文章编号:1000-8152(2011)09-1189-06

车辆加速度自抗扰控制

阮久宏^{1,2,3},杨福广¹,李贻斌²

(1. 山东交通学院 先进车辆与机器人研究所, 山东 济南 250023;

2. 山东大学 机器人研究中心,山东 济南 250061; 3. 清华大学 汽车安全与节能国家重点实验室,北京 100084)

摘要:高性能的加速度控制是先进车辆动力学和主动安全系统的一项关键技术,其实现的难点在于车辆加速度 系统存在有强非线性和不确定性,本文为此提出一种基于自抗扰控制(ADRC)的车辆加速度控制新方法.首先建立 车辆纵向运动动力学模型,设计面向加速度控制的发动机-制动器间的协调策略.然后分别导出发动机-车辆加速 度、制动器-车辆加速度两个动力学子系统的仿射模型,使用线性离散算法设计车辆加速度自抗扰控制器.最后进 行仿真,结果表明自抗扰控制方法能够实现快速、高精度的车辆加速度控制.

关键词:车辆;加速度;自抗扰控制;非线性;不确定性

中图分类号: TP242.6; U461.6 文献标识码: A

Active disturbance-rejection control in vehicle acceleration

RUAN Jiu-hong^{1,2,3}, YANG Fu-guang¹, LI Yi-bin²

(1. Advanced Vehicle and Robot Institute, Shandong Jiaotong University, Jinan Shandong 250023, China;

2. Center for Robotics, Shandong University, Jinan Shandong 250061, China;

3. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China)

Abstract: A high-performance longitudinal acceleration control is a crucial technology for the advanced vehicle dynamics and the active safety-system. However, its practical realization is still with difficulties because of the strong nonlinearity and uncertainty in the vehicle acceleration system. For this reason, a new acceleration control approach based on the active disturbance-rejection control(ADRC) is proposed. First, a dynamic model of the vehicle longitudinal locomotion is built and the engine-brake cooperation strategy for the acceleration control is designed. Next, a two-subsystem affine dynamic model is developed for the engine-vehicle acceleration model and the brake-vehicle acceleration model. Two correspondent controllers based on the linear discrete ADRC algorithm are designed. Finally, simulations are carried out to validate the new approach. The results show that the rapid response and high-precision performances can be achieved simultaneously in the vehicle longitudinal acceleration control.

Key words: vehicle; acceleration; active disturbance-rejection control; nonlinearity; uncertainty

1 引言(Introduction)

加速度控制是汽车底盘集成控制、自适应巡航 控制(adaptive cruise control, ACC)、队列控制(platoon control)等先进车辆动力学和主动安全系统的一项 关键技术,其研究历史可以追溯到20多年前^[1].由于 车辆加速度系统存在有强非线性和不确定性,实际 应用中如何实现高性能的加速度控制迄今仍是一项 具有挑战性的工作.

文献[2]基于车辆纵向运动模型,分别设计了发动机-车辆加速度控制器和制动器-车辆加速度控制器,其中的发动机-车辆加速度控制器基于发动机Mapping图和查表法设计.文献[3]针对低速行驶

工况下车辆起-停巡航控制系统,设计了一种基于 滑模变结构控制方法的模型匹配加速度控制器. 文 献[4]针对车辆纵向运动大不确定性问题,设计了一 种基于鲁棒控制理论的纵向加速度多模型分层切换 控制系统. 文献[5]讨论了不同复杂度的发动机模型 对发动机真实动力学特性的模拟精度,给出了用于 车辆动力学不同控制目的时的发动机模型的选用建 议.

本文针对车辆系统的强非线性和不确定性,从 实际应用的角度出发,将自抗扰控制(active disturbance-rejection control, ADRC)用于加速度控制器的 设计,提出一种车辆加速度控制的新方法.

收稿日期: 2010-09-30; 收修改稿日期: 2011-01-15.

基金项目:国家 "863" 计划资助项目(2007AA04Z206);汽车安全与节能国家重点实验室开放基金资助项目(KF09061);交通运输部科技计划 资助项目(2008319817070, 2009318000072);山东省优秀中青年科学家科研奖励基金资助项目(2008BS05003).

1190

2 车辆纵向运动数学模型(Vehicle longitudinal locomotion model)

2.1 发动机数学模型(Engine model)

现代发动机电子控制系统一般采取以"转矩为 中心"的策略,因此可以将发动机建模为一个惯性 环节,如式(1):

$$T_{\rm eng}\dot{T}_{\rm e} = -T_{\rm e} + T_{\rm d},\tag{1}$$

式中: *T*_e, *T*_d分别为发动机的实际和期望输出扭矩; *T*_{eng}为发动机控制系统时间常数.

2.2 制动器模型(Brake model)

在文献[6,7]基础上建立制动器模型. 当 $F_{\rm b}(t) \leq F_{\rm bmax}$ 时,制动器特性由式(2)和式(3)描述.

$$\dot{F}_{\rm b}(t) = \frac{1}{T_{\rm b}(t)} [-F_{\rm b}(t) + K_{\rm b}(F_{\rm b})u(t - \tau_{\rm b}(t))], (2)$$
$$K_{\rm b}(F_{\rm b}) = \begin{cases} K_{\rm 1}, & 0 \leqslant F_{\rm b} < F_{\rm b1}, \\ K_{\rm 2}, & F_{\rm b1} \leqslant F_{\rm b} < F_{\rm b2}, \\ K_{\rm 3}, & F_{\rm b2} \leqslant F_{\rm b} < F_{\rm b3}, \\ K_{\rm 4}, & F_{\rm b3} \leqslant F_{\rm b} < F_{\rm b4}, \end{cases}$$
(3)

式中: $F_{b}(t)$ 为制动器输出制动力; $F_{b1} \sim F_{b4}$ 为常数; $F_{bmax} = F_{b4}$ 为制动器输出的最大制动力; $T_{b}(t)$ 为制动器时间常数; $K_{b}(F_{b})$ 为制动器增益, $EF_{b}(t)$ 的 函数; u(t)为制动控制输入, 取正整数; $\tau_{b}(t)$ 为制动 延迟时间; $K_{1} \sim K_{4}$ 为制动器静态特性分段斜率.

2.3 传动系和车轮运动模型(Transmission and wheel system model)

假设无极变速器(coutinnuously variable transmission, CVT)通过离合器传递动力,并假定离合器完全结合,可建立式(4)~(7)所示的CVT模型^[8]:

$$I_{\rm e}\dot{\omega}_{\rm e} = T_{\rm e} - T_{\rm in},\tag{4}$$

$$I_{\rm s}\dot{\omega}_{\rm s} = T_{\rm in}i_1\eta_1 - \frac{T_{\rm out}}{i_2i_0},$$
 (5)

$$i_1 = \omega_{\rm e}/\omega_{\rm s},$$
 (6)

$$\dot{\omega}_{\rm e} = \dot{\omega}_{\rm s} i_1 + \omega_{\rm s} \frac{\mathrm{d}i_1}{\mathrm{d}t},\tag{7}$$

式中: I_e 为发动机飞轮+CVT主动带轮的转动惯量; I_s 为从动带轮+主减速器在CVT从动轴的等效转动 惯量; T_{in} , T_{out} 为CVT的输入、输出扭矩; ω_e 为发动 机角速度; 其余参数的意义见附录A.

假设驱动轴无阻尼、刚性,可建立车轮运动数学 模型式(8)~(10):

$$\dot{\omega}_{\rm W} = \frac{T_{\rm out} - (F_{\rm d} + F_{\rm b})r}{I_{\rm W}},\tag{8}$$

$$\omega_{\rm s} = i_2 i_0 \omega_{\rm W}, \tag{9}$$

$$\dot{\omega}_{\rm e} = \dot{\omega}_{\rm W} R_{\rm g} + i_2 i_0 \omega_{\rm W} \frac{\mathrm{d} i_1}{\mathrm{d} t},\tag{10}$$

式中: *I*_W为车轮转动惯量; ω_W 是车轮角速度; *F*_d是 轮胎与路面间的驱动力; *F*_b是作用在车轮上的制动 力; R_{g} 为传动系总传动比, $R_{g} = i_{1}i_{2}i_{3}$; r是轮胎旋 转半径.

2.4 车辆纵向运动数学模型(Vehicle longitudinal locomotion model)

假定路面平整,忽略车辆垂向运动,不考虑横向运动的影响,可建立式(11)~(17)所示的车辆纵向运动数学模型:

$$v(t) = r\omega_{\rm W},\tag{11}$$

$$v(t) = v_0 + \int_0^t a(t) dt,$$
(12)

$$x(t) = x_0 + \int_0^t v(t) dt,$$
 (13)

$$I_{\rm e}\dot{\omega}_{\rm e} = T_{\rm e} - (F_{\rm b} + F_{\rm d})\frac{r}{R_{\rm g}} - \frac{I_{\rm W}\omega_{\rm W}}{R_{\rm g}\eta_1} - \frac{I_{\rm s}\omega_{\rm s}}{i_1\eta_1}, \quad (14)$$

$$F_{\rm aero} = C_{\rm a} A \rho (v(t) + v_{\rm a}(t))^2 / 2,$$
 (15)

$$F_{\rm roll} = C_{\rm r} m {\rm g}, \tag{16}$$

$$F_{\rm d} = F_{\rm aero} + F_{\rm roll} + mg\sin\beta + \lambda_0 ma(t), \quad (17)$$

式中: a(t)为车辆加速度; v(t)为车速, v_0 为其初始 值; x(t)为车辆位移, x_0 为其初始值; F_{aero} 为风阻力; F_{roll} 是轮胎滚动阻力; m是车辆总质量; g为重力加 速度; λ_0 是旋转质量系数, 包含除与车轮、变速器之 外的其他旋转质量有关的影响因素, 如制动器、传动 轴、发动机驱动部件等, 与车速和总传动比有关^[6,9] (如表1); 其余变量、参数的意义见附录B.

表 1 $R_{\rm g}, \lambda_0 与 v(t)$ 之间的关系 Table 1 Relations among the $R_{\rm g}, \lambda_0$ and v(t)

$v(t)/(\mathbf{m}\cdot\mathbf{s}^{-1})$	$R_{\rm g}$	λ_0
$v(t) \leqslant 7$	18.25	1.1
$7 < v(t) \leqslant 12.5$	10.08	1.07
$12.5 < v(t) \leqslant 20$	6.28	1.05
$20 < v(t) \leqslant 26.5$	4.7	1.03
26.5 < v(t)	3.312	1.02

3 车辆加速度协调控制策略(Coordinated strategy for vehicle acceleration control) 由式(11)(14)和式(17),有:

$$a(t) = \frac{T_{\rm e} - [(F_{\rm b} + F_{\rm d0})\frac{r}{R_{\rm g}\eta_{\rm 1}} + I_{\rm e}\omega_{\rm s}\frac{{\rm d}i_{\rm 1}}{{\rm d}t}]}{\frac{I_{\rm e}R_{\rm g}}{r} + \frac{I_{\rm W}}{R_{\rm g}\eta_{\rm 1}r} + \frac{I_{\rm s}R_{\rm g}}{i_{\rm 1}^2\eta_{\rm 1}r} + \frac{\lambda_{\rm 0}mr}{R_{\rm g}\eta_{\rm 1}}},$$
(18)

$$F_{\rm d\,0} = F_{\rm aero} + F_{\rm roll} + mg\sin\beta. \tag{19}$$

式(18)表明, 需要对T_e和F_b进行协调控制, 以使用尽可能小的能量获得尽量好的a(t)控制效果.

记 $e_{a}(t)$ 为加速度误差, $e_{a}(t) = a(t) - a_{d}(t)$, 控制协调策略设计为

brake off and engine on;

else

engine on and brake on;

if $\mathsf{brake_command} \leqslant b_{\mathsf{c}}^+$, then

 $brake_command = 0$

end

end

其中: e_a^+ 是一个小的正数, b_c^+ 是一个小的正整数. 显见, 该协调策略以发动机engine为主要动力, 以制动器brake为辅助动力: 制动器仅当需要制动($a_d(t) < 0$), 或加速度误差大于阈值 e_a^+ 并且brake_command命令大于阈值 b_c^+ 时才工作. 该协调策略要求分别设计发动机-车辆加速度控制器和制动器-车辆加速度控制器.

4 车辆加速度自抗扰控制器设计(Design of vehicle acceleration ADRC controller)

自抗扰控制是一种不依赖系统精确模型的新型 控制技术,它能实时估计并补偿系统受到的各种"外 扰"和"内扰"的总和作用.图1给出的是二阶ADRC 控制器^[10,11]的结构图,可用于控制由仿射模型(20) 描述的一阶系统.

Fig. 1 Second-order ADRC controller structure

$$\begin{cases} x^{(n)} = f(x^{(n-1)}, \cdots, x, w(t), t) + b(t) \ u, \\ y = x. \end{cases}$$
(20)

式(20)和图1中: $x^{(n)}$ 为系统状态x的第n阶导数, w(t)为外部扰动, u为控制量, b(t)为控制增益, y为输出, f(x, w(t), t)是包括对象"内扰"和"外扰"在内的"总扰动"; r_0 为控制目标, v_1 是 r_0 的跟踪信号; z_1 是系统输出y的估计, z_2 是对象总扰动 $f(x, \dot{x}, w(t), t)$ 的估计; e_1 是误差, u_0 是NF的输出, b_0 是b(t)的估计; NF是非线性反馈(nonlinear feedback); ESO(extended state observer)为"扩张状态观测器".

4.1 发动机-车辆加速度系统ADRC控制器设

由式(1)~(17)描述的车辆纵向动力学模型形式 上比较复杂,可用于系统模拟,但难以直接用于加速 度控制器的设计,需首先进行简化.

式(18)两端对时间求导,有以T_d为控制量的发动机-车辆加速度系统仿射模型

$$\dot{a}(t) = f_{aT_{e}}(t) + b_{aT_{e}}(t)T_{d}, \qquad (21)$$
$$b_{aT_{e}}(t) = \frac{1/T_{eng}}{\frac{I_{e}R_{g}}{r} + \frac{I_{W}}{R_{g}\eta_{1}r} + \frac{I_{s}R_{g}}{i_{1}^{2}\eta_{1}r} + \frac{\lambda_{0}mr}{R_{g}\eta_{1}}}, \qquad (22)$$

$$f_{aT_{e}}(t) = \frac{-(\dot{F}_{b} + \dot{F}_{d0})\frac{r}{R_{g}\eta_{1}} - I_{e}\frac{d(\omega_{s}\frac{di_{1}}{dt})}{dt}}{\frac{I_{e}R_{g}}{r} + \frac{I_{W}}{R_{g}\eta_{1}r} + \frac{I_{s}R_{g}}{i_{1}^{2}\eta_{1}r} + \frac{\lambda_{0}mr}{R_{g}\eta_{1}}} - \frac{T_{e}b_{aT_{e}}(t) + w_{aT_{e}}(t)}{T_{e}b_{aT_{e}}(t) + w_{aT_{e}}(t)},$$
(23)

式中: $f_{aT_e}(t)$ 即为系统的"总扰动", 难以进行直接 计算或通过传感器加以测量, 但可使用ESO进行实 时估计; $b_{aT_e}(t)$ 即为时变控制增益, 在ADRC控制器 设计时可根据先验数据估计为一个或一组合适的常 值增益 b^0 , 也可进行在线辨识; $w_{aT_e}(t)$ 是式(18)对时 间求导所得表达式的其余各项的和.

式(21)描述的一阶发动机-车辆加速度系统可由二阶ADRC_{aTe}控制器加以控制,控制系统结构如图2.

图 2 发动机-车辆加速度控制系统结构

从工程应用的角度出发,采用易于实现的线性化 离散算法设计ADRC_{aTe}控制器^[12],其ESO和NF算法 公式^[13]分别如式(24)(25):

$$\begin{cases} e = z_1(k) - y(k), \\ z_1(k+1) = \\ z_1(k) + T_s(z_2(k) - \beta_{01}e + b^0u(k)), \\ z_2(k+1) = z_2(k) - T_s\beta_{02}e, \end{cases}$$

$$\begin{cases} e_1 = v_1(k) - z_1(k), \\ u_0 = K_{\rm P}e_1, \end{cases}$$
(25)

式中: T_s 为控制采样周期; β_{01} , β_{02} 为ESO设计参数, $\beta_{01} = 2\omega_n, \beta_{02} = \omega_n^2; \omega_n$ 为控制对象的带宽; K_P 为NF 设计参数.

控制器各参数的设计方法如下:利用工程先验知识并结合实验分析估算 ω_n ;利用过渡过程参数设计方法^[12]确定"安排过渡过程"的快速因子 r_{TD} 和积分步长 h_{TD} ;参照基于比例缩放和带宽参数化的控制器调节方法^[13]设计 K_P ;利用先验数据(表1、附录A和B等)及式(22)估计一组系统控制增益 b^0 ,具体取值与总传动比 R_g 和车速v(t)有关; T_s 取为0.002 s. 详细过程从略.

4.2 制动器-车辆加速度系统ADRC控制器设计

(Design of brake-vehicle acceleration system ADRC controller)

式(18)两端对时间求导,结合式(2),有以 $u(t - \tau_{\rm b}(t))$ 为控制量的系统仿射模型:

$$\dot{a}(t) = f_{ab}(t) + b_{ab}(t) \cdot u(t - \tau_{b}(t)),$$
 (26)

式中:

$$f_{ab}(t) = \frac{\dot{T}_{e} - (-\frac{1}{T_{b}(t)}F_{b}(t) + \dot{F}_{d0})\frac{r}{R_{g}\eta_{1}}}{g(R_{g})} - \frac{I_{e}}{\frac{I_{e}}{g(R_{g})}} \cdot \frac{d(\omega_{s}\frac{di_{1}}{dt})}{dt} + w_{ab}(t), \qquad (27)$$

$$b_{ab}(t) = -\frac{rK_{b}(F_{b})}{g(R_{g})R_{g}\eta_{1}T_{b}(t)},$$
(28)

$$g(R_{\rm g}) = \frac{I_{\rm e}R_{\rm g}}{r} + \frac{I_{\rm W}}{R_{\rm g}\eta_{\rm 1}r} + \frac{I_{\rm s}R_{\rm g}}{i_{\rm 1}^{\,2}\eta_{\rm 1}r} + \frac{\lambda_{\rm 0}mr}{R_{\rm g}\eta_{\rm 1}}, \quad (29)$$

其中w_{ab}(t)是式(18)对时间求导所得表达式的其余 各项的和.

7b值一般为0.05 s左右, 是一小量, 因此式(26)描

述的一阶制动器-车辆加速度系统仍可使用二阶 ADRC_{ab}控制器加以控制^[14],控制系统结构如图3.

据式(28)、表1、附录A和B、 $K_1 \sim K_4$ 等数据对系统增益 $b_{ab}(t)$ 进行估计, ADRC_{ab}其余参数的设计同ADRC_{aTe}方法.

图 3 制动器-车辆加速度控制系统结构

5 仿真(Simulations)

在有风、道路有坡度、滚动阻力系数和CVT带 传动比存在波动(图4)的情况下实施先减速、再加 速的车辆加速度控制仿真. $F_{b1} \sim F_{b4}$ 分别取 1022 N, 5799 N, 9780 N 和 12669 N, 与之对应的 u 值分别取: 170, 315, 415和515, m = 1400 kg(名义值为1208 kg), $T_{eng} = 0.15 \text{ s}$, $T_b(t) = 0.15 \text{ s}$, $\tau_b(t) = 0.05 \text{ s}$, $I_e =$ $0.1454 \text{ kg} \cdot \text{m}^2$, $I_s = 0.28 \text{ kg} \cdot \text{m}^2$, $I_w = 0.5 \text{ kg} \cdot \text{m}^2$, r = 0.3 m, $v_0 = 40 \text{ m/s}$, 初始加速度 $a_0 = 0$, $g = 9.8 \text{ m/s}^2$, 其余参数取附录A、B给出的名义值. 仿真结果示于图5.

由图5可见:制动器与发动机能够协调工作,动作 平稳;在ADRC控制器的作用下,系统对慢变、快变 加速度信号均能实现快速、高精度的跟踪,表明自 抗扰控制方法对车辆加速度系统的内、外扰动均具 有满意的鲁棒能力,对于系统非线性和仿射模型未 建模动态引起的不确定性亦具有良好的适应能力.

图 4 切具余件 Fig. 4 Simulation conditions

6 结论(Conclusions)

 对于具有参数时变、强非线性和不确定性的车辆加速度系统,采用适当的发动机-制动器协 调策略和自抗扰控制方法可以获得快速、高精度 的控制效果.

2) 加速度自抗扰控制器设计使用的车辆动力 学仿射模型形式简单,允许带有未建模动态和不 确定扰动项,控制增益亦无需精确已知,这与实际 情况高度相符,因此所提出的车辆加速度自抗扰 控制可作为一种新方法在工程上推广应用.

参考文献(References):

- IN-JOONG H, A KEMAL Tugcu, NADER M Bpustany. Feedback linearizing control of vehicle longitudinal acceleration[J]. *IEEE Transactions on Automatic Control*, 1989, 34(7): 689 – 698.
- [2] LU X Y, KARL H J. Longitudinal control design and experiment for heavy-duty trucks[C] //Proceedings of the American Control Conference. Evanston, IL: IEEE, 2003: 36 – 41.
- [3] 宾洋,李克强,连小珉,等. 车辆起-停巡航控制系统的加速度跟踪控制[J]. 清华大学学报(自然科学版), 2005, 45(2): 246 249.
 (BIN Yang, LI Keqiang, LIAN Xiaomin, et al. Acceleration tracking control of stop and go cruise control systems[J]. Journal of Tsinghua University(Science & Technology), 2005, 45(2): 246 249.)
- [4] 高锋, 李家文, 李克强, 等. 汽车纵向加/减速度多模型分层切换控制[J]. 汽车工程, 2007, 29(9): 804 808.
 (GAO Feng, LI Jiawen, LI Keqiang, et al. Multi-model hierarchical

switching control of vehicle longitudinal acceleration/deceleration[J]. *Automotive Engineering*, 2007, 29(9): 804 – 808.)

- [5] DREW M C. A discussion of vehicle modeling for control[R]. Berkeley: Vehicle Dynamics Lab, University of California, 2002.
- [6] KOSKO B. Fuzzy Engineering[M]. New Jersey: Prentice Hall, 1997: 177 – 211.
- [7] VLACIC L, PARENT M, HARASHIMA F. Intelligent Vehicle Technologies Theory and Application[M]. Oxford: Butterworth -Heinemann, 2001.
- [8] 张雷.金属带式无级变速器非稳态工况速比控制策略研究[D].长春:吉林大学,2008.
 (ZHANG Lei. Research on ratio shift control strategy of metal belt CVT in non-stable state[D]. Changchun: Jilin University, 2008.)
- [9] 威鲁麦特H P. 车辆动力学模拟及其方法[M]. 北京: 北京理工大学 出版社, 1998: 90 – 101.
 (WILLUMEIT H P. Vehicle Dynamics Simulation and Its Methods[M]. Beijing: Beijing Institute of Technology Press, 1998: 90 – 101.)
- [10] 韩京清.从PID技术到"自抗扰控制"技术[J]. 控制工程, 2002, 9(3): 13-18.
 (HAN Jingqing. From PID technique to active disturbances rejection control technique[J]. *Control Engineering of China*, 2002, 9(3): 13-
- 18.)
 [11] 韩京清. 非线性状态误差反馈控制率——NLSEF[J]. 控制与决策, 1995, 10(3): 221 – 225.
 (HAN Jingqing. Nonlinear state error feedback control law– NLSEE[J]. Control and Decision, 1995, 10(3): 221 – 225.)
- [12] 韩京清. 自抗扰控制技术——估计补偿不确定因素的控制技术[M]. 北京: 国防工业出版社, 2009.
 (HAN Jingqing. Active Disturbance Rejection Control Technique-the Technique for Estimating and Compensating the Uncertainties[M]. Beijing: National Defense Industry Press, 2009.)

- [13] GAO Z Q. Scaling and bandwidth-parameterization based controller tuning[C] //Proceedings of the American Control Conference. Evanston, IL: IEEE, 2003: 4989 – 4996.
- [14] 韩京清,张文革.大时滞系统的自抗扰控制[J]. 控制与决策, 1999, 14(4): 354 – 358.
 (HAN Jingqing, ZHANG Wenge. ADRC control for large time-delay
 - systems[J]. Control and Decision, 1999, 14(4): 354 358.)

附录 公式中部分变量的含义与名义值 (Appendix meaning and normal values of the parts of formula variables)

附录 A 式(4)~(7)中部分变量的含义与名义值

Appendix A Meaning and normal values of the parts of formula (4)~(7) variables

变量	含义	单位	名义值
i_1	CVT带传动比	_	$0.442 \sim 2.436$
i_2	CVT中间齿轮副减速比	_	1.428
i_0	CVT主减速器比	_	5.247
$\omega_{\rm s}$	CVT从动带轮角速度	rad/s	—
η_1	CVT带传动效率	_	0.95
$\frac{\mathrm{d}i_1}{\mathrm{d}t}$	CVT带传动比变化率	—	0.2

附录 B 式(11)~(17)中部分变量的含义与名义值 Appendix B Meaning and normal values of the parts of formula (11)~(17) variables

变量	含义	单位	名义值
$v_{\rm a}(t)$	风速	m/s	
$C_{\rm a}$	空气阻力系数		0.3
$C_{\rm r}$	车轮滚动阻力系数		0.015
A	车辆迎风面积	m^2	1.2
ρ	空气密度	kg/m ³	1.25
β	道路坡度	rad	

作者简介:

阮久宏 (1971—), 男, 博士, 副教授, 研究方向为先进车辆动力 学控制、智能交通系统和机器人技术, E-mail: ruanjh@sdu.edu.cn;

杨福广 (1974—), 男, 博士, 副教授, 研究方向为先进车辆动力 学控制、运动控制和机器人技术, E-mail: fuguang_y@126.com;

李贻斌 (1960—), 男, 博士, 教授, 研究方向为机器人技术和智能交通系统, E-mail: liyb@sdu.edu.cn.