都能平稳的进入下一平衡飞行段,且在 转换飞行段内各变量都能匹配好下一段飞行所需 的参数值;同时,当航迹角的变化量绝对值越大, 系统的振荡也就越厉害,原因为调整量越大,必然 导致调整加速度也就越大(*t*z恒定),根据*F* = *ma*, 那么作用在飞艇上的反作用力也就越大.

图 5 压块和气囊调整过程曲线

t/s

Fig. 5 Transition curves of ballonet and ballast

图 0 飞艇任顶住邓平时位直

Fig. 6 The position of airship in inertial coordinates

再比较仿真结果图4~5和表2~3可知,在保证 情况1) 中V_a大小和方向都不变的情况下,加入干 扰气流(此时ξ_e和V_e不再是给定),干扰气流不但改 变了平衡航迹,同时还降低了飞行速度,加剧了转 换阶段飞艇的振荡,主要原因是干扰气流的施加 方向与飞行方向相反,但若干扰气流的施加方向 与飞行方向一致,虽然能保证飞行速度加快,但并 不能得出飞艇在转换阶段振荡变小的结论,这需 要知道干扰气流的具体施加方向和大小才能确定.

4.2 镇定平衡航迹验证(Verification of the stabilization equilibrium paths)

本小节仿真的飞行航迹和所用飞艇参数仍 为图3和表1所示,平衡状态变量值仍为表2所示, 其中包括需跟踪的变量值.需指出:此处压块和 气囊的运动将不受 t_z 值和3.1节要求的限制,其调 整过程完全由3.5节设计的控制器参数确定,根 据PD控制器的参数值不同,给出了 $\omega_{(\cdot)} = 1$ (实 线)和 $\omega_{(\cdot)} = 0.1$ (虚线)两种情况的仿真结果.

由仿真结果图7~8可知,除了能得到和4.1节 第3段相同结论以外,还有如下一些结论:

1) 比较图5和图8可知,此处的气囊和压块调整过程不再是平稳过渡,有震荡存在,主要原因是 这里的压块和气囊调整过程不再受3.1节要求的限 制, 气囊和压块运动到下一状态时速度并不为0, 需来回衰减震荡至0(静止不动);

2) 由图8可知, 当 $\varpi_{(\cdot)} = 0.1$ 时, 压块和气囊运 动加速度小, 但调整时间长, 震荡厉害, 当 $\varpi_{(\cdot)} =$ 1时, 压块和气囊调整时间短, 但运动加速度大, 给 飞艇带来的动量冲击也就大;

3) 最小相位系统的渐进稳定可以推广到渐进 跟踪, 那么则要求受控飞艇能够跟踪期望的输出 轨迹, 也就是要求运用3.5节的控制方法使

$$y_{\rm o}(t) = [\chi_1 \ \chi_3 \ \chi_5]^{\rm T} = [r_{\rm y1} - r_{\rm y1e} \ r_{\rm y3} - r_{\rm y3e} \ m_{\rm q} - m_{\rm qe}]^{\rm T} = 0,$$

即压块和气囊的调整过程能够跟踪期望的ryle, ry3e和mqe,这个结论在图8得以验证;

4) 图8中的加速度比图5中的大很多,且图8中 的加速度还具有震荡,所以就总体而言,4.2节的压 块和气囊运动控制方法比4.1节的控制方法给飞艇 系统带来的震荡要厉害.

图 8 压块和气囊调整过程曲线

Fig. 8 Transition curves of ballonet and ballast

试飞试验:在4.1节描述情况1)环境下,应用 计算机仿真得到的结果(参数)配置样机的参数, 并按照4.1节和4.2节设计的方法,样机在300 m 高空分别进行10次试飞试验,得飞艇实际飞行航 迹与期望航迹相差最大处距离分别约为:0.76 m, 0.44 m,0.83 m,0.57 m,0.49 m,0.43 m,0.46 m, 0.37 m,0.68 m,0.41 m,可知试飞试验结果与仿真 结果基本一致,验证了本文的设计.

5 结论(Conclusion)

本文推导出带有升降气囊和压块的飞艇普通 动力学数学模型,该模型中包含有风速和干扰气 流等因素的影响,并提出了两种控制律,一种用于 模型状态量和控制量的反馈转换,从而得到控制 量为加速度的飞艇模型,对于控制飞艇内部调整 质量而言,该控制律实现了约束力与悬架系统的 关联;另一种控制律用于构造最小相位飞艇动力 学系统,该控制律实现了飞艇系统的多输入多输 出反馈线性化.最后通过设计飞艇平衡航迹、控制 器以及数字仿真分别验证了:模型的正确性、平衡 稳定飞行的可行性和稳定性、压块和气囊耦合动 力学、指数稳定的平衡航迹以及期望输出跟踪的 实现.

在未来工作中,基于本文研究成果,将研究飞 艇的动力学以及非完整性飞艇系统的控制策略.

参考文献(References):

[1] GOMES V B, RAMOS J G. Airship dynamic modeling for autonomous operation[C] //Proceedings of IEEE International Con-

ference on Robotics & Automation. Leuven, Belgium: IEEE, 1998: 3462-3467.

- [2] LIU Y, HU Y M, WU Y L. Stability and control analysis based on airship dynamic modeling[C] //Proceedings of IEEE International Conference on Automation and Logistics. Jinan, China: IEEE, 2007: 2744 – 2748.
- [3] 方存光, 王伟. 自主飞艇俯仰角姿态动力学建模及控制[J]. 控制理论与应用, 2004, 21(2): 231 238.
 (FANG Cunguang, WANG Wei. Pitching attitude dynamics modeling and its control of unmanned dirigible airship[J]. Control Theory & Applications, 2004, 21(2): 231 238.)
- [4] CAI Z L, QU W D, XI Y G. Dynamic modeling for airship equipped with ballonets and ballast[J]. *Applied Mathematics and Mechanics*, 2005, 26(8): 1072 – 1082.
- [5] HYGOUNENC E, SOUERES P. Automatic airship control involving backstepping techniques[C] //Proceedings of IEEE International Conference on Systems, Man and Cybernetics. Hammamet, Tunisia: IEEE, 2002: 1 – 6.
- [6] ETKIN B. Dynamics of Flight[M]. New York: John Wiley & Sons, 1959.
- [7] LEONARD N E. Stability of a bottom-heavy underwater vehicle[J]. Automatica, 1997, 33(3): 331 – 346.
- [8] LEONARD N. E, GRAVER J G. Model-based feedback control of autonomous underwater gliders[J]. *IEEE Journal of Oceanic Engineering*, 2001, 26(4): 633 – 645.
- [9] MUELLER J B, PALUSZEK M A, ZHAO Y Y. Development of an aerodynamic model and control law design for a highaltitude airship[C] //Proceedings of AIAA 3rd "Unmanned Unlimited" Technical Conference, Workshop and Exhibit. Chicago, IL: AIAA Press, 2004: 1 – 17.
- [10] FOSSEN T. Guidance and Control of Ocean Vehicles[M]. New York: John Wiley & Sons, 1995.
- [11] ROSKAM J. Methods for Estimating Stability and Control Derivatives of Conventional Subsonic Airplanes[M]. Lawrence, Kansas: Roskam Aviation and Engineering Corporation, 1971.
- [12] MARSDEN J E. Introduction to Mechanics and Symmetry[M]. Second Edition. Berlin: Springer-Verlag, 1994: 369 – 396.
- [13] ISIDORI A. Nonlinear Control System[M]. Third Edition. London: Springer-Verlag, 1995.

作者简介:

刘 屿 (1977—), 男, 博士研究生, 2008年11月至2009年11月获 "国家建设高水平大学公派研究生项目"资助, 在加拿大康考迪亚 大学做研究工作, 研究方向为复杂系统建模、非线性控制、人工智能, E-mail: yul@alcor.concordia.ca; auylau@scut.edu.cn;

邬依林 (1970—), 男, 副教授, 研究方向为非线性控制、网络控制、人工智能, E-mail: lyw@gdei.edu.cn;

胡跃明 (1960—), 男, 博士生导师, 研究方向为非线性控制、变结构控制、精密电子制造, E-mail: auymhu@scut.edu.cn.