DOI: 10.7641/CTA.2013.20149

控制增益未知的多变量极值搜索系统神经网络自适应协同控制

左 斌¹, 李 静^{2,3†}

(1. 海军航空工程学院 控制工程系, 山东 烟台 264001;

2. 海军航空工程学院 战略导弹工程系, 山东 烟台 264001; 3. 北京图形研究所, 北京 100029)

摘要: 针对一类控制增益未知的多变量极值搜索系统, 提出了一种神经网络自适应协同控制方法. 该方法利用协同控制实现状态变量之间的协同收敛, 并确保对系统内部参数扰动和外界干扰具有不变性; 以极值搜索控制方法得到的搜寻变量作为输入量, 设计多层神经网络逼近状态变量的极值变化率和未知的变量与函数; 采用Nussbaum函数解决系统控制增益未知的问题; 同时运用自适应参数抵消神经网络逼近误差的影响. 稳定性分析证明了系统的状态跟踪误差、输出量与其极值之间的误差、极值搜索变量的跟踪误差以及神经网络各参数的估计误差均指数收敛 至原点的一个有界邻域. 理论分析与仿真结果验证了该方法的有效性.

关键词: 多变量极值搜索系统; 协同控制; Nussbaum增益; 神经网络; 自适应控制 中图分类号: TP273.23 文献标识码: A

Neural network adaptive synergetic control for multivariable extremum seeking system with unknown control gain

ZUO Bin¹, LI Jing^{2,3†}

Department of Control Engineering, Naval Aeronautical and Astronautical University, Yantai Shandong 264001, China;
 Department of Strategic Missile Engineering, Naval Aeronautical and Astronautical University, Yantai Shandong 264001, China;
 Beijing Institute of Graphics, Beijing 100029, China)

Abstract: In the proposed synergetic control, the synergetic convergence of states can be realized, and the invariance against the system parameter variation and external perturbation can also be achieved. By using the search variables from the extremum-seeking control as the inputs, multilayer neural networks (MNN) are applied to approximate the differential of the state extrema as well as unknown parameters and functions. The problem of the unknown control gain is well solved by using Nussbaum gain function. At the same time, an adaptive parameter is adopted to compensate for the influence of MNN approximation errors. The stability analysis shows that tracking errors of states, errors between the output and its extrema, tracking errors of search variables, and estimation errors of MNN parameters, all converge exponentially to a small neighborhood of the origin by appropriately choosing design parameters. Theoretical analysis and simulation results show the effectiveness of the proposed control method.

Key words: multivariable extremum-seeking system; synergetic control; Nussbaum gain; neural network; adaptive control

1 引言(Introduction)

多变量极值搜索系统的特点是:系统的输入量 与输出量之间存在某种最优的参考轨迹关系,且这 种最优的参考轨迹关系由系统的多个状态变量所决 定,但是由于被控系统可能存在内部参数扰动、外界 的不确定干扰、参数时变性以及未建模动态等因素 的影响,这种最优关系不能被完全知晓或了解^[1-3]. 如何通过控制系统的设计使得系统的输出量收敛至 其极值是多变量极值搜索系统研究的热点.特别是, 对于某些控制增益未知的多变量极值搜索系统的协同控制问题,一方面强调状态变量的收敛过程必须满足一定的协同关系,另一方面系统的控制增益却是未知的,这些因素导致控制增益未知的多变量极值搜索系统的设计异常困难.如何设计此类控制系统使得输出量收敛至其极值,并且状态变量具有协同收敛过程,对内部参数扰动和外界干扰具有不变性,是目前多变量极值搜索控制系统研究的难点和重点问题.

收稿日期: 2012-02-26; 收修改稿日期: 2012-12-20.

[†]通信作者. Tel.: +86 18210512728.

基金项目:国家自然科学基金资助项目(60674090);国家高技术研究发展计划资助项目(2010AAJ140);学院青年科研基金资助项目(HYQN 201111).

目前,针对控制增益未知的非线性系统的控制 方法主要包括: 模糊系统方法、神经网络方法、鲁 棒自适应方法、滑模变结构控制方法、迭代学习控 制等. 张元涛等^[4]针对一类具有不确定性的控制增 益未知非线性系统,提出一种参数自适应滑模控制 策略,采用sigmoid函数替代符号函数,设计了基于 切换增益和边界层厚度的直接自适应滑模控制器. 张伟等^[5]针对控制增益未知的SISO仿射非线性系 统,提出一种模糊自适应控制方法,通过利用模糊树 模型逼近系统中的未知非线性函数得到初始的控 制器,并在线调节模糊树模型中的线性参数,实现 对参考信号的跟踪控制. 陈刚等[6]针对具有强非线 性、控制增益未知和非匹配不确定性的电液位置伺 服系统,提出了一种多滑模神经网络控制方法,采 用构造性方法设计控制器,并运用光滑投影算法和 积分李雅普诺夫方法,避免了参数漂移和控制器奇 异问题. Jiang等^[7]针对控制增益未知的MIMO非线 性系统,提出了一种广义迭代学习控制方法,通过 引入增益矩阵选择器和学习补偿器,可以确保系统 的跟踪轨迹在有限的迭代次数内收敛至期望轨迹. Chen等^[8]针对一类具有未知周期时变参数和控制增 益的非线性系统,提出一种自适应反演控制方法,通 过引入高阶神经网络和傅里叶级数扩展方法构建 新的函数逼近器,并运用Nussbaum函数处理未知的 控制增益. Du等^[9]针对具有未知控制增益的船舶航 向控制系统,运用Nussbaum函数和自适应反演方法, 设计出一种自适应非线性控制器,确保闭环系统的 全局一致最终有界.

虽然上述文献都对控制增益未知的非线性系统 进行了研究,但是这些文献的控制方法都存在相同 的问题,即要求被控系统的期望跟踪轨迹是已知的. 然而,在许多的多变量极值搜索系统中,例如飞机的 编队飞行控制、生化反应控制系统、变化环境中系 统输出功率的极值化控制系统等,期望跟踪轨迹是 完全未知且随环境条件而变化的.在这些情况下,上 述的控制方法⁽⁴⁻⁹⁾将不再适用于此类极值搜索系统. 此外,某些控制增益未知的多变量极值搜索系统还 要求状态变量具有协同收敛过程,且系统对内部参 数扰动和外界干扰具有不变性,其中协同收敛是指 研究模型中状态变量之间蕴含的某种结构协同、功 能协同、时间协同等条件.如果单独应用协同控制 方法^[10-11]进行设计,由于系统的期望跟踪轨迹未知, 将导致控制系统设计受阻.

为此,本文提出了一种神经网络自适应协同控制方法,解决了控制增益未知的多变量极值搜索系统的协同控制问题.利用协同控制实现状态变量之间的协同收敛关系,并确保对系统内部参数扰动和 外界干扰具有不变性;以极值搜索控制方法得到 的搜寻变量作为输入量,设计多层神经网络逼近状态变量的极值变化率和未知的变量与函数;采用 Nussbaum函数解决系统控制增益未知的问题;运用 自适应参数来消弱由神经网络逼近误差带来的影 响.该方法不需要提前获知系统的期望跟踪轨迹,能 够满足状态变量的协同收敛条件,且保证系统的状态跟踪误差、输出量与其极值之间的误差、极值搜 索变量的跟踪误差以及神经网络各参数的估计误差 均指数收敛至原点的一个有界邻域.仿真结果验证 了该方法可以确保被控系统的极值搜索能力、协同 收敛能力以及鲁棒性.

2 问题阐述(Problem formulation)

考虑如下具有未知控制增益的多变量极值搜索 系统:

$$\begin{cases} \dot{\boldsymbol{x}} = f(\boldsymbol{x}) + g(\boldsymbol{x})u + \Delta_1(t, \boldsymbol{x}), \\ y = \ell(\boldsymbol{x}), \end{cases}$$
(1)

式中: $x \in \mathbb{R}^m$ 为系统的状态变量; $u \in \mathbb{R}$ 和 $y \in \mathbb{R}$ 分别为系统的输入量和输出量; f(x)为紧集内的未知 光滑非线性函数, g(x)为未知的光滑控制增益函数; $\Delta_1(t, x)$ 为系统内部参数扰动和外界干扰; $\ell(x)$ 为未 知的输出函数, 具有极大或极小输出值, 即 $y^* = \ell(x^*)$, 其中: x^* 为未知的状态变量极值, y^* 为输出量 极值.

同时,系统(1)的状态变量**x**具有如下的协同收敛 条件:

$$\boldsymbol{K}(\boldsymbol{x} - \boldsymbol{x}^*) = 0, \qquad (2)$$

式中: $K \in \mathbb{R}^{n \times m}$ 为根据协同状态变量之间的收敛 条件而设计的参数矩阵,且存在伪逆 K^{-1} .

本文的控制目标: 针对控制增益未知的多变量极 值搜索系统(1), 以状态变量*x*具有的协同收敛条件 为依据, 设计一种神经网络自适应协同控制方法, 使 得闭环控制系统稳定, 且系统的所有误差信号均有 界且指数收敛至原点的一个有界邻域, 输出量*y*收敛 至极值*y**的有界邻域内.

3 理论基础(Theoretical foundation)

为方便问题的研究, 需要引入如下假设条件和引 理:

假设1 存在一个紧集 $\Omega_x \subset \mathbb{R}^m$, 使得 $x \in \Omega_x$. **假设2** 控制增益函数g(x)未知且有界, 即存 在一个正的未知参数G, 使得 $||g(x)|| \leq G$.

假设3 系统内部参数扰动和外界干扰 $\Delta_1(t, x)$ 是有界的,且满足 $\|\Delta_1(t, x)\| \leq \delta_{\Delta}$,其中 δ_{Δ} 为未知的正数.

假设4 针对控制增益未知的多变量极值搜 索系统(1), 定义 $\theta \in \mathbb{R}^m$ 为此系统采用极值搜索控 制^[1-3]时的搜索变量, $\zeta \in \mathbb{R}^p$ 为此系统的已知参数, x^* 和 \dot{x}^* 为状态变量期望的极值和极值变化率,且在 一紧集内,它们与系统状态变量x、输出量y满足如 下关系: $x^* = l_1^*(x, y, \theta, \zeta), \dot{x}^* = l_2^*(x, y, \theta, \zeta);$ 同 时极值 x^* 为有限值,即满足 $||x^*|| < X_{upper}, \ (UX_{upper})$ 是未知的.

定义1 连续函数 $N(\xi) : \mathbb{R} \to \mathbb{R}$ 被称为是一个 Nussbaum函数, 具有下列属性:

$$\lim_{s \to +\infty} \sup \frac{1}{s} \int_0^s N(\xi) d\xi = +\infty,$$
$$\lim_{s \to +\infty} \inf \frac{1}{s} \int_0^s N(\xi) d\xi = -\infty.$$

引理 1^[12] 设 $L(\cdot)$ 和 $\xi(\cdot)$ 为定义在 $[0, t_f)$ 上的光 滑函数,其中 $L(t) \ge 0, \forall t \in [0, t_f),$ 并且 $N(\xi)$ 为一光 滑Nussbaum函数.如果 $\forall t \in [0, t_f),$ 以下不等式成立:

$$L(t) \leqslant c_0 + \mathrm{e}^{-c_1 t} \int_0^t h(\tau) N(\xi) \dot{\xi} \mathrm{e}^{c_1 \tau} \mathrm{d}\tau + \mathrm{e}^{-c_1 t} \int_0^t \dot{\xi} \mathrm{e}^{c_1 \tau} \mathrm{d}\tau,$$

式中:常数 $c_1 > 0, h(\tau)$ 为时变函数, c_0 表示某一适当 常数,则 $L(t), \xi(t)$ 和 $\int_0^t (h(\tau)N(\xi) + 1)\dot{\xi} d\tau \bar{\alpha}[0, t_f)$ 上必定有界.

注1 Ryan^[13]证明了若闭环解有界,则引理1中的 $t_f = \infty$.

引理 2^[14] 本文对于3层前向神经网络逼近器 $W^{T}S(V^{T}X)$,其结构形式如图1所示.

图 1 3层神经网络逼近器结构图 Fig. 1 The scheme of the approximator based on

3-layer neural network

在图1中: $X = [\chi_1 \ \chi_2 \ \cdots \ \chi_{N_1}]^T$ 为多层神经 网络的输入向量; S为激活函数, 且采用S型的函数 形式; 多层神经网络的权重矩阵分别为

$$\boldsymbol{W}^{\mathrm{T}} = \begin{vmatrix} w_{11} & w_{12} & \cdots & w_{1N_2} \\ w_{21} & w_{22} & \cdots & w_{2N_2} \\ \vdots & \vdots & \ddots & \vdots \\ w_{N_31} & w_{N_32} & \cdots & w_{N_3N_2} \end{vmatrix},$$

$oldsymbol{V}^{\mathrm{T}}=$	v_{11}	v_{12}	• • •	$v_{1N_{1}}$	
	v_{21}	v_{22}	• • •	$v_{2N_{1}}$	
	÷	÷	۰.	÷	
	$v_{N_{2}1}$	v_{N_22}		$v_{N_2N_1}$	

此多层神经网络逼近器的逼近误差可以表示为

$$egin{aligned} & m{W}^{ ext{T}}m{S}(m{V}^{ ext{T}}m{X}) - m{W}^{* ext{T}}m{S}(m{V}^{* ext{T}}m{X}) = \ & ilde{m{W}}^{ ext{T}}(\hat{m{S}} - \hat{m{S}}'\hat{m{V}}^{ ext{T}}m{X}) + \hat{m{W}}^{ ext{T}}\hat{m{S}}'m{ ilde{m{V}}}^{ ext{T}}m{X} + m{d}_{ ext{u}}, \end{aligned}$$

式中: $W^* 和 V^*$ 表示权重矩阵W 和 V的最优值, \hat{W} 和 \hat{V} 表示权重矩阵W 和 V的估计值, $\tilde{W} = \hat{W} - W^* 和 \tilde{V} = \hat{V} - V^*$ 为多层神经网络的权重估计误 差; $\hat{S} = S(\hat{V}^T X), \hat{S}' = \text{diag}\{\hat{s}'_1, \hat{s}'_2, \cdots, \hat{s}'_k\},$ 其中

$$\hat{s}'_i = s'(\hat{v}_i^{\mathrm{T}} \boldsymbol{X}) = \frac{\mathrm{d}[s(x_a)]}{\mathrm{d}x_a}|_{x_a = \hat{v}_i^{\mathrm{T}} \boldsymbol{X}};$$

残留项

$$egin{aligned} \|oldsymbol{d}_{\mathrm{u}}\| &\leqslant \|oldsymbol{V}^*\|_{\mathrm{F}}\|oldsymbol{\hat{N}}^{\mathrm{T}}oldsymbol{\hat{S}}'\|_{\mathrm{F}}\|oldsymbol{X}\| + \|oldsymbol{W}^*\|_{\mathrm{F}}\|oldsymbol{\hat{S}}'oldsymbol{\hat{V}}^{\mathrm{T}}oldsymbol{X}\|_{\mathrm{F}} + \|oldsymbol{W}^*\|_{\mathrm{F}}\sqrt{N_2} \ & = \|oldsymbol{\hat{C}}^*\|_{\mathrm{F}} + \|oldsymbol{\hat{V}}^*\|_{\mathrm{F}}\|oldsymbol{\hat{V}}^*\|_{\mathrm{F}} + \|oldsymbol{W}^*\|_{\mathrm{F}}\sqrt{N_2} \end{aligned}$$

是有界的, 且 $\sqrt{N_2} \ge ||\boldsymbol{S} - \boldsymbol{S}^*||.$

4 神经网络自适应协同控制方法设计 (Design of neural network adaptive synergetic control method)

针对控制增益未知的多变量极值搜索系统(1), 考虑到状态变量*x*之间的协同收敛条件以及系统内 部参数扰动和外界干扰,采用协同控制方法设计控 制律*u*.该方法基于定向自组织原理,根据系统所需 的控制目标,在被控对象的状态空间中构造流形,并 利用流形来求解系统的控制律,由于控制对象的状 态变量始终工作在流形上,不会受到系统内部参数 扰动和外部干扰的影响,因此具有很强的鲁棒性.

根据已知的状态变量*x*之间的协同收敛条件,设 计流形*φ*为

$$\boldsymbol{\varphi} = \boldsymbol{K}(\boldsymbol{x} - \boldsymbol{x}^*), \qquad (3)$$

式中 $\varphi \in \mathbb{R}^n (n < m)$ 为流形形式.

由于在极值搜索系统中极值**x***是未知的,因此 只能由估计值**x***代替极值**x***,则有

$$\hat{\boldsymbol{\varphi}} = \boldsymbol{K}(\boldsymbol{x} - \hat{\boldsymbol{x}}^*), \qquad (4)$$

式中: $\hat{\varphi}$ 为流形 φ 的估计值; \hat{x}^* 为状态变量极值 x^* 的估计值.

定义系统状态轨迹向流形估计值*φ̂*的动态演变 规律为

$$T\hat{\varphi} + \hat{\varphi} = 0, \tag{5}$$

式中: $T \in \mathbb{R}^{n \times n}$ 为系统状态趋向流形估计值 $\hat{\varphi}$ 的收敛速率, 且T是对称正定矩阵.

由于f(x)为紧集内的未知光滑函数,依据多层

神经网络对任意多项式函数都具有较好的逼近能力^[14],故可以利用理想的多层神经网络 $W_1^{*T}S_1 \cdot (V_1^{*T}X_1) + \epsilon_1$ 逼近它,即

$$f(\boldsymbol{x}) = \boldsymbol{W}_1^{*\mathrm{T}} \boldsymbol{S}_1(\boldsymbol{V}_1^{*\mathrm{T}} \boldsymbol{X}_1) + \boldsymbol{\varepsilon}_1, \quad (6)$$

式中: $X_1 = [x^T \ y]^T$ 为多层神经网络的输入向量, $V_1^* 和 W_1^*$ 为最优权重矩阵, ε_1 为神经网络的逼近误 差, 且 $\|\varepsilon_1\| \leq \varepsilon_{u1}$.

根据假设4可知,极值变化率 $\dot{x}^* = l_2^*(x, y, \theta, \zeta)$ 是紧集内的函数,依据多层神经网络对任意多项式 函数都具有较好的逼近能力,利用理想的多层神经 网络 $W_2^{*T}S_2(V_2^{*T}X_2) + \varepsilon_2$ 来逼近 \dot{x}^* ,即

$$\dot{\boldsymbol{x}}^* = \boldsymbol{W}_2^{*\mathrm{T}} \boldsymbol{S}_2(\boldsymbol{V}_2^{*\mathrm{T}} \boldsymbol{X}_2) + \boldsymbol{\varepsilon}_2, \qquad (7)$$

式中: $X_2 = [x^T \ y \ \theta^T \ \zeta^T]^T$ 为此多层神经网络的输入向量, W_2^* 和 V_2^* 为最优权重矩阵, ε_2 为神经网络的逼近误差, 且 $\|\varepsilon_2\| \leq \varepsilon_{u2}$.

极值变化率的估计值 \hat{x}^* 可以采用多层神经网络 $\hat{W}_2^{\mathrm{T}} \boldsymbol{S}_2(\hat{V}_2^{\mathrm{T}} \boldsymbol{X}_2)$ 实现,即

$$\dot{\hat{\boldsymbol{x}}}^* = \hat{\boldsymbol{W}}_2^{\mathrm{T}} \boldsymbol{S}_2(\hat{\boldsymbol{V}}_2^{\mathrm{T}} \boldsymbol{X}_2), \qquad (8)$$

式中 \hat{W}_2 和 \hat{V}_2 为最优权重矩阵 W_2^* 和 V_2^* 的估计值.

根据式(8)可知,为了获得极值变化率的估计值 \dot{x}^* ,需要借助极值搜索控制中的搜索变量 θ 作为多 层神经网络的输入量.目前,极值搜索控制主要包 括:基于正弦激励函数的极值搜索控制方法^[15]、滑 模极值搜索控制方法^[16]和退火递归神经网络极值 搜索控制方法^[17]等3种.根据左斌等^[18]的分析可知, 无论采用上述任意的极值搜索控制方法,搜索误 差 $e_{\theta} = \theta - \theta^*$ 的动态方程都可以表示为

$$\dot{\boldsymbol{e}}_{\theta} = \boldsymbol{\Lambda} \boldsymbol{e}_{\theta} + \Delta \boldsymbol{\kappa}, \tag{9}$$

式中: θ *为搜索变量 θ 所对应的极值, Λ 和 $\Delta \kappa$ 分别为 相应的设计参数^[18].

定义状态变量的极值跟踪误差 $e_x = x - x^*$,状态变量的极值跟踪估计误差 $\hat{e}_x = x - \hat{x}^*$.设计控制 律u为

$$u = N(\xi) \boldsymbol{P}[\hat{\boldsymbol{W}}_{1}^{\mathrm{T}} \boldsymbol{S}_{1}(\hat{\boldsymbol{V}}_{1}^{\mathrm{T}} \boldsymbol{X}_{1}) + \boldsymbol{K}^{-1} \boldsymbol{T}^{-1} \hat{\boldsymbol{\varphi}} - \boldsymbol{\eta} - \boldsymbol{Q} \hat{\rho} \boldsymbol{\beta} - \dot{\boldsymbol{x}}^{*}], \qquad (10)$$

$$N(\xi) = e^{\xi^2} \cos \frac{\pi\xi}{2},\tag{11}$$

$$\dot{\boldsymbol{\xi}} = \hat{\boldsymbol{e}}_{\mathrm{x}}^{\mathrm{T}} [\hat{\boldsymbol{W}}_{1}^{\mathrm{T}} \boldsymbol{S}_{1} (\hat{\boldsymbol{V}}_{1}^{\mathrm{T}} \boldsymbol{X}_{1}) + \boldsymbol{K}^{-1} \boldsymbol{T}^{-1} \hat{\boldsymbol{\varphi}} - \boldsymbol{\eta} - \boldsymbol{Q} \hat{\boldsymbol{\rho}} \boldsymbol{\beta} - \dot{\hat{\boldsymbol{x}}}^{*}], \qquad (12)$$

$$\boldsymbol{\eta} = -\frac{\boldsymbol{Q}}{\|\boldsymbol{Q}\|^2} [\hat{\boldsymbol{W}}_3^{\mathrm{T}} \boldsymbol{S}_3(\hat{\boldsymbol{V}}_3^{\mathrm{T}} \boldsymbol{X}_3)], \qquad (13)$$

式中: $N(\xi)$ 为Nussbaum函数, $P \in \mathbb{R}^{1 \times m}$ 为设计向 量; \hat{W}_1 和 \hat{V}_1 为最优权重矩阵 W_1^* 和 V_1^* 的估计值; η 为神经网络的抵消项; 向量 $Q = [1 \ 1 \ \cdots \ 1]_{1 \times m}^T$; \hat{W}_3 和 \hat{V}_3 分别为多层神经网络 $W_3^{*T}S_3(V_3^{*T}X_3)$ 中 最优权重矩阵 W_3^* 和 V_3^* 的估计值, $W_3^{*^T}S_3(V_3^{*^T}X_3)$ 的定义如式(25); $\hat{\rho} \ge 0$ 为对参数 ρ^* 的估计值, 也是控制律u的自适应参数, 参数 ρ^* 的定义如式(31); β 为设计参数, 其定义如式(33); \hat{x}^* 是估计值 x^* 的微分值.

5 稳定性分析(Stability analysis)

针对具有未知控制增益的多变量极值搜索系统 (1), 当采用如式(10)所示的控制律*u*时, 分析此控制 系统的稳定性. 首先, 选取Lyapunov函数*L*如下:

$$L = \frac{1}{2} \boldsymbol{e}_{x}^{T} \boldsymbol{e}_{x} + \frac{1}{2} \boldsymbol{e}_{\theta}^{T} \boldsymbol{e}_{\theta} + \frac{1}{2} \hat{\boldsymbol{\varphi}}^{T} \hat{\boldsymbol{\varphi}} + \frac{1}{2} \tilde{\rho}^{2} + \frac{1}{2} \operatorname{tr} \{ \tilde{\boldsymbol{W}}_{1}^{T} \boldsymbol{\Gamma}_{W_{1}}^{-1} \tilde{\boldsymbol{W}}_{1} \} + \frac{1}{2} \operatorname{tr} \{ \tilde{\boldsymbol{W}}_{1}^{T} \boldsymbol{\Gamma}_{W_{1}}^{-1} \tilde{\boldsymbol{W}}_{1} \} + \frac{1}{2} \operatorname{tr} \{ \tilde{\boldsymbol{W}}_{2}^{T} \boldsymbol{\Gamma}_{W_{2}}^{-1} \tilde{\boldsymbol{W}}_{2} \} + \frac{1}{2} \operatorname{tr} \{ \tilde{\boldsymbol{W}}_{2}^{T} \boldsymbol{\Gamma}_{W_{2}}^{-1} \tilde{\boldsymbol{W}}_{2} \} + \frac{1}{2} \operatorname{tr} \{ \tilde{\boldsymbol{W}}_{3}^{T} \boldsymbol{\Gamma}_{W_{3}}^{-1} \tilde{\boldsymbol{W}}_{3} \} + \frac{1}{2} \operatorname{tr} \{ \tilde{\boldsymbol{V}}_{3}^{T} \boldsymbol{\Gamma}_{V_{3}}^{-1} \tilde{\boldsymbol{V}}_{3} \}, \quad (14)$$

式中: $\tilde{\rho} = \hat{\rho} - \rho^*$ 为参数估计误差, 其中 $\hat{\rho}$ 的调节律见 式(35); $\tilde{W}_1 = \hat{W}_1 - W_1^*$, $\tilde{V}_1 = \hat{V}_1 - V_1^*$, $\tilde{W}_2 = \hat{W}_2 - W_2^* \pi \tilde{V}_2 = \hat{V}_2 - V_2^*$ 为多层神经网络的权重 估计误差, 并且设计参数

$$\begin{split} \boldsymbol{\varGamma}_{W_1} &= \boldsymbol{\varGamma}_{W_1}^{T} > 0, \ \boldsymbol{\varGamma}_{V_1} = \boldsymbol{\varGamma}_{V_1}^{T} > 0, \\ \boldsymbol{\varGamma}_{W_2} &= \boldsymbol{\varGamma}_{W_2}^{T} > 0, \ \boldsymbol{\varGamma}_{V_2} = \boldsymbol{\varGamma}_{V_2}^{T} > 0; \end{split}$$

tr{ $\tilde{W}_{3}^{T} \Gamma_{W_{3}}^{-1} \tilde{W}_{3}$ }和tr{ $\tilde{V}_{3}^{T} \Gamma_{V_{3}}^{-1} \tilde{V}_{3}$ }的设计主要考虑 到多层神经网络 $W_{3}^{*T} S_{3}(V_{3}^{*T} X_{3}), \hat{W}_{3}^{T} S_{3}(\hat{V}_{3}^{T} X_{3})$ 的动态过程, $\tilde{W}_{3} = \hat{W}_{3} - W_{3}^{*} \pi \tilde{V}_{3} = \hat{V}_{3} - V_{3}^{*}$ 多层神经网络的权重估计误差, $\Gamma_{W_{3}} = \Gamma_{W_{3}}^{T} > 0$, $\Gamma_{V_{3}} = \Gamma_{V_{3}}^{T} > 0$ 为设计参数.

将Lyapunov函数L对时间t求导,可得

$$\dot{L} = \boldsymbol{e}_{x}^{T} \dot{\boldsymbol{e}}_{x} + \boldsymbol{e}_{\theta}^{T} \dot{\boldsymbol{e}}_{\theta} + \hat{\varphi}^{T} \dot{\varphi} + \tilde{\rho} \dot{\tilde{\rho}} +
\operatorname{tr} \{ \tilde{\boldsymbol{W}}_{1}^{T} \boldsymbol{\Gamma}_{W_{1}}^{-1} \dot{\boldsymbol{W}}_{1} \} + \operatorname{tr} \{ \tilde{\boldsymbol{V}}_{1}^{T} \boldsymbol{\Gamma}_{V_{1}}^{-1} \dot{\boldsymbol{V}}_{1} \} +
\operatorname{tr} \{ \tilde{\boldsymbol{W}}_{2}^{T} \boldsymbol{\Gamma}_{W_{2}}^{-1} \dot{\boldsymbol{W}}_{2} \} + \operatorname{tr} \{ \tilde{\boldsymbol{V}}_{2}^{T} \boldsymbol{\Gamma}_{V_{2}}^{-1} \dot{\boldsymbol{V}}_{2} \} +
\operatorname{tr} \{ \tilde{\boldsymbol{W}}_{3}^{T} \boldsymbol{\Gamma}_{W_{3}}^{-1} \dot{\boldsymbol{W}}_{3} \} + \operatorname{tr} \{ \tilde{\boldsymbol{V}}_{3}^{T} \boldsymbol{\Gamma}_{V_{3}}^{-1} \dot{\boldsymbol{V}}_{3} \}. \quad (15)$$

将式(1)(6)(10)代入式
$$\dot{e}_x = \dot{x} - \dot{x}^*$$
,可得

$$\dot{\boldsymbol{e}}_{\mathrm{x}} = g(\boldsymbol{x})\boldsymbol{P}N(\xi)\boldsymbol{\varpi} + \boldsymbol{\varpi} + \boldsymbol{W}_{1}^{*\mathrm{T}}\boldsymbol{S}_{1}(\boldsymbol{V}_{1}^{*\mathrm{T}}\boldsymbol{X}_{1}) -$$

$$m{W}_1^{\,\,1}m{S}_1(m{V}_1^{\,\,1}m{X}_1) - m{K}^{-1}m{T}^{-1}\hat{m{arphi}} + m{\eta} +$$

$$\boldsymbol{Q}\hat{\rho}\boldsymbol{\beta} + \boldsymbol{\Delta}_{1}(t,\boldsymbol{x}) + \boldsymbol{\varepsilon}_{1} + \boldsymbol{\dot{x}}^{*} - \boldsymbol{\dot{x}}^{*}, \qquad (16)$$

式中 $\boldsymbol{\varpi} = \hat{\boldsymbol{W}}_1^{\mathrm{T}} \boldsymbol{S}_1 (\hat{\boldsymbol{V}}_1^{\mathrm{T}} \boldsymbol{X}_1) + \boldsymbol{K}^{-1} \boldsymbol{T}^{-1} \hat{\boldsymbol{\varphi}} - \boldsymbol{\eta} - \boldsymbol{Q} \hat{\rho} \beta - \dot{\hat{\boldsymbol{x}}}^*.$

将式(9)(16)代入式(15),可得

$$\begin{split} \dot{L} &= \\ \mathbf{e}_{\mathbf{x}}^{\mathrm{T}}g(\mathbf{x})\mathbf{P}N(\xi)\boldsymbol{\varpi} + \mathbf{e}_{\mathbf{x}}^{\mathrm{T}}\boldsymbol{\varpi} + \mathbf{e}_{\mathbf{x}}^{\mathrm{T}}\mathbf{W}_{1}^{\mathrm{*T}}\mathbf{S}_{1}(\mathbf{V}_{1}^{\mathrm{*T}}\mathbf{X}_{1}) - \\ \mathbf{e}_{\mathbf{x}}^{\mathrm{T}}\hat{\mathbf{W}}_{1}^{\mathrm{T}}\mathbf{S}_{1}(\hat{\mathbf{V}}_{1}^{\mathrm{T}}\mathbf{X}_{1}) + \mathbf{e}_{\mathbf{x}}^{\mathrm{T}}[-\mathbf{K}^{-1}\mathbf{T}^{-1}\hat{\boldsymbol{\varphi}} + \boldsymbol{\eta} + \\ \mathbf{Q}\hat{\boldsymbol{\rho}}\boldsymbol{\beta} + (\dot{\boldsymbol{x}}^{*} - \dot{\boldsymbol{x}}^{*}) + \boldsymbol{\Delta}_{1}(t, \boldsymbol{x}) + \boldsymbol{\varepsilon}_{1}] - \\ \mathbf{e}_{\theta}^{\mathrm{T}}\boldsymbol{\Lambda}_{\mathrm{m}}\mathbf{e}_{\theta} + \mathbf{e}_{\theta}^{\mathrm{T}}(\boldsymbol{\Lambda} + \boldsymbol{\Lambda}_{\mathrm{m}})\mathbf{e}_{\theta} + \mathbf{e}_{\theta}^{\mathrm{T}}\boldsymbol{\Delta}\boldsymbol{\kappa} + \hat{\boldsymbol{\varphi}}^{\mathrm{T}}\dot{\hat{\boldsymbol{\varphi}}} + \end{split}$$

$$\tilde{\rho}\dot{\tilde{\rho}} + \operatorname{tr}\{\tilde{W}_{1}^{\mathrm{T}}\boldsymbol{\Gamma}_{W_{1}}^{-1}\hat{W}_{1}\} + \operatorname{tr}\{\tilde{V}_{1}^{\mathrm{T}}\boldsymbol{\Gamma}_{V_{1}}^{-1}\hat{V}_{1}\} + \operatorname{tr}\{\tilde{W}_{2}^{\mathrm{T}}\boldsymbol{\Gamma}_{W_{2}}^{-1}\dot{\hat{W}}_{2}\} + \operatorname{tr}\{\tilde{W}_{2}^{\mathrm{T}}\boldsymbol{\Gamma}_{W_{2}}^{-1}\dot{\hat{V}}_{2}\} + \operatorname{tr}\{\tilde{W}_{3}^{\mathrm{T}}\boldsymbol{\Gamma}_{W_{3}}^{-1}\dot{\hat{W}}_{3}\} + \operatorname{tr}\{\tilde{V}_{3}^{\mathrm{T}}\boldsymbol{\Gamma}_{V_{3}}^{-1}\dot{\hat{V}}_{3}\}, \quad (17)$$

$$\vec{\tau} = \boldsymbol{\Lambda} \quad \forall \text{A} \quad \forall \text{A} \quad \mathbf{T} \in \mathbf{S} \quad \forall \text{B} \quad \forall \text{B} \quad \forall \text{B} \quad \mathbf{T} \in \mathbf{T} \quad d \quad \forall \mathbf{T} \quad \mathbf{T}$$

式中 $\Lambda_{\rm m}$ 为对称正定矩阵,即其所有特征值都具有正 实部.

将式(7)-(8)(12)代入式(17), 考虑到引理2, 得

$$\dot{L} \leqslant (\lambda_{g}N(\xi)+1)\dot{\xi} + (\hat{x}^{*T}-x^{*T})g(x)PN(\xi)\varpi + (\hat{x}^{*T}-x^{*T})\varpi - e_{x}^{T}\tilde{W}_{1}^{T}(\hat{S}_{1}-\hat{S}_{1}'\hat{V}_{1}^{T}X_{1}) - e_{x}^{T}\hat{W}_{1}^{T}\hat{S}_{1}'(\tilde{V}_{1}^{T}X_{1}) - e_{x}^{T}d_{u1} - e_{x}^{T}K^{-1}T^{-1}\hat{\varphi} + e_{x}^{T}\hat{W}_{1}^{T}\hat{S}_{1}'(\tilde{V}_{1}^{T}X_{1}) - e_{x}^{T}d_{u1} - e_{x}^{T}K^{-1}T^{-1}\hat{\varphi} + e_{x}^{T}\hat{W}_{2}^{T}\hat{S}_{2}'(\tilde{V}_{2}^{T}X_{2}) + e_{x}^{T}d_{u2} + e_{x}^{T}\Delta_{1} + e_{x}^{T}\varepsilon_{1} - e_{x}^{T}\hat{\psi}_{2}\hat{S}_{2}'(\tilde{V}_{2}^{T}X_{2}) + e_{x}^{T}d_{u2} + e_{x}^{T}\Delta_{1} + e_{x}^{T}\varepsilon_{1} - e_{x}^{T}\varepsilon_{2} - e_{\theta}^{T}\Lambda_{m}e_{\theta} + e_{\theta}^{T}(\Lambda + \Lambda_{m})e_{\theta} + e_{\theta}^{T}\Delta\kappa + \hat{\varphi}^{T}\dot{\varphi} + \tilde{\rho}\dot{\rho} + tr\{\tilde{W}_{1}^{T}\Gamma_{W_{1}}^{-1}\dot{W}_{1}\} + tr\{\tilde{V}_{1}^{T}\Gamma_{V_{1}}^{-1}\dot{V}_{1}\} + tr\{\tilde{V}_{2}^{T}\Gamma_{V_{2}}^{-1}\dot{V}_{2}\} + tr\{\tilde{V}_{2}^{T}\Gamma_{V_{2}}^{-1}\dot{V}_{2}\} + tr\{\tilde{V}_{3}^{T}\Gamma_{V_{3}}^{-1}\dot{V}_{3}\},$$
(18)

式中:

$$\lambda_{
m g} = egin{cases} \lambda_{
m max}(g(oldsymbol{x})oldsymbol{P}), & N(\xi)\dot{\xi} \geqslant 0, \ \lambda_{
m min}(g(oldsymbol{x})oldsymbol{P}), & N(\xi)\dot{\xi} < 0, \end{cases}$$

 $\lambda_{\max}(\cdot)$ 和 $\lambda_{\min}(\cdot)$ 分别表示矩阵"·"的最大特征值和 最小特征值.

将式(4)代入式(18),可得

$$\begin{aligned} \dot{L} \leqslant \\ & (\lambda_{g}N(\xi)+1)\dot{\xi} + (\hat{x}^{*T}-x^{*T})g(x)PN(\xi)\varpi + \\ & (\hat{x}^{*T}-x^{*T})\varpi - e_{x}^{T}\tilde{W}_{1}^{T}(\hat{S}_{1}-\hat{S}_{1}'\hat{V}_{1}^{T}X_{1}) - \\ & e_{x}^{T}\hat{W}_{1}^{T}\hat{S}_{1}'(\tilde{V}_{1}^{T}X_{1}) - e_{x}^{T}d_{u1} - e_{x}^{T}\bar{K}e_{x} + \\ & e_{x}^{T}\bar{K}(\hat{x}^{*}-x^{*}) + e_{x}^{T}\eta + e_{x}^{T}Q\hat{\rho}\beta + \\ & e_{x}^{T}\tilde{W}_{2}^{T}(\hat{S}_{2}-\hat{S}_{2}'\hat{V}_{2}^{T}X_{2}) + e_{x}^{T}\hat{W}_{2}^{T}\hat{S}_{2}'(\tilde{V}_{2}^{T}X_{2}) + \\ & e_{x}^{T}\tilde{W}_{2}^{T}(\hat{S}_{2}-\hat{S}_{2}'\hat{V}_{2}^{T}X_{2}) + e_{x}^{T}\hat{W}_{2}\hat{S}_{2}'(\tilde{V}_{2}^{T}X_{2}) + \\ & e_{x}^{T}\tilde{M}_{u2} + e_{x}^{T}\Delta_{1} + e_{x}^{T}\varepsilon_{1} - e_{x}^{T}\varepsilon_{2} - e_{\theta}^{T}\Lambda_{m}e_{\theta} + \\ & e_{\theta}^{T}(\Lambda + \Lambda_{m})e_{\theta} + e_{\theta}^{T}\Delta\kappa + \hat{\varphi}^{T}\dot{\hat{\varphi}} + \tilde{\rho}\dot{\hat{\rho}} + \\ & tr\{\tilde{W}_{1}^{T}\Gamma_{W_{1}}^{-1}\dot{\hat{W}}_{1}\} + tr\{\tilde{V}_{1}^{T}\Gamma_{V_{1}}^{-1}\dot{\hat{V}}_{1}\} + \\ & tr\{\tilde{W}_{2}^{T}\Gamma_{W_{2}}^{-1}\dot{\hat{W}}_{2}\} + tr\{\tilde{V}_{2}^{T}\Gamma_{V_{2}}^{-1}\dot{\hat{V}}_{2}\} + \\ & tr\{\tilde{W}_{3}^{T}\Gamma_{W_{3}}^{-1}\dot{\hat{W}}_{3}\} + tr\{\tilde{V}_{3}^{T}\Gamma_{V_{3}}^{-1}\dot{\hat{V}}_{3}\}, \end{aligned}$$
(19)
$$\vec{x} \oplus \bar{K} = K^{-1}T^{-1}K.$$

设计权重矩阵 $\hat{W}_1, \hat{V}_1, \hat{W}_2$ 和 \hat{V}_2 的自适应调节律为

$$\hat{\boldsymbol{W}}_{1} = \boldsymbol{\Gamma}_{W_{1}}[(\hat{\boldsymbol{S}}_{1} - \hat{\boldsymbol{S}}_{1}'\hat{\boldsymbol{V}}_{1}^{T}\boldsymbol{X}_{1})(\hat{\boldsymbol{x}}^{*} - \boldsymbol{x})^{T} - \sigma_{W_{1}}\hat{\boldsymbol{W}}_{1}], \qquad (20)$$

$$\hat{\boldsymbol{V}}_{1} = \boldsymbol{\Gamma}_{V_{1}} [\boldsymbol{X}_{1} (\hat{\boldsymbol{S}}_{1}^{'} \hat{\boldsymbol{W}}_{1}^{T} (\hat{\boldsymbol{x}}^{*} - \boldsymbol{x}))^{T} - \sigma_{V_{1}} \hat{\boldsymbol{V}}_{1}], \quad (21)$$

$$\dot{\hat{\boldsymbol{W}}}_{2} = \boldsymbol{\Gamma}_{W_{2}} [(\hat{\boldsymbol{S}}_{2} - \hat{\boldsymbol{S}}_{2}^{'} \hat{\boldsymbol{V}}_{2}^{T} \boldsymbol{X}_{2}) (\hat{\boldsymbol{x}}^{*} - \boldsymbol{x})^{T} - \sigma_{W_{2}} \hat{\boldsymbol{W}}_{2}], \quad (22)$$

 $\dot{\hat{V}}_2 = \boldsymbol{\Gamma}_{V_2}[\boldsymbol{X}_2(\hat{\boldsymbol{S}}_2'\hat{\boldsymbol{W}}_2^T(\hat{\boldsymbol{x}}^* - \boldsymbol{x}))^T - \sigma_{V_2}\hat{\boldsymbol{V}}_2],$ (23) 式中: $\sigma_{W_1} > 0, \sigma_{V_1} > 0, \sigma_{W_2} > 0$ 和 $\sigma_{V_2} > 0$ 为设计 参数.

将式(5)(20)–(23)代入式(19), 并应用矩阵性质 tr{ $\alpha\gamma^{T}$ } = $\gamma^{T}\alpha$,可得

$$\begin{split} \dot{L} \leqslant -\lambda_{\min}(\bar{K}) e_{x}^{T} e_{x} - \lambda_{\min}(T^{-1}) \hat{\varphi}^{T} \hat{\varphi} - \\ \lambda_{\min}(\Lambda_{m}) e_{\theta}^{T} e_{\theta} + (\lambda_{g} N(\xi) + 1) \dot{\xi} + \\ \| \hat{x}^{*} - x^{*} \| \| \overline{w} \| \| g(x) P N(\xi) + I \| + \\ \| \hat{x}^{*} - x^{*} \| \| \tilde{W}_{1}^{T} (\hat{S}_{1} - \hat{S}_{1}^{\prime} \hat{V}_{1}^{T} X_{1}) \| + \\ \| \hat{x}^{*} - x^{*} \| \| \hat{W}_{1}^{T} \hat{S}_{1}^{\prime} (\tilde{V}_{1}^{T} X_{1}) \| + \\ \| x - x^{*} \| \| d_{u1} \| + \| x - x^{*} \| \| \varepsilon_{1} \| + \\ \| x - x^{*} \| \| \hat{x}^{*} - x^{*} \| \| \bar{K} \|_{F} + Q^{T} \eta + \\ \| x - x^{*} \| \| \hat{W}_{2}^{T} (\hat{S}_{2} - \hat{S}_{2}^{\prime} \hat{V}_{2}^{T} X_{2}) \| + \\ \| \hat{x}^{*} - x^{*} \| \| \hat{W}_{2}^{T} \hat{S}_{2}^{\prime} (\tilde{V}_{2}^{T} X_{2}) \| + \\ \| \hat{x}^{*} - x^{*} \| \| \hat{W}_{2}^{T} \hat{S}_{2}^{\prime} (\tilde{V}_{2}^{T} X_{2}) \| + \\ \| x - x^{*} \| \| d_{u2} \| + \| x - x^{*} \| \| \varepsilon_{2} \| + \\ \| x - x^{*} \| \| d_{u2} \| + \| x - x^{*} \| \| \varepsilon_{2} \| + \\ \| x - x^{*} \| \delta_{\Delta} + e_{\theta}^{T} (\Lambda + \Lambda_{m}) e_{\theta} + e_{\theta}^{T} \Delta \kappa + \\ \tilde{\rho} \dot{\rho} - \sigma_{W_{1}} tr \{ \tilde{W}_{1}^{T} \hat{W}_{1} \} - \sigma_{V_{1}} tr \{ \tilde{V}_{1}^{T} \hat{V}_{1} \} - \\ \sigma_{W_{2}} tr \{ \tilde{W}_{2}^{T} \hat{W}_{2} \} - \sigma_{V_{2}} tr \{ \tilde{V}_{2}^{T} \hat{V}_{2} \} + \\ tr \{ \tilde{W}_{3}^{T} \Gamma_{W_{3}}^{-1} \dot{W}_{3} \} + tr \{ \tilde{V}_{3}^{T} \Gamma_{V_{3}}^{-1} \dot{V}_{3} \}. \end{split}$$

由于函数 $e_{\theta}^{T}(\boldsymbol{\Lambda} + \boldsymbol{\Lambda}_{m})e_{\theta} + e_{\theta}^{T}\Delta\boldsymbol{\kappa} + (e_{x}^{T}\boldsymbol{Q} + 1)\hat{\rho}\beta$ 中存在未知的变量和函数,依据多层神经网络 具有的逼近能力,可采用如下理想的多层神经网络 对其进行逼近:

$$\boldsymbol{e}_{\boldsymbol{\theta}}^{\mathrm{T}}(\boldsymbol{\Lambda} + \boldsymbol{\Lambda}_{\mathrm{m}})\boldsymbol{e}_{\boldsymbol{\theta}} + \boldsymbol{e}_{\boldsymbol{\theta}}^{\mathrm{T}}\Delta\boldsymbol{\kappa} + (\boldsymbol{e}_{\mathrm{x}}^{\mathrm{T}}\boldsymbol{Q} + 1)\hat{\rho}\boldsymbol{\beta} = \boldsymbol{W}_{3}^{*\mathrm{T}}\boldsymbol{S}_{3}(\boldsymbol{V}_{3}^{*\mathrm{T}}\boldsymbol{X}_{3}) + \boldsymbol{\varepsilon}_{3}, \qquad (25)$$

式中: $X_3 = [x^T \ y \ \theta^T \ \zeta^T \ \hat{\rho} \ \beta]^T$ 为此多层神经 网络的输入向量, ε_3 为神经网络的逼近误差, 且 $|\varepsilon_3| \leq \varepsilon_{u3}$.

将式(13)和式(25)代入式(24),并根据引理1,可得 *L* ≤

$$\begin{aligned} &-\lambda_{\min}(\bar{K})\boldsymbol{e}_{x}^{\mathrm{T}}\boldsymbol{e}_{x}-\lambda_{\min}(\boldsymbol{T}^{-1})\hat{\boldsymbol{\varphi}}^{\mathrm{T}}\hat{\boldsymbol{\varphi}}-\\ &\lambda_{\min}(\boldsymbol{\Lambda}_{\mathrm{m}})\boldsymbol{e}_{\theta}^{\mathrm{T}}\boldsymbol{e}_{\theta}+(\lambda_{\mathrm{g}}N(\xi)+1)\dot{\xi}+\\ &\|\hat{\boldsymbol{x}}^{*}-\boldsymbol{x}^{*}\|\|\boldsymbol{\varpi}\|\|\boldsymbol{g}(\boldsymbol{x})\boldsymbol{P}N(\xi)+\boldsymbol{I}\|+\\ &\|\hat{\boldsymbol{x}}^{*}-\boldsymbol{x}^{*}\|\|\tilde{\boldsymbol{W}}_{1}^{\mathrm{T}}(\hat{\boldsymbol{S}}_{1}-\hat{\boldsymbol{S}}_{1}'\hat{\boldsymbol{V}}_{1}^{\mathrm{T}}\boldsymbol{X}_{1})\|+\\ &\|\hat{\boldsymbol{x}}^{*}-\boldsymbol{x}^{*}\|\|\tilde{\boldsymbol{W}}_{1}^{\mathrm{T}}\hat{\boldsymbol{S}}_{1}'(\tilde{\boldsymbol{V}}_{1}^{\mathrm{T}}\boldsymbol{X}_{1})\|+\|\boldsymbol{x}-\boldsymbol{x}^{*}\|\|\boldsymbol{\varepsilon}_{1}\|+\\ &\|\boldsymbol{x}-\boldsymbol{x}^{*}\|\|\boldsymbol{d}_{\mathrm{u1}}\|+\|\boldsymbol{x}-\boldsymbol{x}^{*}-\boldsymbol{Q}\|\|\boldsymbol{\eta}\|+\end{aligned}$$

$$\begin{split} \|x - x^*\| \|\hat{w}^* - x^*\| \|\bar{K}\|_{\rm F} + \\ \|\hat{x}^* - x^*\| \|\hat{W}_2^{\rm T}(\hat{S}_2 - \hat{S}_2'\hat{V}_2^{\rm T}X_2)\| + \\ \|\hat{x}^* - x^*\| \|\hat{W}_2^{\rm T}\hat{S}_2'(\tilde{V}_2^{\rm T}X_2)\| + \\ \|x - x^*\| \|d_{u2}\| + \|x - x^*\| \|\varepsilon_2\| + \\ \|x - x^*\| \|d_{u2}\| + \|x - x^*\| \|\varepsilon_2\| + \\ \|x - x^*\| \|\delta_{\Delta} - \hat{\rho}\beta - \hat{W}_3^{\rm T}(\hat{S}_3 - \hat{S}_3'\hat{V}_3^{\rm T}X_3) - \\ \bar{W}_3^{\rm T}\hat{S}_3'(\tilde{V}_3^{\rm T}X_3) - d_{u3} + \varepsilon_3 + \hat{\rho}\hat{\rho} - \\ \sigma_{W_1} tr\{\tilde{W}_1^{\rm T}\hat{W}_1\} - \sigma_{V_1} tr\{\tilde{V}_1^{\rm T}\hat{V}_1\} - \\ &d_{W_2} tr\{\tilde{W}_2^{\rm T}\hat{W}_2\} - \sigma_{V_2} tr\{\tilde{V}_2^{\rm T}\hat{V}_2\} + \\ tr\{\tilde{W}_3^{\rm T}\Gamma_{W_3}^{\rm H}\hat{W}_3\} + tr\{\tilde{V}_3^{\rm T}\Gamma_{V_3}^{\rm H}\hat{V}_3\} - (26) \\ &\partial_1 \partial_2 \partial_1 R_{W_3} [(\hat{S}_3 - \hat{S}_3'\hat{V}_3^{\rm T}X_3) - \sigma_{W_3}\hat{W}_3], (27) \\ &\dot{V}_3 = \Gamma_{W_3} [(\hat{S}_3 - \hat{S}_3'\hat{V}_3^{\rm T}X_3) - \sigma_{W_3}\hat{W}_3], (27) \\ &\dot{V}_3 = \Gamma_{V_3} [X_3(\hat{S}_3'\hat{W}_3)^{\rm T} - \sigma_{V_3}\hat{V}_3], (28) \\ &d^{\rm th} x = x_{W_3} [(\hat{S}_3 - \hat{S}_3'\hat{V}_3^{\rm T}X_3) - \sigma_{W_3}\hat{W}_3], (27) \\ &\dot{V}_3 = \Gamma_{V_3} [X_3(\hat{S}_3'\hat{W}_3)^{\rm T} - \sigma_{V_3}\hat{V}_3], (28) \\ &d^{\rm th} x = r_{W_3} [(\hat{S}_3 - \hat{S}_3'\hat{V}_3^{\rm T}X_3) - \sigma_{W_3}\hat{W}_3], (27) \\ &\dot{V}_3 = \Gamma_{V_3} [X_3(\hat{S}_3'\hat{W}_3]^{\rm T} - \sigma_{V_3}\hat{V}_3], (28) \\ &d^{\rm th} x = r_{W_3} [(\hat{G}_1 - \hat{S}_1'\hat{V}_1^{\rm T}X_3)] + \\ &d^{\rm th} x = r_{W_3} [(\hat{G}_1 - \hat{S}_1'\hat{V}_1^{\rm T}X_1)] \\ &\dot{V}_3 = \Gamma_{V_3} [X_3(\hat{C}_3, \hat{H}^{\rm T}\hat{S}_1(\hat{C}_1, \hat{H}^{\rm T}\hat{S}_1)] \\ &\dot{V}_3 = r_{W_3} [(\hat{G}\|PN(\xi)\| + 1) \hat{\xi} + \\ &\|\hat{x}^* - x^*\|\|\hat{W}_1^{\rm T}\hat{S}_1'(\hat{V}_1^{\rm T}X_1)\| + \\ &\|\hat{x}^* - x^*\|\|\hat{W}_1^{\rm T}\hat{S}_1'(\hat{V}_1^{\rm T}X_1)\| \\ &\|\hat{x}^* - x^*\|\|\hat{W}_1^{\rm T}\hat{S}_1'(\hat{V}_1^{\rm T}X_1)\| \\ &\|\hat{x}^* - x^*\|\|\hat{W}_2^{\rm T}\hat{S}_2'(\hat{V}_2^{\rm T}X_2)\| \\ &\|\hat{x}^* - x^*\|\|\hat{W}_2^{\rm T}\hat{S}_2'(\hat{V}_2^{\rm T}X_2)\| \\ &\|\hat{x}^* - x^*\|\|\hat{W}_2^{\rm T}\hat{S}_2'(\hat{V}_2^{\rm T}X_2)\| \\ &\|\hat{x}^* - x^*\|\|\hat{W}_2^{\rm T}\hat{S}_1(\hat{V}_1^{\rm T}X_3)\|_F \\ &\|\hat{w}^* - x^*\|\|\hat{W}_1^{\rm T}\hat{S$$

$$\begin{split} &-\sigma_{\mathrm{W}_{1}}\mathrm{tr}\{\tilde{\boldsymbol{W}}_{1}^{\mathrm{T}}\hat{\boldsymbol{W}}_{1}\} \leqslant \frac{\sigma_{\mathrm{W}_{1}}\|\boldsymbol{W}_{1}^{*}\|_{\mathrm{F}}^{2}}{2} - \frac{\sigma_{\mathrm{W}_{1}}\|\tilde{\boldsymbol{W}}_{1}\|_{\mathrm{F}}^{2}}{2}, \\ &-\sigma_{\mathrm{V}_{1}}\mathrm{tr}\{\tilde{\boldsymbol{V}}_{1}^{\mathrm{T}}\hat{\boldsymbol{V}}_{1}\} \leqslant \frac{\sigma_{\mathrm{V}_{1}}\|\boldsymbol{V}_{1}^{*}\|_{\mathrm{F}}^{2}}{2} - \frac{\sigma_{\mathrm{V}_{1}}\|\tilde{\boldsymbol{V}}_{1}\|_{\mathrm{F}}^{2}}{2}, \\ &-\sigma_{\mathrm{W}_{2}}\mathrm{tr}\{\tilde{\boldsymbol{W}}_{2}^{\mathrm{T}}\hat{\boldsymbol{W}}_{2}\} \leqslant \frac{\sigma_{\mathrm{W}_{2}}\|\boldsymbol{W}_{2}^{*}\|_{\mathrm{F}}^{2}}{2} - \frac{\sigma_{\mathrm{W}_{2}}\|\tilde{\boldsymbol{W}}_{2}\|_{\mathrm{F}}^{2}}{2}, \\ &-\sigma_{\mathrm{V}_{2}}\mathrm{tr}\{\tilde{\boldsymbol{V}}_{2}^{\mathrm{T}}\hat{\boldsymbol{V}}_{2}\} \leqslant \frac{\sigma_{\mathrm{V}_{2}}\|\boldsymbol{V}_{2}^{*}\|_{\mathrm{F}}^{2}}{2} - \frac{\sigma_{\mathrm{V}_{2}}\|\tilde{\boldsymbol{V}}_{2}\|_{\mathrm{F}}^{2}}{2}, \end{split}$$

$-\sigma_{\mathrm{W}_3}\mathrm{tr}\{ ilde{oldsymbol{W}}_3^{\mathrm{T}}\hat{oldsymbol{W}}_3\}\leqslantrac{\sigma_{\mathrm{W}_3}\ oldsymbol{W}_3^*\ _{\mathrm{F}}^2}{2}-rac{\sigma_{\mathrm{W}_3}\ ilde{oldsymbol{W}}_3\ _{\mathrm{F}}^2}{2},$
$-\sigma_{\mathrm{V}_3}\mathrm{tr}\{ ilde{oldsymbol{V}}_3^{\mathrm{T}}\hat{oldsymbol{V}}_3\}\leqslantrac{\sigma_{\mathrm{V}_3}\ oldsymbol{V}_3^{\mathrm{T}}\ _{\mathrm{F}}^2}{2}-rac{\sigma_{\mathrm{V}_3}\ oldsymbol{ ilde{V}}_3\ _{\mathrm{F}}^2}{2},$
$\ oldsymbol{V}_3^*\ _{ ext{F}}\ \hat{oldsymbol{W}}_3^{ ext{T}}\hat{oldsymbol{S}'}_3\ _{ ext{F}}\ oldsymbol{X}_3\ \leqslant$
$\frac{\ \hat{\bm{W}}_{3}^{\mathrm{T}}\hat{\bm{S}'}_{3}\ _{\mathrm{F}}^{2}\ \bm{X}_{3}\ ^{2}}{+}\frac{\mu_{1}\ \bm{V}_{3}^{*}\ _{\mathrm{F}}^{2}}$
μ_1 4 '
$\ oldsymbol{W}_3^*\ _{\mathrm{F}}\ oldsymbol{S}_3'(oldsymbol{V}_3^{-1}oldsymbol{X}_3)\ _{\mathrm{F}}\leqslant$
$\frac{\ \boldsymbol{S}_{3}'(\boldsymbol{V}_{3}^{T}\boldsymbol{X}_{3})\ _{\mathrm{F}}^{2}}{\mu} + \frac{\mu_{1}\ \boldsymbol{W}_{3}^{*}\ _{\mathrm{F}}^{2}}{4},$
μ_1 4 μ_1 μ_1 μ_1 μ_2 $\mu_1 \varepsilon_2^2$
$\ \boldsymbol{W}_{3}^{*}\ _{\mathrm{F}}\sqrt{l}+\varepsilon_{\mathrm{u}3}\leqslant\frac{-}{\mu_{1}}+\frac{-\mu_{1}}{4}+\frac{-\mu_{1}}{4}+\frac{-\mu_{1}}{4},$
$\ m{x}-m{x}^*-m{Q}\ \ m{\eta}\ \leqslant$
$\frac{\mu_1 \ \bm{W}_3^{\scriptscriptstyle T} \ _{\rm F}^2}{4 \ \bm{O} \ } + \frac{(\ \bm{x} - \bm{Q} \ + \bm{X}_{\rm upper})^2 \ \bm{S}_3 (\bm{V}_3^{\scriptscriptstyle T} \bm{X}_3) \ _{\rm F}^2}{\ \bm{O} \ },$
$4\ \mathbf{Q}\ $ $\mu_1\ \mathbf{Q}\ $ 式中 $\mu_1 > 0$ 为取值较小的设计会数
$\dot{L} \leqslant -\lambda_{\min}(ar{K}) e_{*}^{T} e_{*} - \lambda_{\min}(T^{-1}) \hat{\varphi}^{T} \hat{\varphi} -$
$\lambda_{\min}(\mathbf{\Lambda}_{\mathrm{m}}) e_{\mathbf{\theta}}^{\mathrm{T}} e_{\mathbf{\theta}} + (\lambda_{\mathrm{g}} N(\xi) + 1) \dot{\xi} +$
$\ \hat{x}^* - x^*\ \ \varpi\ (G\ PN(\xi)\ + 1) +$
$\ \hat{m{x}}^* - m{x}^*\ \ ilde{m{W}}_1^{ ext{T}}(\hat{m{S}}_1 - \hat{m{S}}_1' \hat{m{V}}_1^{ ext{T}} m{X}_1)\ +$
$\ \hat{m{x}}^* - m{x}^*\ \ \hat{m{W}}_1^{ ext{T}}\hat{m{S}}_1'(ilde{m{V}}_1^{ ext{T}}m{X}_1)\ +$
$\ {\bm x} - {\bm x}^*\ \ {\bm d}_{\rm u1}\ + \ {\bm x} - {\bm x}^*\ \ {\bm \varepsilon}_1\ +$
$\ m{x}-m{x}^*\ \ \hat{m{x}}^*-m{x}^*\ \ ar{m{K}}\ _{ ext{F}}+$
$\ \hat{m{x}}^*-m{x}^*\ \ ilde{m{W}}_2^{ ext{T}}(\hat{m{S}}_2-\hat{m{S}}_2'\hat{m{V}}_2^{ ext{T}}m{X}_2)\ +$
$\ \hat{m{x}}^* - m{x}^*\ \ \hat{m{W}}_2^{ ext{T}}\hat{m{S}}_2'(ilde{m{V}}_2^{ ext{T}}m{X}_2)\ +$
$\ {\bm x} - {\bm x}^*\ \ {\bm d}_{\mathrm{u2}}\ + \ {\bm x} - {\bm x}^*\ \ {\bm \varepsilon}_2\ +$
$\ oldsymbol{x}-oldsymbol{x}^*\ \delta_{arDelta}-\hat hoeta+ ilde ho ilde{ ho}+$
$\frac{\ \hat{\bm{W}}_{3}^{\mathrm{T}}\hat{\bm{S}'}_{3}\ _{\mathrm{F}}^{2}\ \bm{X}_{3}\ ^{2}}{+}\frac{\mu_{1}\ \bm{V}_{3}^{*}\ _{\mathrm{F}}^{2}}{+}$
μ_1 4
$\frac{\ \boldsymbol{S}_{3}(\boldsymbol{V}_{3}^{*}\boldsymbol{X}_{3})\ _{\mathrm{F}}^{2}}{\mu_{1}} + \frac{\mu_{1}\ \boldsymbol{W}_{3}^{*}\ _{\mathrm{F}}^{2}}{4} + \frac{2}{\mu_{2}} + \frac{2}{\mu_{3}}$
$\mu_1 = \mu_1 \mu_1 \mu_2 \mu_1 \epsilon_{12}^2 \mu_1 \ \hat{\boldsymbol{W}}_2^T \ _{\mathrm{F}}^2$
$\frac{1}{4} + \frac{1}{4} + \frac{1}$
$rac{ m{x}-m{Q} +m{X}_{ ext{upper}})^2\ m{S}_3(\hat{m{V}}_3^{ ext{ T}}m{X}_3)\ _{ ext{F}}^2}{ m{x}-m{Q} +m{X}_3)^2}$
$\mu_1 \ oldsymbol{Q} \ $
$rac{\sigma_{\mathrm{W}_1} \ m{W}_1^*\ _{\mathrm{F}}^2}{2} - rac{\sigma_{\mathrm{W}_1} \ m{W}_1\ _{\mathrm{F}}^2}{2} + rac{\sigma_{\mathrm{V}_1} \ m{V}_1^*\ _{\mathrm{F}}^2}{2} - $
$rac{\sigma_{\mathrm{V}_1} \ ilde{m{V}}_1 \ _{\mathrm{F}}^2}{\ ilde{m{V}}_1 \ _{\mathrm{F}}^2} + rac{\sigma_{\mathrm{W}_2} \ m{W}_2^* \ _{\mathrm{F}}^2}{\ \sigma_{\mathrm{W}_2} \ _{\mathrm{F}}^2} - rac{\sigma_{\mathrm{W}_2} \ m{ ilde{m{W}}}_2 \ _{\mathrm{F}}^2}{\ m{ ilde{m{W}}}_2 \ _{\mathrm{F}}^2} + $
2 2 2 2
$-\frac{\sigma_{\rm V_2} \ {\bm v}_2 \ _{\rm F}}{2} - \frac{\sigma_{\rm V_2} \ {\bm v}_2 \ _{\rm F}}{2} + \frac{\sigma_{\rm W_3} \ {\bm w}_3 \ _{\rm F}}{2} -$
$\frac{\sigma_{\mathrm{W}_{3}} \ \tilde{\boldsymbol{W}}_{3}\ _{\mathrm{F}}^{2}}{\ \tilde{\boldsymbol{W}}_{3}\ _{\mathrm{F}}^{2}} + \frac{\sigma_{\mathrm{V}_{3}} \ \boldsymbol{V}_{3}^{*}\ _{\mathrm{F}}^{2}}{ \sigma_{\mathrm{V}_{3}} \ \tilde{\boldsymbol{V}}_{3}\ _{\mathrm{F}}^{2}} = \frac{\sigma_{\mathrm{V}_{3}} \ \tilde{\boldsymbol{V}}_{3}\ _{\mathrm{F}}^{2}}{(30)}$
2 2 2 2 (50)

$$\begin{split} \bar{\varepsilon} \chi \gg & \phi^* \pi \beta \beta \\ \rho^* &= \max\{\|\hat{x}^* - x^*\| \|\varpi \| (G\|PN(\xi)\| + 1), \\ \|\hat{x}^* - x^*\| \|\hat{W}_1^{\mathrm{T}}(\hat{S}_1 - \hat{S}_1'\hat{V}_1^{\mathrm{T}}X_1)\|, \\ \|\hat{x}^* - x^*\| \|\hat{W}_1^{\mathrm{T}}\hat{S}_1'(\tilde{V}_1^{\mathrm{T}}X_1)\|, \\ \|x - x^*\| \|\hat{w}_1^{\mathrm{T}}\hat{S}_1'(\tilde{V}_1^{\mathrm{T}}X_1)\|, \\ \|x - x^*\| \|\hat{w}_2^{\mathrm{T}}\hat{S}_2 - \hat{S}_2'\hat{V}_2^{\mathrm{T}}X_2)\|, \\ \|\hat{x}^* - x^*\| \|\hat{W}_2^{\mathrm{T}}\hat{S}_2'(\tilde{V}_2^{\mathrm{T}}X_2)\|, \\ \|\hat{x}^* - x^*\| \|\hat{W}_2^{\mathrm{T}}\hat{S}_1'(\tilde{V}_1^{\mathrm{T}}X_3)\|_{\mathrm{F}}^2, \\ \|w_3^*\|_{\mathrm{F}}^2, \|\hat{W}_3^{\mathrm{T}}\hat{S}_3'\|_{\mathrm{F}}^2 \|W_3^*\|_{\mathrm{F}}^2, \\ \|W_3^*\|_{\mathrm{F}}^2, \hat{\varepsilon}_{u3}^*, \|\hat{W}_3^{\mathrm{T}}\hat{S}_1'\|_{\mathrm{F}}^2, \\ \|W_3^*\|_{\mathrm{F}}^2, \hat{\varepsilon}_{u3}^*, \|\hat{W}_3^{\mathrm{T}}\|_{\mathrm{F}}^2, \\ (\|x - Q\| + X_{\mathrm{upper}})^2 \|S_3(\hat{V}_3^{\mathrm{T}}X_3)\|_{\mathrm{F}}^2\}, \\ (\|x - Q\| + X_{\mathrm{upper}})^2 \|S_3(\hat{V}_3^{\mathrm{T}}X_3)\|_{\mathrm{F}}^2\}, \quad (31) \\ \gamma &= \max\{1, \|\bar{K}\|_{\mathrm{F}}, \frac{1}{\mu_1}, \frac{\mu_1}{4}, \frac{\mu_1}{4\|Q\|}, \frac{1}{\mu_1\|Q\|}\}, \quad (32) \\ \beta &= 19\gamma. \\ (33) \\ \Re \pi(31)(33) \\ \Re \pi(31)(33) \\ \Re \lambda \pi(30), \overline{\Pi} \\ \dot{E} \\ \dot{L} \leqslant \\ -\lambda_{\min}(\bar{K})e_{\theta}^{\mathrm{T}}e_{\theta} - \lambda_{\min}(T^{-1})\hat{\varphi}^{\mathrm{T}}\hat{\varphi} - \\ \lambda_{\min}(\bar{A}_{\mathrm{m}})e_{\theta}^{\mathrm{T}}e_{\theta} + (\lambda_g N(\xi) + 1)\dot{\xi} - \hat{\rho}\beta + \\ \tilde{\rho}\dot{\hat{\rho}} + \rho^*\beta - \frac{\sigma_{\mathrm{W}_1}\|\tilde{W}_1\|_{\mathrm{F}}^2}{2} - \frac{\sigma_{\mathrm{W}_3}\|\tilde{W}_3\|_{\mathrm{F}}^2}{2} - \\ \frac{\sigma_{\mathrm{W}_2}\|\tilde{W}_2\|_{\mathrm{F}}^2}{2} - \frac{\sigma_{\mathrm{V}_2}\|\tilde{V}_2\|_{\mathrm{F}}^2}{2} + \frac{\sigma_{\mathrm{W}_3}\|W_3\|_{\mathrm{F}}^2}{2} + \\ \frac{\sigma_{\mathrm{V}_1}\|V_1^*\|_{\mathrm{F}}^2}{2} + \frac{\sigma_{\mathrm{W}_2}\|W_2^*\|_{\mathrm{F}}^2}{2} + \frac{\sigma_{\mathrm{V}_2}\|V_2^*\|_{\mathrm{F}}^2}{2} + \\ \end{array}$$

设计参数ρ的调节律为

 $\frac{\sigma_{\mathrm{W}_3} \| \bm{W}_3^* \|_{\mathrm{F}}^2}{2} + \frac{\sigma_{\mathrm{V}_3} \| \bm{V}_3^* \|_{\mathrm{F}}^2}{2}.$

$$\dot{\hat{\rho}} = -\mu_2 \hat{\rho} + \beta, \qquad (35)$$

(34)

式中 $\mu_2 > 0$ 为设计参数.

同时,考虑到如下不等式条件:

$$-\mu_2 \tilde{\rho} \hat{\rho} \leqslant \frac{\mu_2 {\rho^*}^2}{2} - \frac{\mu_2 \tilde{\rho}^2}{2}.$$
 (36)
将式(35)-(36)代入式(34) 可得

$$\begin{split} \dot{L} &\leqslant -\lambda_{\min}(\bar{K}) \boldsymbol{e}_{x}^{\mathrm{T}} \boldsymbol{e}_{x} - \lambda_{\min}(\boldsymbol{T}^{-1}) \hat{\boldsymbol{\varphi}}^{\mathrm{T}} \hat{\boldsymbol{\varphi}} - \\ &\lambda_{\min}(\boldsymbol{\Lambda}_{\mathrm{m}}) \boldsymbol{e}_{\theta}^{\mathrm{T}} \boldsymbol{e}_{\theta} + (\lambda_{\mathrm{g}} N(\xi) + 1) \dot{\xi} - \\ &\frac{\mu_{2} \tilde{\rho}^{2}}{2} - \frac{\sigma_{\mathrm{W}_{1}} \| \tilde{\boldsymbol{W}}_{1} \|_{\mathrm{F}}^{2}}{2} - \frac{\sigma_{\mathrm{V}_{1}} \| \tilde{\boldsymbol{V}}_{1} \|_{\mathrm{F}}^{2}}{2} - \\ &\frac{\sigma_{\mathrm{W}_{2}} \| \tilde{\boldsymbol{W}}_{2} \|_{\mathrm{F}}^{2}}{2} - \frac{\sigma_{\mathrm{V}_{2}} \| \tilde{\boldsymbol{V}}_{2} \|_{\mathrm{F}}^{2}}{2} - \frac{\sigma_{\mathrm{W}_{3}} \| \tilde{\boldsymbol{W}}_{3} \|_{\mathrm{F}}^{2}}{2} - \end{split}$$

$$\frac{\sigma_{\mathrm{V}_{3}} \|\tilde{\boldsymbol{V}}_{3}\|_{\mathrm{F}}^{2}}{2} + \frac{\mu_{2}\rho^{*2}}{2} + \frac{2}{\mu_{1}} + \frac{\sigma_{\mathrm{W}_{1}} \|\boldsymbol{W}_{1}^{*}\|_{\mathrm{F}}^{2}}{2} + \frac{\sigma_{\mathrm{V}_{2}} \|\boldsymbol{V}_{2}^{*}\|_{\mathrm{F}}^{2}}{2} + \frac{\sigma_{\mathrm{V}_{2}} \|\boldsymbol{W}_{2}^{*}\|_{\mathrm{F}}^{2}}{2} + \frac{\sigma_{\mathrm{W}_{3}} \|\boldsymbol{W}_{3}^{*}\|_{\mathrm{F}}^{2}}{2} + \frac{\sigma_{\mathrm{W}_{3}} \|\boldsymbol{W}_{3}^{*}\|_{\mathrm{F}}^{2}}{2} \leq -k_{\Sigma}L + (\lambda_{\mathrm{g}}N(\xi) + 1)\dot{\xi} + b_{\Sigma}, \quad (37)$$

式中:

$$\begin{split} k_{\Sigma} &= \min\{2\lambda_{\min}(\bar{\boldsymbol{K}}), 2\lambda_{\min}(\boldsymbol{T}^{-1}), 2\lambda_{\min}(\boldsymbol{\Lambda}_{\mathrm{m}}), \\ \mu_{2}, \frac{\sigma_{\mathrm{W}_{1}}}{\lambda_{\max}(\boldsymbol{\Gamma}_{\mathrm{W}_{1}}^{-1})}, \frac{\sigma_{\mathrm{V}_{1}}}{\lambda_{\max}(\boldsymbol{\Gamma}_{\mathrm{V}_{1}}^{-1})}, \frac{\sigma_{\mathrm{W}_{2}}}{\lambda_{\max}(\boldsymbol{\Gamma}_{\mathrm{W}_{2}}^{-1})}, \\ &= \frac{\sigma_{\mathrm{V}_{2}}}{\lambda_{\max}(\boldsymbol{\Gamma}_{\mathrm{V}_{2}}^{-1})}, \frac{\sigma_{\mathrm{W}_{3}}}{\lambda_{\max}(\boldsymbol{\Gamma}_{\mathrm{W}_{3}}^{-1})}, \frac{\sigma_{\mathrm{V}_{3}}}{\lambda_{\max}(\boldsymbol{\Gamma}_{\mathrm{V}_{3}}^{-1})}\}, \\ b_{\Sigma} &= \frac{\mu_{2}\rho^{*2}}{2} + \frac{2}{\mu_{1}} + \frac{\sigma_{\mathrm{W}_{1}}\|\boldsymbol{W}_{1}^{*}\|_{\mathrm{F}}^{2}}{2} + \\ &= \frac{\sigma_{\mathrm{V}_{1}}\|\boldsymbol{V}_{1}^{*}\|_{\mathrm{F}}^{2}}{2} + \frac{\sigma_{\mathrm{W}_{2}}\|\boldsymbol{W}_{2}^{*}\|_{\mathrm{F}}^{2}}{2} + \frac{\sigma_{\mathrm{V}_{2}}\|\boldsymbol{V}_{2}^{*}\|_{\mathrm{F}}^{2}}{2} + \\ &= \frac{\sigma_{\mathrm{W}_{3}}\|\boldsymbol{W}_{3}^{*}\|_{\mathrm{F}}^{2}}{2} + \frac{\sigma_{\mathrm{V}_{3}}\|\boldsymbol{V}_{3}^{*}\|_{\mathrm{F}}^{2}}{2} \end{split}$$

为有界常数.

在式(37)两端乘以e^{k_Σt},则有

$$\frac{\mathrm{d}}{\mathrm{d}t}(L(t)\mathrm{e}^{k_{\Sigma}t}) \leqslant
b_{\Sigma}\mathrm{e}^{k_{\Sigma}t} + \lambda_{\mathrm{g}}N(\xi)\dot{\xi}\mathrm{e}^{k_{\Sigma}t} + \dot{\xi}\mathrm{e}^{k_{\Sigma}t}.$$
(38)

对式(38)在[0,t]上进行积分,可得

$$L(t) \leqslant L(0) + b'_{\Sigma} + e^{-k_{\Sigma}t} \int_{0}^{t} (\lambda_{g}N(\xi) + 1)\dot{\xi}e^{k_{\Sigma}\tau}d\tau, \quad (39)$$

式中 $b'_{\Sigma} = \frac{b_{\Sigma}}{k_{\Sigma}}$. 显然,根据Nussbaum函数的引理1可得结论: *L*, $\xi, \int_{0}^{t} (\lambda_{g}N(\xi) + 1)\dot{\xi}d\tau, e_{x}, \hat{\varphi}, e_{\theta}, \tilde{\rho}$ 等系统的闭环 解在[0, *t*_f)上均是一致最终有界的. 假设 $\int_{0}^{t} |(\lambda_{g}N(\xi) + 1)\dot{\xi}|d\tau \leq c_{u}, 则有如下不等$

式成立:

$$e^{-k_{\Sigma}t} \int_{0}^{t} (\lambda_{g}N(\xi) + 1)\dot{\xi}e^{k_{\Sigma}\tau}d\tau \leq \int_{0}^{t} |(\lambda_{g}N(\xi) + 1)\dot{\xi}|e^{k_{\Sigma}(\tau-t)}d\tau \leq \int_{0}^{t} |(\lambda_{g}N(\xi) + 1)\dot{\xi}|d\tau \leq c_{u}.$$
(40)

将式(40)代入式(39),可得

$$L(t) \leqslant L(0) + b'_{\Sigma} + c_{u}. \tag{41}$$

定义

$$\lambda_{\min}(\boldsymbol{\Gamma}_{W}^{-1}) = \\ \min\{\lambda_{\min}(\boldsymbol{\Gamma}_{W_{1}}^{-1}), \lambda_{\min}(\boldsymbol{\Gamma}_{W_{2}}^{-1}), \lambda_{\min}(\boldsymbol{\Gamma}_{W_{3}}^{-1})\}, (42) \\ \lambda_{\min}(\boldsymbol{\Gamma}_{V}^{-1}) =$$

$$\min\{\lambda_{\min}(\boldsymbol{\Gamma}_{V_{1}}^{-1}), \lambda_{\min}(\boldsymbol{\Gamma}_{V_{2}}^{-1}), \lambda_{\min}(\boldsymbol{\Gamma}_{V_{3}}^{-1})\}.$$
(43)
考虑到式(14),可得
$$\|\boldsymbol{x} - \boldsymbol{x}^{*}\|^{2} = \|\boldsymbol{e}_{x}\|^{2} \leq 2(L(0) + b_{\Sigma}' + c_{u}),$$
(44)
$$\|\boldsymbol{\theta} - \boldsymbol{\theta}^{*}\|^{2} = \|\boldsymbol{e}_{\theta}\|^{2} \leq 2(L(0) + b_{\Sigma}' + c_{u}),$$
(45)
$$\|\hat{\boldsymbol{\varphi}}\|^{2} \leq 2(L(0) + b_{\Sigma}' + c_{u}),$$
(46)

$$\sum_{i=1}^{3} \|\tilde{\boldsymbol{W}}_{i}\|_{\rm F}^{2} \leqslant \frac{2(L(0) + b_{\Sigma}' + c_{\rm u})}{\lambda_{\min}(\boldsymbol{\Gamma}_{\rm W}^{-1})},\tag{48}$$

$$\sum_{i=1}^{3} \|\tilde{\boldsymbol{V}}_{i}\|_{\mathrm{F}}^{2} \leqslant \frac{2(L(0) + b_{\Sigma}' + c_{\mathrm{u}})}{\lambda_{\min}(\boldsymbol{\Gamma}_{V}^{-1})}.$$
(49)

由式(41)(44)-(49)可知此闭环系统的所有误差信 号均有界.采用此神经网络自适应协同控制方法构 成的闭环系统结构图,如图2所示.

图 2 基于神经网络自适应协同控制构成的闭环系统结构图 Fig. 2 The scheme of closed-loop system based on neural network adaptive synergetic control

基于上述推导,可得如下结论:

定理1 针对仿射型多变量极值搜索系统模型(1),在满足假设1-4的前提下,设计神经网络自适应协同控制律u如式(10)所示,则此极值搜索系统的状态跟踪误差 e_x 、搜索误差 e_{θ} 、流形估计值 $\hat{\varphi}$ 、参数估计误差 $\hat{\rho}$ 以及神经网络的各参数估计误差均有界,且指数收敛至原点的一个有界邻域 Ω ,其中 Ω 为

$$\Omega = \{ \boldsymbol{e}_{\mathrm{x}}, \boldsymbol{e}_{\theta}, \hat{\boldsymbol{\varphi}}, \tilde{\rho}, \boldsymbol{W}_{1}, \boldsymbol{V}_{1}, \boldsymbol{W}_{2}, \boldsymbol{V}_{2}, \boldsymbol{W}_{3}, \boldsymbol{V}_{3} | \\
\| \boldsymbol{e}_{\mathrm{x}} \|^{2} \leqslant 2\bar{L}, \| \boldsymbol{e}_{\theta} \|^{2} \leqslant 2\bar{L}, \| \hat{\boldsymbol{\varphi}} \|^{2} \leqslant 2\bar{L}, \\
\tilde{\rho}^{2} \leqslant 2\bar{L}, \sum_{i=1}^{3} \| \tilde{\boldsymbol{W}}_{i} \|_{\mathrm{F}}^{2} \leqslant \frac{2\bar{L}}{\lambda_{\min}(\boldsymbol{\Gamma}_{\mathrm{W}}^{-1})}, \\
\sum_{i=1}^{3} \| \tilde{\boldsymbol{V}}_{i} \|_{\mathrm{F}}^{2} \leqslant \frac{2\bar{L}}{\lambda_{\min}(\boldsymbol{\Gamma}_{V}^{-1})} \},$$
(50)

式中 $\overline{L} = L(0) + b'_{\Sigma} + c_{\mathrm{u}}.$

注 2 图2中的极值搜索控制是以被控对象的输出 量y为输入,搜索变量θ为输出,其中极值搜索控制方法可以 采用基于正弦激励函数的极值搜索控制方法^[15]、滑模极 值搜索控制方法^[16]和退火递归神经网络极值搜索控制方 法^[17]等3种.在这3种方法中,以基于正弦激励函数的极值 搜索控制方法设计最简单,但相对退火递归神经网络极值 搜索控制方法而言,搜索能力和动态性能都较弱.在本文仿 真算例中,采用基于正弦激励函数的极值搜索控制方法.

注 3 通过定理1可知, 状态跟踪误差、搜索误差以及 参数估计误差等收敛至原点的有界邻域大小可以通过调节 参数 Γ_{W_1} , Γ_{V_2} , Γ_{V_2} , Γ_{W_3} , Γ_{V_3} , μ_1 , μ_2 , K, $T \pi \Lambda_m$ 来改变. 例如通过增大参数 μ_1 , μ_2 , $\lambda_{\min}(T^{-1})$, $\lambda_{\min}(\Lambda_m)$, $\lambda_{\min}(K^{-1}T^{-1}K)$ 的取值或减小 $\lambda_{\max}(\Gamma_{W_1}^{-1})$, $\lambda_{\max}(\Gamma_{V_2}^{-1})$, $\lambda_{\max}(\Gamma_{W_2}^{-1})$, $\lambda_{\max}(\Gamma_{V_2}^{-1})$, $\lambda_{\max}(\Gamma_{W_3}^{-1})$, $\lambda_{\max}(\Gamma_{V_3}^{-1})$ 的取值 都可以实现减小跟踪误差收敛邻域的半径, 提高系统的控 制性能.

根据定理1,由系统状态轨迹向流形估计值 $\hat{\varphi}$ 的 动态演变规律式(5)可知,无论控制增益未知的多 变量极值搜索系统模型(1)的初始状态如何, $\hat{\varphi}$ 都 会从初始状态趋向超曲面 $\hat{\varphi} = 0$.当状态变量 趋向于超曲面 $\hat{\varphi} = 0$ 时,任何的系统内部参数扰 动和外界干扰都不会影响状态变量的运动,它 们始终会沿着超曲面 $\hat{\varphi}$ 收敛于状态变量极值的 估计值 \hat{x}^* .由于多变量极值搜索系统模型(1)存 在未知函数 $f(x), g(x) \pi \ell(x)$,导致无法直接获取 状态变量的极值 x^* .然而,根据定理1可知,估计 值 \hat{x}^* 将指数收敛于极值 x^* 的有界邻域 Ω 内,因此 系统状态变量x也会沿着超曲面 $\hat{\varphi} = 0$ 指数收敛 于极值 x^* 的有界邻域 Ω 内.此外,根据系统输出函 数 $y = \ell(x)$ 可知,状态变量的极值 x^* 对应于输出 量的极值 y^* ,当状态变量x收敛于极值 x^* 的有界邻 域 Ω 内,输出量y也将收敛于极值 y^* 的有界邻域内.

因此,应用本文提出的神经网络自适应协同控制方法可使控制增益未知的多变量极值搜索系统的状态变量x按照既定的协同收敛条件(如超曲面 $\hat{\varphi} = 0$)收敛于其极值x*的有界邻域内,且输出量y也将收敛于其极值y*的有界邻域内.通过调整控制器参数,可使有界收敛邻域充分小,也即跟踪误差足够小.

6 设计参数分析(Design parameters analysis)

针对神经网络自适应协同控制方法中设计参数 $\sigma_{W_1}, \sigma_{V_1}, \sigma_{W_2}, \sigma_{V_2}, \sigma_{W_3}, \sigma_{V_3}, \Gamma_{W_1}, \Gamma_{V_1}, \Gamma_{W_2},$ $\Gamma_{V_2}, \Gamma_{W_3}, \Gamma_{V_3}, \mu_1, \mu_2, T, K和P$ 的选取问题, 进行如下分析:

1) 参数 σ_{W_1} , σ_{V_1} , σ_{W_2} , σ_{V_2} , σ_{W_3} 和 σ_{V_3} 分别 影响了神经网络权值矩阵 \hat{W}_1 , \hat{V}_1 , \hat{W}_2 , \hat{V}_2 , \hat{W}_3 和 \hat{V}_3 的收敛速度. 在一定程度上, 提高 σ_{W_1} , σ_{V_1} , σ_{W_2} , σ_{V_2} , σ_{W_3} 和 σ_{V_3} 的取值, 有利于加快相应权值 矩阵的收敛速度; 但需要考虑到当这些参数增大 后, 会导致式(37)中 b_{Σ} 和 k_{Σ} 同时增大, 这将影响系 统误差的收敛邻域大小. 因此, 需要对比几组 σ_{W_1} , σ_{V_1} , σ_{W_2} , σ_{V_2} , σ_{W_3} 和 σ_{V_3} 的取值, 当系统误差的收 敛范围满足设计要求时, 应尽可能选取较大的参 数值.

2) 矩阵 Γ_{W_1} , Γ_{V_1} , Γ_{W_2} , Γ_{V_2} , Γ_{W_3} 和 Γ_{V_3} 的取 值会同时影响神经网络权值矩阵 \hat{W}_1 , \hat{V}_1 , \hat{W}_2 , \hat{V}_2 , \hat{W}_3 和 \hat{V}_3 的收敛速度和系统误差的收敛邻域. 通 常情况下, 矩阵 Γ_{W_1} , Γ_{V_1} , Γ_{W_2} , Γ_{V_2} , Γ_{W_3} 和 Γ_{V_3} 可 以设计为对角矩阵. 若选取 Γ_{W_1} , Γ_{V_1} , Γ_{W_2} , Γ_{V_2} , Γ_{W_3} 和 Γ_{V_3} 的特征值较大, 将加快相应权值矩阵 的收敛速度, 减小系统误差的收敛邻域. 但是需 要注意, 矩阵 Γ_{W_1} , Γ_{V_1} , Γ_{W_2} , Γ_{V_2} , Γ_{W_3} 和 Γ_{V_3} 的特 征值不能太大; 否则, 神经网络权值矩阵 \hat{W}_1 , \hat{V}_1 , \hat{W}_2 , \hat{V}_2 , \hat{W}_3 和 \hat{V}_3 将很快趋于稳定、失去学习调节 能力, 而在这种情况下将无法实现对未知项f(x), $\dot{x}^* 和 e_{\theta}^{T}(\Lambda + \Lambda_m)e_{\theta} + e_{\theta}^{T}\Delta\kappa + (e_x^{T}Q + 1)\hat{\rho}\beta$ 的准 确逼近.

3) 由式(32)-(33)可知,参数μ1的取值不宜太 大,也不宜太小,否则都将造成γ和β取值很大,这 会导致参数ρ存在一定的逼近误差;但是在其允许 的取值范围内,应该尽量增大μ1,以减小系统误差 的收敛邻域.

4) 参数 μ₂ 决定了参数 ρ 对其最优值ρ*的逼近 速度. 若μ₂取值越大,则参数ρ的逼近速度越快,系 统误差的收敛邻域半径越小;但μ₂的取值不宜太 大,否则会导致系统的控制量过大,状态变量出现 超调现象.

5) 参数T决定了系统状态变量 x 趋向流形估 计值 φ 的速度. 当T为标量时, 其取值越小, 则状 态变量 x 到达 φ 的时间越短, 响应速度越快, 有利 于减小系统误差的收敛邻域半径, 但需要注意过 小的T值, 将导致状态变量收敛过程中的超调现 象. 若T 为矩阵时, 其特征值越小, 则状态变量 x 到 达 φ 的时间越短, 响应速度越快, 有利于减小系统 收敛邻域的半径, 但同样需要注意T 的特征值不宜 太小; 否则, 也会导致状态变量收敛过程中的超调 现象.

6) 矩阵K的设计主要是依据状态变量x之间的协同收敛条件. 在确保对被控系统进行合理设计的前提下,应选取合适的K,使λ_{min}(K⁻¹T⁻¹K)尽可能的较大,以减小系统误差的收敛邻域.

7)向量**P**的取值影响了控制量u的大小.**P**不 能是全零向量,同时也不宜取值太大;否则,控制 量u将很快趋于饱和值,导致控制系统无法按要求 工作,从而影响控制系统的性能.

7 仿真分析(Simulation analysis)

针对两架飞机组成的紧密编队飞行系统,考虑 僚机编队飞行过程中垂直方向运动的简化数学模 型^[19]如下:

$$\begin{cases} \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ Z & -15 & 0 \\ 0.2 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \\ \begin{bmatrix} 0 \\ 1 + 0.2 \sin t \\ 0 \end{bmatrix} u + \begin{bmatrix} 0 \\ 0.2 \cos(0.2t) \\ 1.8 \\ y_{\text{upwash}} = -5(x_1(t) + 9)^2 - 10x_2^2(t) + 485, \end{cases}$$
(51)

式中: $Z = -35 + 0.5 \cos(0.5t)$, $x = [x_1 \ x_2 \ x_3]^T$ 为系统状态变量, 分别表示僚机与长机之间的邻 近机翼在垂直方向上的距离差、垂直方向上距离 差的变化速率、僚机与长机之间的邻近机翼在横 向上距离差的变化速率; y_{upwash} 为系统输出量, 表 示作用在僚机上的上洗力, 若僚机获得的上洗力 越大将有助于节省其动力输出、提高其巡航距离; u为系统输入量, 表示僚机在垂直方向上的控制量. 显然, 当系统状态变量分别为 $x_1^* = -9, x_2^* = 0$ 和 $x_3^* = 0$ 时, 僚机可获得最大的上洗力 $y_{upwash}^* = 485.$ 本例的控制目标是要求状态变量 $x = [x_1 \ x_2 \ x_3]^T$ 沿着既定的协同条件

$$2(x_2 - x_2^*) + (x_3 - x_3^*) = 0$$

收敛至各自的极值点,同时输出量y也收敛于它的 极值点y*.

分别采用本文提出的神经网络自适应协同控制方法和Hu等提出的退火递归神经网络极值搜索控制方法^[20],对研究对象(51)进行仿真对比. 当采用本文提出的控制方法时,设计参数分别选取为

$$\begin{split} \boldsymbol{K} &= \begin{bmatrix} 0 \ 2 \ 1 \end{bmatrix}, \ \boldsymbol{T} = 0.2, \ \boldsymbol{P} = \begin{bmatrix} 2 \ 1 \ 0.5 \end{bmatrix}, \\ \boldsymbol{\Gamma}_{W_1} &= \text{diag} \{ 1.2 \}_{2 \times 2}, \ \boldsymbol{\Gamma}_{V_1} = \text{diag} \{ 0.6 \}_{4 \times 4}, \\ \boldsymbol{\Gamma}_{W_2} &= \text{diag} \{ 1.6 \}_{2 \times 2}, \ \boldsymbol{\Gamma}_{V_2} = \text{diag} \{ 0.5 \}_{16 \times 16}, \\ \boldsymbol{\Gamma}_{W_3} &= \text{diag} \{ 1.1 \}_{1 \times 1}, \ \boldsymbol{\Gamma}_{V_3} = \text{diag} \{ 0.8 \}_{18 \times 18}, \\ \sigma_{W_1} &= 0.12, \ \sigma_{V_1} = 0.05, \ \sigma_{W_2} = 0.14, \\ \sigma_{V_2} &= 0.06, \ \sigma_{W_3} = 0.15, \ \sigma_{V_3} = 0.06, \\ \hat{\rho} &= 8, \ \mu_1 = 0.2, \ \mu_2 = 0.3; \end{split}$$

神经网络权值 $\hat{W}_1 \in \mathbb{R}^{2\times 3}$, $\hat{V}_1 \in \mathbb{R}^{4\times 2}$, $\hat{W}_2 \in \mathbb{R}^{2\times 3}$, $\hat{V}_2 \in \mathbb{R}^{16\times 2}$, $\hat{W}_3 \in \mathbb{R}^{1\times 1}$ 和 $\hat{V}_3 \in \mathbb{R}^{18\times 1}$ 的初值可在 区间范围[0,2]内随机选取;其中采用基于正弦激 励函数的极值搜索控制方法的设计参数分别为: $k_1 = 12, k_2 = 2, k_3 = 1.6, a_1 = a_2 = a_3 = 0.1,$ $\omega_1 = \omega_2 = \omega_3 = 0.6, \phi_1 = 1.5, \phi_2 = 1.2, \phi_3 = 1.0,$ $h_1 = h_2 = h_3 = 6.$

同时,对退火递归神经网络极值搜索控制方法 也选取合适的调节参数. 当研究对象(51)的初始条 件为 $x = [-4 \ 0 \ 1]^{T}$ 时,分别应用上述两种方法得 到的仿真结果如图3-8所示.

Fig. 4 Result comparison of the state x_2

Fig. 7 Result of the manifold estimator $\hat{\varphi}$

根据仿真图3-6可知: 在采用神经网络自适应

协同控制方法的被控系统中,状态变量x1,x2和 x_3 均能较快地收敛至各自的极值点, 且输出量y也能趋向它的极值点 $y_{upwash}^* = 485.$ 外界干扰 Δ_1 $= 0.2 \cos(0.2t)$ 和 $\Delta_2 = 1.8$ 并没有影响系统的动态 性能和稳定性,说明本文提出的控制方法具有较 好的鲁棒性.此外,由图7可知按照研究对象(51)设 计要求制定的流形估计值♀能够以规定的速率收 敛至零点. 然而, 退火递归神经网络极值搜索控 制方法^[20]中不能进行流形估计值 ŷ 的设计,因此 就不存在流形估计值ŷ的仿真对比结果. 通过对 比两种控制方法的仿真结果可知,虽然应用退火 递归神经网络极值搜索控制方法也能使研究对 象(51)在受到外界干扰的条件下收敛于稳定状态, 但是比较而言,当采用本文提出的控制方法时,系 统具有更快的收敛速率,其主要原因在于:1)多 层神经网络具有自学习功能,经过短暂的自适应

学习过程后,神经网络自适应协同控制系统将逐 步发挥其优势,提高其收敛速率;2)系统状态变 量*x*能够按照指定的流形估计值*ϕ*趋于极值点,且 在此过程中状态变量趋向*ϕ*的收敛速率可以通过 选取较小*T*值而得到提高.此外,由于系统状态变 量*x*处在流形估计值*ϕ*之上,其收敛过程具有协同 不变性,不会受到外界干扰的任何影响.因此,这 也说明协同控制可使系统具有更快的收敛速率和 更强的鲁棒性.

8 结论(Conclusions)

针对一类控制增益未知的多变量极值搜索系统的协同控制问题,提出了一种神经网络自适应协同控制方法.该方法将状态变量之间的协同收敛关系转化为系统的流形设计,且通过设计多层神经网络来逼近状态变量的极值变化率和未知的变量与函数,采用Nussbaum函数解决控制增益未知的问题,使得极值搜索系统在不需要获知期望跟踪轨迹的情况下,系统输出量收敛于其极值的有界邻域内,且所得闭环系统的所有误差信号均指数收敛至原点的一个有界邻域.即使对于某些已知函数g(x)的极值搜索系统而言,采取本文的设计方法,也可以避免由于采用g⁻¹(x)而导致控制器的奇异性问题.此外,由于采用了协同控制,该方法对于系统内部参数扰动和外界干扰都具有很好的鲁棒性.

参考文献(References):

- ROTEA M A. Analysis of multivariable extremum seeking algorithms [C] //Proceedings of the American Control Conference. Chicago: IEEE, 2000: 433 – 437.
- [2] ARIYUR K B, KRSTIC M. Analysis and design of multivariable extremum seeking [C] //Proceedings of the American Control Conference. Anchorage: IEEE, 2002: 2903 – 2908.
- [3] ARIYUR K B. Multiparameter extremum seeking and applications to propulsion and aerodynamics problems [D]. San Diego: University of California, 2002.
- [4] 张元涛,石为人,邱明伯. 一类不确定非线性系统的参数自适应滑 模控制 [J]. 华中科技大学学报(自然科学版), 2011, 39(5): 79 – 82.
 (ZHANG Yuantao, SHI Weiren, QIU Mingbo. Parameter adaptive sliding mode control for a class of uncertain nonlinear systems [J]. *Journal of Huazhong University of Science and Technology (Natural Science Edition)*, 2011, 39(5): 79 – 82.)
- [5] 张伟,毛剑琴. 基于模糊树模型的自适应模糊滑模控制方法 [J]. 控制理论与应用, 2010, 27(2): 263 268.
 (ZHANG Wei, MAO Jianqin. Adaptive fuzzy sliding-mode control method based on fuzzy tree model [J]. *Control Theory & Applications*, 2010, 27(2): 263 268.)
- [6] 陈刚, 柴毅, 丁宝苍, 等. 电液位置伺服系统的多滑模神经网络控制 [J]. 控制与决策, 2009, 24(2): 221 225.
 (CHEN Gang, CHAI Yi, DING Baocang, et al. Multiple sliding mode neural network control of eletro-hydraulic position servo system [J]. *Control and Decision*, 2009, 24(2): 221 225.)

- [7] JIANG P, CHEN H D, BAMFORTH L C A. A universal iterative learning stabilizer for a class of MIMO systems [J]. *Automatica*, 2006, 42(6): 973 – 981.
- [8] CHEN W S, LI W, MIAO Q G. Backstepping control for periodically time-varying systems using high-order neural network and Fourier series expansion [J]. *ISA Transactions*, 2010, 49(3): 283 – 292.
- [9] DU J L, GUO C, YU S H, et al. Adaptive autopilot design of timevarying uncertain ships with completely unknown control coefficient [J]. *IEEE Journal of Oceanic Engineering*, 2007, 32(2): 346 – 352.
- [10] 房建成, 王志强, 刘刚. 磁悬浮姿控储能两用飞轮能量转换系 统PI协同控制 [J]. 宇航学报, 2009, 30(5): 1907 1912.
 (FANG Jiancheng, WANG Zhiqiang, LIU Gang. PI synergetic control approach of the energy conversion system for magnetic suspended attitude control and energy storage flywheel [J]. Journal of Astronautics, 2009, 30(5): 1907 1912.)
- [11] 房建成, 王志强, 刘刚. 磁悬浮反作用飞轮速率模式非线性协同控 制方法 [J]. 航空学报, 2009, 30(10): 1930 – 1936.
 (FANG Jiancheng, WANG Zhiqiang, LIU Gang. Speed mode nonlinear synergetic control approach for magnetically suspended reaction wheel [J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10): 1930 – 1936.)
- [12] NUSSBAUM R D. Some remarks on a conjecture in parameter adaptive control [J]. Systems & Control Letters, 1983, 3(5): 243 – 246.
- [13] RYAN E P. A universal adaptive stabilizer for a class of nonlinear systems [J]. Systems & Control Letters, 1991, 16(3): 209 – 218.
- [14] ZHANG T, GE S S, HANG C C. Design and performance analysis of a direct adaptive controller for nonlinear systems [J]. *Automatica*, 1999, 35(11): 1809 – 1817.
- [15] GUAY M, ZHANG T. Adaptive extremum seeking control of nonlinear dynamic systems with parametric uncertainties [J]. *Automatica*, 2003, 39(7): 1283 – 1293.

- [16] PAN Y D, OZGUNER U, ACARMAN T. Stability and performance improvement of extremum seeking control with sliding mode [J]. International Journal of Control, 2003, 76(9/10): 968 – 985.
- [17] 胡云安, 左斌, 吴建刚. 利用退火回归神经网络优化极值搜索算法 [J]. 中南大学学报(自然科学版), 2005, 36(S1): 57-61.
 (HU Yunan, ZUO Bin, WU Jiangang. Optimizing extremum seeking algorithm via an annealing recurrent neural network [J]. Jounnal of Central South University (Science and Technology), 2005, 36(S1): 57-61.)
- [18] 左斌,李静,胡云安.基于反演设计的块控型极值搜索系统一体化 控制方法研究 [J]. 自动化学报, 2011, 37(9): 1114 – 1129.
 (ZUO Bin, LI Jing, HU Yunan. Research on integrated control design for block control extremum seeking system based on backstepping design [J]. Acta Automatica Sinica, 2011, 37(9): 1114 – 1129.)
- [19] BINETTI P, ARIYUR K B, KRSTIC M, et al. Formation flight optimization using extremum seeking feedback [J]. *Journal of Guidance*, *Control, and Dynamics*, 2003, 26(1): 132 – 142.
- [20] HU Y A, ZUO B, LI J. A novel chaotic annealing recurrent neural network for multi-parameters extremum seeking algorithm [C] //The 13th International Conference on Neural Information Processing. HongKong: Springer, 2006: 1022 – 1031.
- 作者简介:

左 斌 (1979–), 男, 讲师, 在做博士后研究工作, 目前研究方向 为自适应控制、非线性控制, E-mail: zuobin@163.com;

李 静 (1977-), 女, 讲师, 在做博士后研究工作, 目前研究方向 为飞行器建模与控制、非线性控制、图像信息处理, E-mail: lijing 19772006@yahoo.com.cn.