DOI: 10.7641/CTA.2014.30267

# 基于通用内模的变频电网有源电力滤波器自适应重复控制

### 高峰<sup>†</sup>,林辉

(西北工业大学自动化学院,陕西西安710129)

**摘要:**为了提高变频电网并联型有源电力滤波器(APF)的电流控制性能,针对谐波源的多样性和负载状态的变化, 提出了一种通用内模,然后,结合两次坐标变换,通过内模p值的自适应调节,建立了基于通用内模的重复控制器. 这种控制器,能够根据电网或负载状态,调整动态响应时间和补偿范围.这样就解决了谐波源或负载的变化引起的 补偿效果降低的问题.针对电网频率的大范围变化,又引入了周期自适应参数.为了弥补重复控制动态延迟的缺陷, 将并联比例控制器组成复合控制系统,并对该系统的主要特性进行了分析.在飞机变频交流电网并联APF系统中, 首先将所提重复控制方法与其他四种方法了进行仿真对比,最后进行了实验验证.仿真和实验结果证明了基于通 用内模的复合重复控制策略的有效性和优越性.

关键词:飞机电网;变频系统;电能质量;有源电力滤波器;重复控制

中图分类号: TM71 文献标识码: A

## An adaptive repetitive controller based on generic internal model for active power filter in variable-frequency power system

GAO Feng<sup>†</sup>, LIN Hui

(School of Automation, Northwestern Polytechnical University, Xi'an Shaanxi 710129, China)

Abstract: To improve the current control of shunt active power filter (APF) in a variable-frequency power grid, we develop a generic internal model and build a repetitive controller based on this internal model. According to grid conditions or loads, this repetitive controller can adjust the dynamic response time and the compensation range through p and two coordinate transformations to guarantee the effective compensation for different harmonic sources and changing load status. It can also adapt to changes in a wide range of grid frequencies due to the introduction of its adaptive period parameter. To compensate for the dynamic delay in the repetitive controller, we form the composite control system by shunting the repetitive controller with a proportional controller. The major characteristics of this composite system are given. In the shunt APF system of an aircraft variable-frequency power grid, we perform simulations for the proposed repetitive control methods, and compare their simulations results. Simulation and experimental results confirm the validity and superiority of the proposed repetitive controller over other controllers.

Key words: aircraft power grid; variable-frequency system; power quality; active power filters; repetitive control

### 1 引言(Introduction)

"多电飞机"是飞机发展的必然趋势,其主要特征 是具有大容量的供电系统和广泛采用电力作动技术. 高效且可靠的变速变频供电系统成为先进民用飞机 的首选,例如B-787飞机采用了四通道独立供电,单通 道容量超过250kVA/230V的变频交流发电系统.空 客A-380采用了单通道容量为150kVA,总容量为 900kVA的变频交流供电系统.然而大量电子设备等 非线性负载也使飞机变频电网的谐波污染日益严重, 带来了较大的安全隐患.有源电力滤波器(APF)与无 源滤波器相比,能动态抑制谐波和补偿无功功率,已 成为治理谐波污染的有效工具. 而跟踪性及实时性好的补偿电流控制则是保证并联APF补偿性能的关键环节之一.

较常用的补偿电流控制方法有:滞环比较法、三 角载波比较法、空间矢量控制等,其中载波比较法以 其开关频率固定的优点应用广泛.近年来,变结构控 制、模糊控制、神经网络控制、鲁棒控制、预测控制等 现代或智能控制方法也应用到电流控制中,增强了应 对非线性、时变系统的能力<sup>[1-2]</sup>.由于并联APF的指令 电流是由多次谐波(通常包含几次到几十次的谐波成 分)叠加而成的周期信号,传统PI控制器由于受带宽限

收稿日期: 2013-03-29; 录用日期: 2014-03-20.

<sup>&</sup>lt;sup>†</sup>通信作者. E-mail: world\_gao@163.com.

基金项目: 高等学校博士学科点专项科研基金资助项目(20106102110032).

制电流跟踪效果较差,若调整参数加大带宽,不仅效 果有限且易引起不稳定<sup>[3]</sup>.谐振控制虽能对特定频率 谐波实现无差控制,但每次谐波均需一个控制器,实 现起来非常复杂<sup>[4]</sup>.而滑模控制等智能方法虽能对任 意有界信号渐近跟踪和完全抑制,但相对复杂且精度 也不高.

重复控制是基于内模原理的适合跟踪或抑制周期 输入或扰动的学习控制方法,实现简单且稳态性能极 佳.重复控制发展至今已涌现出许多研究成果及应用, 对于线性时不变重复控制系统的研究已趋于成熟,如 连续和离散时延的重复控制、有限维重复控制<sup>[5-7]</sup>.对 于时变系统的重复控制也有探索<sup>[8]</sup>.近年来,一些学 者利用重复学习控制<sup>[9-10]</sup>、变结构重复控制<sup>[11]</sup>来解 决非线性系统控制问题.重复控制在APF电流控制中 已有不少成功的应用<sup>[12-14]</sup>.

实际上,大部分谐波源产生的谐波,大多只含部分 次谐波,例如单相整流器只产生奇次谐波.因此,基于 选择性内模的重复控制成为了研究热点<sup>[15]</sup>.文献[16] 为适应电力系统的需要,提出了可补偿全部奇次谐波 的内模,将延迟时间缩短到半个周期.文献[17]提出 了包含零点的内模,不但可补偿全部奇次谐波,且内 模零点增强了补偿灵敏度.文献[18]又提出了可补 偿6*l*±1次谐波的内模(*l*∈N),专门补偿平衡三相6脉 波整流器产生的谐波.这些成果改进了经典内模的全 频段补偿策略,缩短了延迟时间,避免将位于无谐波 频段的测量及干扰噪声放大<sup>[15]</sup>.然而,上述选择性内 模只各自针对特定的谐波源或负载状态,当谐波源或 负载状态发生变化后,指令电流的谐波成分也会发生 变化,而这些内模无法动态调整补偿范围.

文献[19] 提出了基于由滑动离散余弦变换(DCT) 滤波器构成的内模的重复控制策略,可通过改变有限 补偿集合的大小调整补偿范围且不增加计算复杂性, 同时其对舍入和量化效应也不敏感.然而,由于滤波 器需要采集1个基波周期中的N个输入值而后滤波, 使该方法总有1个指令周期的延迟,无法动态调节动 态响应时间,而且有限个被补偿的谐波次数必须已 知<sup>[20-21]</sup>.另外,指令周期的变化对重复控制影响很大, 通常需引入自适应策略<sup>[22]</sup>.

本文首先提出了一种新型通用选择性重复控制内 模,并进行了理论推导和证明.接着建立了飞机变频 电并联APF系统的数学模型,引入Park正,反变换为 通用内模创造了使用环境;而后设计了包含新型自适 应重复控制器的复合控制系统,分析了复合系统的主 要特性.最后,在负载变化的工况下,对5种不同方法 作了仿真对比,如图1所示.理论分析,仿真对比和实 验结果证明了基于通用内模的复合重复控制策略的 有效性和优越性.





# 2 提出的通用内模(Proposed generic internal model)

经典内模采用正反馈, 其极点为 $kj\omega_0(k \in \mathbb{Z}, \omega_0)$ 基波角频率), 可补偿所有奇、偶次谐波, 但延迟时间为T; 而选择性内模在结构上进行了改进, 内模b采用负反馈, 极点为 $(2k - 1)j\omega_0$ , 可补偿所有奇次谐波, 延迟时间缩短为T/2; 内模c中负反馈与前馈结合, 其极点为 $(2k - 1)j\omega_0$ , 零点为 $2kj\omega_0$ , 在补偿奇次谐波的基础上增加了灵敏度, 延迟时间为T/2; 内模d中加入两个延迟环节, 其极点为 $(6k \pm 1)j\omega_0$ , 零点为 $3kj\omega_0$ , 可补偿6 $k \pm 1$ 次谐波, 延迟时间缩短到T/6; 可以看出, 选择性内模b, c, d的极点均为奇极点, 表明它们只能补偿奇次谐波, 且结构差异较大.

内模e中含有一个可滑动的DFT(或称离散余弦变换DCT)滤波器,其实质是一个有限脉冲响应(FIR)带通滤波器,可补偿任意指定的若干次谐波,其算式如式(1)所示:

$$F_{\rm DFT}(z) = \frac{2}{N} \sum_{i=0}^{N-1} \left( \sum_{h \in N_{\rm h}} \cos[\frac{2\pi}{N} h(i+N_{\rm a})] \right) z^{-i}, \ (1)$$

其中: N为1个基波周期中的采样数, N<sub>h</sub>为指定补偿 谐波次数的集合, N<sub>a</sub>为超前的步数, 反馈上的N<sub>a</sub>步延 迟用于相位补偿, K<sub>F</sub>为增益系数. 因为需要用移位寄 存器采集一个周期中N个输出值, 故此内模总有1个 T的延时.

本文提出了具有通用性的内模,其脉冲传递函数

推导如下:

**定理1** 周期为 $N \in \mathbb{N}$ 的时间序列 $x(n) \in \mathbb{C}$ 中 只含 pm次谐波序列的充分必要条件是:  $\forall n \in \mathbb{Z}$ ,  $p \in B = \{x \in \mathbb{Z} | 1 \leq x < +\infty\}, m \in \mathbb{N}, x(n \pm \frac{N}{p})$ = x(n)成立.

证 1) 充分性.

离散周期序列*x*(*n*)可表示为如下的傅立叶级数形式:

$$x(n) = \sum_{l=0}^{N-1} c_l e^{j\frac{2\pi ln}{N}}, l \in \mathbb{N},$$
 (2)

其中c<sub>l</sub>是傅里叶级数的系数,

$$c_{l} = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j\frac{2\pi ln}{N}}, c_{l} \in \mathbb{C}.$$
 (3)

由于x(n)只含pm次谐波序列,则有当l = pm时,  $c_l \neq 0$ ,l为其余值时, $c_l = 0$ ,则有:

$$x(n) = \sum_{l=0}^{N-1} c_l e^{j\frac{2\pi ln}{N}} =$$

$$\sum_{m=0}^{(N-1)/p} c_{pm} e^{j\frac{2\pi pmn}{N}} e^{\pm j\frac{2\pi mN}{N}} =$$

$$\sum_{m=0}^{N/p-1} c_{pm} e^{j\frac{2\pi pm(n\pm N/p)}{N}} =$$

$$x(n\pm \frac{N}{p}).$$
(4)

2) 必要性.

$$x(n \pm \frac{N}{p}) = \sum_{l=0}^{N-1} c_l e^{j\frac{2\pi l(n \pm \frac{N}{p})}{N}} = \sum_{l=0}^{N-1} (c_l e^{\pm j\frac{2\pi l}{p}}) e^{j\frac{2\pi ln}{N}} = \sum_{l=0}^{N-1} c_l e^{j\frac{2\pi ln}{N}} = x(n),$$
(5)

得  $c_l e^{\pm j 2\pi l/p} = c_l$ , 分析可知, 只有当 l = pm 时,  $c_l \neq 0$ , l为其余值时,  $c_l = 0$ , 得证.

假设

$$x_1(n) = \begin{cases} x(n), \ 0 \le n \le \frac{N}{p} - 1, \\ 0, & \ddagger \&, \end{cases}$$
(6)

则x(n)可表示为

$$x(n) = \sum_{l=0}^{+\infty} x_1(n - l\frac{N}{p}),$$
(7)

式(4)经z变换得

$$X(z) = \sum_{l=0}^{+\infty} \left( z^{-N/p} \right)^l X_1(z) = \frac{1}{1 - z^{-N/p}} X_1(z).$$
(8)

如果 $x_1(n)$ 中只含有pm次谐波,那么根据定理1可 以得到: $x_1(n) = x_1(n - \frac{N}{p})$ ,此式经z变换后可以得

到: 
$$X_1(z) = z^{-N/p} X_2(z)$$
, 代入式(8)得  
$$X(z) = \frac{z^{-N/p}}{1 - z^{-N/p}} X_2(z) = G(z) X_2(z), \quad (9)$$

G(z)即为通用内模的脉冲传递函数,其结构如图2(a) 所示,其极点为 $pkj\omega_0 (p \ge 1)$ ,此内模可补偿pm次谐 波.

当p = 1时即为经典内模, p = 2时可补偿偶次次 谐波, p = 6时可补偿6m次谐波, 以此类推.其优点是 结构简单固定, 只需根据输入选取不同p值.从图2(b) 可知, 此内模在谐波角频率 $\omega_k = 2\pi pm f_R$ 处增益都 极大(图中基波频率 $f_R = 360$  Hz).



## 3 并联APF的数学模型与两次坐标 变换(Mathematical model of APF and two coordinate transformations)

### 3.1 数学模型(Mathematical model)

图3为飞机变频电网并联型三相四桥臂APF系统 示意图.图中 $G_1 \cong G_8$ 为逆变器桥臂的开关管,L,  $L_n$ 为滤波电感,R, $R_n$ 为滤波电感的内阻, $V_{dc}$ 为直流 侧电容C两端的电压, $L_d$ , $R_d$ 组成阻感负载, $R_m$ 为中 线连接电阻. $V_{sa}$ , $V_{sb}$ 和 $V_{sc}$ 分别为各相电源相电压,  $i_{ci}(i = a, b, c, n)$ 为第*i*相的补偿电流. $C_h$ 和 $R_h$ 串联连 接在各相输出端之间组成无源滤波器(PF),主要用于 消除补偿电流中因主电路中器件通断而引起的谐波, 故在建模时暂时忽略.



图 3 飞机变频电网APF系统示意图

Fig. 3 Schematic diagram of APF in variable-frequency aircraft electric power system

式(10)为静止abc坐标系下三相四桥臂APF的数 学模型,其中 $s_i$ 代表i桥臂的开关函数, $s_i = 1$ 代表该 桥臂上管导通下管关断, $s_i = 0$ 代表该桥臂下管导 通上管关断.

$$\begin{cases} L \frac{di_{ca}}{dt} + L_{n} \frac{di_{cn}}{dt} = \\ V_{sa} - (s_{a} - s_{n})V_{dc} - Ri_{ca} - R_{n}i_{cn}, \\ L \frac{di_{cb}}{dt} + L_{n} \frac{di_{cn}}{dt} = \\ V_{sb} - (s_{b} - s_{n})V_{dc} - Ri_{cb} - R_{n}i_{cn}, \\ L \frac{di_{cc}}{dt} + L_{n} \frac{di_{cn}}{dt} = \\ V_{sc} - (s_{c} - s_{n})V_{dc} - Ri_{cc} - R_{n}i_{cn}, \\ C \frac{dV_{dc}}{dt} = \\ (s_{a} - s_{n})i_{ca} + (s_{b} - s_{n})i_{cb} + (s_{c} - s_{n})i_{cc}. \end{cases}$$
(10)

 $设p_{a} = s_{a} - s_{n}, p_{b} = s_{b} - s_{n}$  和 $p_{c} = s_{c} - s_{n},$ 且设d轴与电源电压矢量 $V_{sa}$ 方向重合,可得到系统 在dq0旋转坐标系下的数学模型:

$$\begin{cases} L\frac{\mathrm{d}i_{\mathrm{cd}}}{\mathrm{d}t} + Ri_{\mathrm{cd}} = \omega Li_{\mathrm{cq}} + V_{\mathrm{sd}} - p_{\mathrm{d}}V_{\mathrm{dc}}, \\ L\frac{\mathrm{d}i_{\mathrm{cq}}}{\mathrm{d}t} + Ri_{\mathrm{cq}} = -\omega Li_{\mathrm{cd}} + V_{\mathrm{sq}} - p_{\mathrm{q}}V_{\mathrm{dc}}, \\ L_{0}\frac{\mathrm{d}i_{\mathrm{c0}}}{\mathrm{d}t} + R_{0}i_{0} = V_{\mathrm{s0}} - p_{0}V_{\mathrm{dc}}, \\ C\frac{\mathrm{d}V_{\mathrm{dc}}}{\mathrm{d}t} = \frac{3}{2}p_{\mathrm{d}}i_{\mathrm{cd}} + \frac{3}{2}p_{\mathrm{q}}i_{\mathrm{cq}} + 3p_{0}i_{\mathrm{c0}}, \end{cases}$$
(11)

其中:  $R_0 = R + 3R_n, L_0 = L + 3L_n, 上述模型推$ 

导过程可参见文献[23].

假设
$$\begin{cases} u_{\rm rd} = \omega L i_{\rm cq} + V_{\rm sd} - p_{\rm d} V_{\rm dc}, \\ u_{\rm rq} = -\omega L i_{\rm cd} + V_{\rm sq} - p_{\rm q} V_{\rm dc}, \quad 则 式(11) \\ u_{\rm r0} = V_{\rm s0} - p_{\rm 0} V_{\rm dc}, \\ u_{\rm r0} = U_{\rm s0} - p_{\rm 0} V_{\rm dc}, \end{cases}$$

可解耦, d, q和0轴电流则可独立控制.

### 3.2 两次坐标变换(Two coordinate transformations)

根据获得的变频电网在静止坐标下的补偿电流 指令矢量[ $i_{ca}^* i_{cb}^* i_{cc}^*$ ]<sup>T</sup>,经式(12)的Park变换<sup>[24]</sup>转换 为dq0坐标下的指令矢量[ $i_{cd}^* i_{cq}^* i_{c0}^*$ ]<sup>T</sup>,控制系统输 出电流矢量[ $i_{cd} i_{cq} i_{c0}$ ]<sup>T</sup>,再经式(13)的Park反变换 得到三相补偿电流矢量[ $i_{ca} i_{cb} i_{cc}$ ]<sup>T</sup>.

$$\begin{bmatrix} i_{cd}^{*}\\ i_{cq}^{*}\\ i_{c0}^{*} \end{bmatrix} = \frac{2}{3} \begin{bmatrix} \cos(\omega t) & -\sin(\omega t) & \frac{1}{2}\\ \cos(\omega t - \frac{2\pi}{3}) - \sin(\omega t - \frac{2\pi}{3}) & \frac{1}{2}\\ \cos(\omega t + \frac{2\pi}{3}) - \sin(\omega t + \frac{2\pi}{3}) & \frac{1}{2} \end{bmatrix}^{T} \begin{bmatrix} i_{ca}^{*}\\ i_{cb}^{*}\\ i_{cc}^{*} \end{bmatrix},$$
(12)
$$\begin{bmatrix} i_{ca}\\ i_{cb}\\ i_{cc} \end{bmatrix} = \begin{bmatrix} \cos(\omega t) & -\sin(\omega t) & 1\\ \cos(\omega t - \frac{2\pi}{3}) - \sin(\omega t - \frac{2\pi}{3}) & 1\\ \cos(\omega t + \frac{2\pi}{3}) - \sin(\omega t - \frac{2\pi}{3}) & 1\\ \cos(\omega t + \frac{2\pi}{3}) - \sin(\omega t + \frac{2\pi}{3}) & 1 \end{bmatrix} \begin{bmatrix} i_{cd}\\ i_{cq}\\ i_{c0} \end{bmatrix}.$$
(13)

第1次Park变换的作用是将指令电流中的负序

分量角频率系数增1,正序分量的角频率系数减1. 这样不但可实现奇次与偶次谐波的相互转换,而且 可将如三相p脉波整流器产生的pl±1次谐波转换 为pk次谐波,为发挥所提内模的功能创造了条件. 第2次Park反变换的作用实现dq0坐标系到abc坐标 系的转换.

### 4 补偿电流控制(Compensation current control)

### 4.1 传统PI控制(Conventional PI control)

图4为PI控制时电流环模型. APF系统传递函数 中, τ<sub>s</sub>为变流器延时,取开关周期的一半, τ<sub>f</sub>表示滤 波和采样延时; *K*<sub>PWM</sub>为变流器放大倍数,即相电 压峰值和直流侧电压之比. *k*<sub>p</sub>, *k*<sub>i</sub>为比例和积分系 数. 这种传统的电流控制虽动态响应快,跟踪稳态 误差较大,严重影响补偿效果.



图 4 PI控制电流环模型 Fig. 4 Current loop model about PI controller

# **4.2** 复合自适应重复控制系统设计(Design of composite adaptive repetitive control system)

将所提新型重复控制器与动态响应快的比例控制并联,组成复合数字重复控制系统.由于重复控制有类似积分的作用,故只用比例控制弥补其动态延迟的缺陷.系统结构如图5所示,通用内模G<sub>m</sub>(z)中加入系数k<sub>f</sub>,用于增强重复控制器的稳定性. B(z)的作用是补偿复合系统的幅值和相位,k<sub>r</sub>为其幅值衰减系数.P(z)为APF系统的脉冲传递函数, R(z)代表系统给定输入信号,E(z)代表系统误差信号.

$$G_{\rm m}(z) = \frac{k_{\rm f} z^{-N/p}}{1 - k_{\rm f} z^{-N/p}},\tag{14}$$

$$B(z) = k_{\rm r} \frac{1 + k_{\rm w} P(z)}{k_{\rm w} P(z)},$$
(15)

$$P(z) = Z[\frac{K_{\rm PWM}}{(\tau_{\rm s}s+1)(\tau_{\rm f}s+1)(Ls+R)}], (16)$$

P(z)的极点为  $e^{-T_s/\tau_s}$ ,  $e^{-T_s/\tau_f}$  和  $e^{-RT_s/L}$ ,  $T_s$ 为采 样周期, 所有极点均在单位圆内, 故控制对象稳定.

在复合系统中,  $f_r = 1/T_r$ 为指令电流频率, 也等 于电源电压频率,  $T_r$ 为指令电流周期.  $f_s = 1/T_s$ 为 采样频率,  $N = f_s/f_r$ 为每个指令周期采样次数. 当 $f_s$ 固定时,对象P(z)为时不变;若 $f_s$ 可变,则P(z)为时变.本文采用固定的 $f_s$ ,通过锁相环(PLL)实时采集 $f_r$ ,使N自适应改变,同时为保证N/p为整数,取

$$\frac{N}{p} = \left[\frac{f_{\rm s}}{pf_{\rm r}}\right].\tag{17}$$





# 5 复合控制系统特性分析(Characteristics analysis of the composite control system)

### 5.1 稳定性(Stability)

复合系统的稳定性分析的依据是离散再生频谱 理论 (discrete regeneration spectrum theory)<sup>[25]</sup>.即: 若单输入单输出离散定常系统的闭环特征方程为

$$M(z) + N(z)z^{-N} = 0.$$
 (18)

再生频谱函数定义为

$$R(\omega) = \left|\frac{N(e^{j\omega T})}{M(e^{j\omega T})}\right|,\tag{19}$$

当*M*(*z*)在*z*域单位圆外无零点,并且*R*(ω) < 1时, 该闭环系统对任何延时均稳定,稳定性不依赖于延 时大小.复合控制系统的开环脉冲传递函数为

$$G_{\rm op}(z) = [k_{\rm w} + G_{\rm m}(z)B(z)]P(z).$$
 (20)

闭环脉冲传递函数为

$$G_{\rm cl}(z) = G_{\rm op}(z)/[1+G_{\rm op}(z)].$$
 (21)

系统闭环特征方程为

$$1 + G_{\rm op}(z) = 0,$$
 (22)

根据式(18)和式(21)可得

$$R(\omega) = |z^{N/p}|_{z=e^{j\omega T_S}} = |k_f(1 - k_r/k_w)|.$$
(23)

由于 $M(z) = 1 + k_w P(z)$ 在单位圆外没有零点, 依据该理论,只要 $R(\omega) < 1$ ,则闭环系统对任意延 时都稳定.

为了保证系统的稳定性,根据式(23),控制参数 可按以下方法选取:

1) 首先, 在未嵌入重复控制环节时, 绘制控制对

象在S域的开环系统Bode图,选取比例环节kw,使 系统在嵌入前有较大的稳定裕度;

2) 为使重复控制内模极点移至单位圆内,选取 0 < k<sub>f</sub> < 1,保证重复控制器的稳定性,增强复合系 统的稳定性. k<sub>f</sub>的值选的越小,系统稳定性越强,但 稳态误差也越大;

3) 在以上两步的基础上,适当选取 $k_r$ 的值使  $R(\omega) < 1$ ,保证复合系统的稳定性,同时 $k_r$ 的选取 也要考虑收敛性因素(见5.3节).

### 5.2 稳态误差(Steady-state error)

系统误差脉冲传递函数为

$$S(z) = \frac{E(z)}{R(z)} = \frac{S_0(z)}{1 + (k_{\rm r}/k_{\rm w})G_{\rm m}(z)} = S_0(z)A(z),$$
(24)

其中 $S_0(z) = 1/[1 + k_w P(z)]$ 为单独比例控制时的 误差传函, A(z)为增益函数, 与S(z)相比缺少A(z).

$$|A(\omega_k)| = |A(z)|_{z=e^{j\omega_k T_s}} = \left|\frac{1}{1+\frac{k_r}{k_m}\frac{k_f}{e^{j\omega_k N T_s/p} - k_f}}\right|,$$
(25)

其中:  $\omega_k = k\omega_f, \omega_f$ 为基波角频率,因为 $e^{j\omega_k NT_s/p} = e^{j2\pi k/p}|_{k=pm} = 1$ ,所以在pm次谐波频率处,

$$|A(\omega_{pm})| = |1/(1 + \frac{k_{\rm r}}{k_{\rm w}} \frac{k_{\rm f}}{1 - k_{\rm f}})|, \qquad (26)$$

根据式(26), 当 $k_f \to 1$ 时,  $|A(\omega_{pm})| \to 0$ , 可使系统 稳态误差 $E(z) \to 0$ , 即 $k_f$ 的取值越接近1, 稳态误差 越小.

### 5.3 收敛性(Convergence)

为了分析系统的收敛性,如图5中所示,假设内 模延迟环节的输入为 $U_{k+1}(z)$ ,其中k代表重复周期 数,输出为 $U_k(z)$ ,比输入落后1个重复周期 $(T_r/p)$ .  $E_{k+1}(z)$ 代表k + 1个重复周期的误差,那么 $E_k(z)$ 则代表k个重复周期的误差,比例环节的输出 为 $V_{k+1}(z)$ , $i_d^{k+1}(z)$ 代表k + 1个重复周期的某轴(如 d轴)的指令电流值, $i_c^{k+1}(z)$ 代表k + 1个重复周期的

根据图5所示的信号执行顺序,可列出:

$$\begin{cases} U_{k+1}(z) = U_k(z) + E_{k+1}(z), \\ V_{k+1}(z) = k_{\rm w} E_{k+1}(z), \\ E_{k+1}(z) = \\ i_{\rm d}^{k+1}(z) - [U_k(z)B(z) + V_{k+1}(z)]P(z), \end{cases}$$
(27)

由式(27),式(15)和式(16)可推出

$$U_{k+1}(z) = (1 - \frac{k_{\rm r}}{k_{\rm w}})U_k(z) + \frac{1}{1 + k_{\rm w}P(z)}i_{\rm d}^{k+1}(z).$$
(28)

因为当控制系统达到稳定后,稳态误差可视为 一个不变的量<sup>[4]</sup>,则

$$i_{\rm d}^{k+1}(z) = i_{\rm d}^k(z).$$
 (29)

依据式(28)和式(27)的第1个公式,可递推出

$$\begin{cases} U_k(z) = U_{k-1}(z) + E_k(z), \\ U_k(z) = (1 - \frac{k_{\rm r}}{k_{\rm w}})U_{k-1}(z) + \frac{1}{1 + k_{\rm w}P(z)}i_{\rm d}^k(z), \end{cases}$$
(30)

则由式(30)可得

$$(1 - \frac{k_{\rm r}}{k_{\rm w}})E_k(z) = (-\frac{k_{\rm r}}{k_{\rm w}})U_k(z) + \frac{1}{1 + k_{\rm w}P(z)}i_{\rm d}^k(z), \quad (31)$$

由式(28)和式(27)的第1个公式还可推出

$$E_{k+1}(z) = \left(-\frac{k_{\rm r}}{k_{\rm w}}\right) U_k(z) + \frac{1}{1+k_{\rm w}P(z)} i_{\rm d}^{k+1}(z).$$
(32)

对比式(31)和式(32),代入式(29)可最终得到

$$E_{k+1}(z) = (1 - \frac{k_{\rm r}}{k_{\rm w}})E_k(z) = C(z)E_k(z),$$
 (33)

其中C(z)定义为收敛性函数.根据式(33),若0< C(z) < 1,则系统收敛.C(z)越小收敛越快.结合稳 定性分析可知,必须满足0 <  $k_r/k_w < 1$ ,而且此比 值越接近1,收敛越快.另外,由于

$$U_k(z) = k_{\rm f} z^{-N/p} U_{k+1}(z), \qquad (34)$$

对式(34)进行z反变换,可得

$$u_k(t) = k_{\rm f} u_{k+1}(t - \frac{N}{p}).$$
 (35)

由式(35)可知, 在延迟1/p指令周期后, 重复控制 才起效, 若p > 1, 则通用内模比经典内模的动态响 应时间缩短p倍.

事实上, 重复控制的收敛速度取决于两个因素, 即延迟时间和收敛性函数<sup>[4]</sup>. 延迟时间的大小决定 重复控制起效的快慢, 而起效后的收敛快慢由收敛 性函数决定, 二者综合决定了重复控制总的收敛速 度. 因此, 一方面可通过调节参数*p*的值来调节延迟 时间的长短(见6.1节), 影响收敛速度; 另一方面, 可 通过调节*k*<sub>r</sub>的值调节收敛性函数的大小, 影响收敛 速度.

### 5.4 鲁棒性(Robustness)

实际中, APF的参数如L, R的准确值时常难以获得且会发生变化, 如R随温度而变化, 即参数具有

不确定性,这可能对控制系统的稳定性产生影响.

假设系统的电感和电阻的值存在不确定性, 即 $L' = L_1 + \Delta L, R' = R_1 + \Delta R,$ 其中 $L_1, R_1$ 为电 感和电阻经验值,  $\Delta L$ ,  $\Delta R$ 为变动值, 并且| $\Delta L$ |≤  $\delta_1, |\Delta R| \leq \delta_2, \delta_1 和 \delta_2$ 为远小于经验值的给定常数. 将L'和R'代替式(16)中的L和R的值得到P'(z)和 B'(z). 根据式(15)(22)可得

$$[1 + k_{\rm w}P'(z)](z^{\frac{N}{p}} - k_{\rm f} + k_{\rm f}\frac{k_{\rm r}}{k_{\rm w}}) = 0.$$
 (36)

由于[1+k<sub>w</sub>P(z)]不为0,故可推出与式(23)相 同的 $R(\omega)$ 求解公式,只要适当的选择参数使 $R(\omega)$ <1,可保证系统具有鲁棒稳定性. 然而,由于参数 的不确定性,系统的稳定裕度变小,

由于受不确定参数的影响,系统的鲁棒性在嵌 入重复控制前后会发生变化. 重复控制系统的鲁棒 性可由其补灵敏度函数T(z)来反映<sup>[26]</sup>,其值越小, 鲁棒性越强.

$$T(z) = \frac{G_{\rm op}(z)}{1 + G_{\rm op}(z)} = \frac{T_0(z) + (k_{\rm r}/k_{\rm w})G_{\rm m}(z)}{1 + (k_{\rm r}/k_{\rm w})G_{\rm m}(z)},$$
(37)

其中T<sub>0</sub>(z)为在嵌入重复控制器之前原系统的补灵 敏度函数

$$T_0(z) = \frac{k_{\rm w} P(z)}{1 + k_{\rm w} P(z)},$$
(38)

由式(37)和式(24)可得

$$[T(z) - 1] = [T_0(z) - 1]A(z),$$
(39)

由式(39)可得

$$|A(\omega)| = |A(z)|_{z=e^{j\omega T_{s}}} = \frac{|T(e^{j\omega T_{s}}) - 1|}{|T_{0}(e^{j\omega T_{s}}) - 1|}.$$
 (40)

根据式(25),式(26)和式(49),看得出以下结论:

1) 当 $\omega = pm\omega_{\rm f}$ 时,即在pm次谐波频率处,由前 述分析可知,  $0 < k_{\rm f} < 1, 0 < k_{\rm r}/k_{\rm w} < 1,$  可得  $|A(\omega)|$  $< 1, 则T(e^{j\omega T_s}) > T_0(e^{j\omega T_s}),$ 说明此时复合系统的 鲁棒性较原系统有所降低:

2) 在其他某些频率点处,复合系统的补灵敏度 函数的值可以被降低,即 $T(e^{j\omega T_s}) < T_0(e^{j\omega T_s})$ ,鲁棒 性有所提高;

### 6 仿真和实验(Simulation and experiment)

为验证所提重复控制方法的有效性,模拟飞机 变频电网的工作条件,首先在Matlab/Simulink环境 下进行仿真分析与比较,然后搭建了一台的实验样 机.并联APF系统参数如表1所示.

|         | 表1并    | 联APF系统        | 参数         |
|---------|--------|---------------|------------|
| Table 1 | Parame | ters of shunt | APF system |

|                      |         | 5       |
|----------------------|---------|---------|
| 参数/单位                | 数值      | 说明      |
| $V_{ m s}/{ m V}$    | 115     | 电网相电压   |
| $f_{ m r}/{ m Hz}$   | 360~800 | 电网频率    |
| Q/kVA                | 5       | APF容量   |
| $L/\mathrm{mH}$      | 1.5     | 交流侧滤波电感 |
| $C/\mu~{ m F}$       | 2000    | 直流侧电容   |
| $V_{ m dc}/ m V$     | 800     | 直流侧电压   |
| $L_{\rm d}/{ m mH}$  | 2       | 负载电感    |
| $R_{ m d}/\Omega$    | 20      | 负载电阻    |
| $C_{ m h}/\mu{ m F}$ | 0.5     | PF电容    |
| $R_{ m h}/\Omega$    | 1       | PF电阻    |
|                      |         |         |

### 6.1 仿真分析(Simulation analysis)

按图3搭建仿真模型.其他仿真参数为:

 $R = R_{\rm n} = 0.1 \,\Omega, \ f_{\rm s} = 80 \,\mathrm{kHz},$  $\tau_{\rm s} = 10^{-4} \, {\rm s}, \ \tau_{\rm f} = 5 \times 10^{-5} \, {\rm s},$  $K_{\rm PWM} = 0.325, \ k_{\rm r} = 0.0075,$  $k_{\rm w} = 0.01, \ k_{\rm f} = 0.95.$ 

假设仿真过程中,三相非线性负载在时间t从0s 到0.01 s期间处于平衡状态(等效为 $R_{\rm m} = 10^5 \Omega$ ); 在t从0.01 s到0.02 s期间,由于电网加入单相负载, 故负载处于不平衡状态(等效为 $R_{\rm m} = 10\Omega$ ); t在 0.02 s后负载恢复平衡状态. 随着负载状态的变化, 指令电流中的谐波成分也将随之改变,此时可调节 通用内模中的p值,保证较短的动态响应时间和较 高跟踪精度.调节方法如下:

通常对于此系统,负载平衡时,静止坐标系下指 令电流中几乎只有  $6l \pm 1$  次谐波, 此时可取p = 6, 缩短响应时间;当负载出现不平衡时,根据指令电 流的谐波总畸变率(total harmonic distortion, THD) 变大,判断除6l±1次谐波外,出现其他较大的奇次 谐波,因此调节p = 2.若指令电流的THD仍未明显 改善,判断可能有直流偏量引起了偶次谐波,这时 调节p = 1,可保证补偿精度.

图6和图7分别显示了电源基波频率fr为360Hz 和700Hz时,整个工作过程中,所提方法得到的g轴 补偿电流(Icq)对其指令电流(I\*cq)的跟踪波形和跟踪 误差( $E_{cq} = I_{cq}^* - I_{cq}$ ). 可以看出, 从t = 0开始经过 约1/6个指令周期过渡后, Icq便已紧跟I\*, 跟踪误差 很小; 在0.01 s≤t≤0.02 s时, 负载电流出现明显的 不平衡, I\*\*的谐波成分也发生了变化, 此时通过调 节p值,虽然过渡过程加长到1/2个指令周期,但跟踪 误差依然很小,保证跟踪精度;当 $t \ge 0.02$  s时,负载

电流恢复平衡,再调节p值,恢复较短的动态响应时间.即通过调节通用内模中p值,实现了对指令电流 谐波成分变化或系统工况变化的自适应.











另外,从图6和图7可知,通过调节通用内模中的 N值,实现了对电源基频变化的自适应,跟踪效果未 受电源电压基频变化的影响.

图8为 $f_r = 360$  Hz时, 在前述负载变化过程中, 基于5种不同的控制的跟踪误差( $E_{ca}$ )对比图. 前4种 方法, 即本文提出的控制系统, 传统PI控制, 奇次谐 波重复控制<sup>[16]</sup>和 $6l \pm 1$ 次谐波重复控制<sup>[18]</sup>, 采用A 相补偿电流跟踪误差( $E_{ca} = I_{ca}^* - I_{ca}$ )作比较,由于 基于DCT的重复控制方法<sup>[19]</sup>采用的是电源电流直 接控制策略,因此采用了A相电源电流与负载基波 电流之差( $E_{sa} = I_{sa} - I_{fpa}$ )作为跟踪误参与比较. 图中虚线圈出部分为跟踪中的过渡过程.5种控制 方法的仿真参数值如下:

1) 所提方法:

$$T_{\rm s} = 12.5\,\mu{\rm s}, N = 222, k_{\rm r} = k_{\rm w} = 0.01;$$

2) PI控制:

$$T_{\rm s} = 12.5\,\mu{\rm s}, k_{\rm p} = 0.00785, k_{\rm i} = 3.5;$$

3) 奇次谐波重复控制:

 $T_{\rm s} = 12.5 \,\mu {\rm s}, N = 222;$ 

4) 6l ± 1次谐波重复控制:

 $T_{\rm s} = 12.5\,\mu {\rm s}, N = 222$ ,比例系数 $K_{11} = 0.01$ ;

5) 基于DCT的重复控制:

$$T_{s} = 12.5 \,\mu s, N = 222,$$

$$N_{a} = 5, k_{p} = 0.006, k_{i} = 3,$$

$$N_{h} = \begin{cases} x | x = 6l \pm 1, l \ge 8 \}, & \text{for } x = 6l \pm 1, l \ge 8 \\ x | x = 6l \pm 1, l \ge 8 \} \cup \{1, 3\}, \text{for } x = 6l \pm 1, l \ge 8 \} \cup \{1, 3\}, \text{for } x = 6l \pm 1, l \ge 8 \} \cup \{1, 3\}, \text{for } x = 6l \pm 1, l \ge 8 \}$$

从图8(b)可看出: 基于传统PI控制的E<sub>ca</sub>全程都 很大, 表明此方法的稳态跟踪误差很大, 补偿效果 差, 其原因在引言中已说明. 而图8(a)(c)(d)显示出 基于这3种选择性重复控制的稳态E<sub>ca</sub>较PI控制都 小得多, 图8(e)则显示出基于DCT的重复控制的稳 态E<sub>sa</sub>也较小.

对比分析图8(a)与图8(c),图8(d)和图8(e)可知: 基于本文所提方法的跟踪误差在负载的不同状态均 较小,而且在负载平衡状态时,过渡过程可缩短 至1/6个指令周期.而基于奇次谐波重复控制的跟踪 误差在负载的不同状态也较小,但是其过渡过程始 终为1/2个指令周期,不能动态调节.基于6*l*±1谐 波重复控制的跟踪误差在负载平衡时与所提方法相 当,但负载不平衡时,由于其选择性或补偿范围不 能调节,因此这时*E*ca变大.从图8(e)可看出,由于含 有FIR滤波器,要采集*N*个输入值,故基于DCT重复 控制的收敛(过渡)过程必须是1个指令周期,不能动 态调节.而且由于其补偿范围决定于给定的有限集 合且重复控制输出后还需PI控制调节,因此其跟踪 误差略大.

总之,所提方法由于可通过调节p值,动态调节 动态响应时间和补偿范围,在负载状态变化时,其 跟踪效果最好.





#### 6.2 实验结果(Experimental results)

图9和图10分别为f<sub>r</sub>为360Hz和700Hz时基于 所提重复控制器的APF系统的A相补偿电流I<sub>ca</sub>和 A相电源电流I<sub>sa</sub>的实验波形.可看出,当负载变动 后,I<sub>ca</sub>的幅值增加,波形略有畸变,说明负载的不平 衡变动使指令电流中谐波成分增加,跟踪的补偿电 流也响应变化.而在负载变动后,I<sub>sa</sub>不但幅值增加, 而且略微变形,但基本保持了正弦性,证明所提重 复控制器随负载变化动态调整补偿范围的有效性.



图 9  $f_r = 360 \text{ Hz}$ 时基于所提控制器的补偿电流 $I_{ca}$ 和 电源电流 $I_{sa}$ 的实验波形

Fig. 9 Experimental results of  $I_{ca}$  and  $I_{sa}$  based on proposed controller as  $f_r = 360 \text{ Hz}$ 



图 10  $f_r = 700 \text{ Hz}$ 时基于所提控制器的补偿电流 $I_{ca}$ 和电源 电流 $I_{sa}$ 的实验波形

Fig. 10 Experimental results of  $I_{ca}$  and  $I_{sa}$  based on proposed controller as  $f_r = 700 \text{ Hz}$ 



Fig. 11 Experimental results of  $I_{sa}$  based on  $6l \pm 1$  repetitive controller as  $f_r = 360 \text{ Hz}$ 

图11显示了相同条件下,  $f_r = 360$  Hz时采用  $6l \pm 1$ 重复控制器后,  $I_{sa}$ 的实验波形.表2显示了分 别采用所提重复控制器与 $6l \pm 1$ 重复控制器后,  $I_{sa}$ 的THD比较.结合图11和表2可知,采用 $6l \pm 1$ 重 复控制器得到的 $I_{sa}$ 在负载的不平衡变动后,波形畸 变较大,电流毛刺变大,说明补偿效果变差,结果与 仿真分析的结论一致.另外,采用所提重复控制器 得到的 $I_{sa}$ 在高频率时其THD值略有增加,但仍满足 要求.证明了所提重复控制器能自适应电源频率的 变化.

表 2 两种方法电源电流 $I_{sa}$ 的THD的对比

Table 2 Comparison of THD based on

two controllers

| 控制器            | $f_{ m r}/{ m Hz}$ | THD   |
|----------------|--------------------|-------|
| 所提控制器          | 360                | 4.53% |
| $6l \pm 1$ 控制器 | 360                | 7.60% |
| 所提控制器          | 700                | 4.87% |

### 7 结论(Conclusions)

本文对变频电网中并联APF的补偿电流控制方 法进行了研究,结论如下:

1) 对于谐波源负载的不同状态, 可以动态调节

通用内模中的p值.通常p取值越大,内模的选择性 越强,补偿范围越窄,重复控制起效也越快.

2) 仿真对比和实验结果表明,提出的基于通用 内模的自适应复合重复控制策略与坐标变换相结合 具有根据系统或负载工况的变化动态调整动态响应 时间和补偿范围的优势,跟踪和补偿效果较好,同 时可以适应变频电网的工作环境.

### 参考文献(References):

- 吴敬兵, 罗安, 徐先勇, 等. 大功率混合有源电力滤波器的智能控制 策略 [J]. 电力自动化设备, 2010, 30(4): 36-41.
   (WU Jingbing, LUO An, XU Xianyong, et al. Intelligent control strategy of high-capacity hybrid active power filter [J]. *Electric Power Automation Equipment*, 2010, 30(4): 36-41.)
- [2] 王晓刚,谢运祥,帅定新.智能控制方法应用于APF的综述与展望 [J]. 电网技术, 2008, 32(8): 35 41.
  (WANG Xiaogang, XIE Yunxiang, SHUAI Dingxin. Overview and prospect on application of intelligent control methods to active power filters [J]. Power System Technology, 2008, 32(8): 35 41.)
- [3] DANIYAL H, LAM E, BORLE L J, et al. Hysteresis, PI and ramptime current control techniques for APF: an experimental comparison [C] // Industrial Electronics and Applications. Beijing: IEEE, 2011: 2151 – 2156.
- [4] 宫金武, 查晓明, 陈佰锋. 一种快速重复控制策略在APF中的实现和 分析 [J]. 电工技术学报, 2011, 26(10): 110-117.
  (GONG Jinwu, ZHA Xiaoming, CHEN Baifeng. Analysis and realization of a fast repetitive controller in active power filter system [J]. *Transactions of China Electrotechnical Society*, 2011, 26(10): 110-117.)
- [5] 李翠艳, 张东纯, 庄显义. 重复控制综述 [J]. 电机与控制学报, 2005, 9(1): 37-44.

(LI Cuiyan, ZHANG Dongchun, ZHUANG Xianyi. Repetitive control—a survey [J]. *Electric Machines and Control*, 2005, 9(1): 37 – 44.)

- [6] 全权,蔡开元. 非线性重复控制系统综述与展望[C] // 第三届中国导航、制导与控制学术会议. 北京:科学出版社, 2009: 487 493.
  (QUAN Quan, CAI Kaiyuan. A survey and perspective of nonlinear repetitive control systems [C] // 3th Chinese Guidance, Navigation and Control Conference. Beijing: Science Press, 2009: 487 493.)
- [7] KASAC J, NOVAKOVIC B, MAJETIC D, et al. Passive finitedimensional repetitive control of robot manipulators [J]. *IEEE Transactions on Control Systems Technology*, 2008, 16(3): 570 – 576.
- [8] 赵叶蕾,陈彭年. 控制方向未知的时变不确定系统的重复控制 [J]. 控制理论与应用, 2013, 30(6): 781 – 784.
  (ZHAO Yelei, CHEN Pengnian. Repetitive control for a class of systems with unknown time-varying parameters and unknown control direction [J]. *Control Theory & Applications*, 2013, 30(6): 781 – 784.)
- [9] DIXON W E, ZERGEROGLU E, DAWSON D M, et al. Repetitive learning control: A lyapunov-based approach [J]. *IEEE Transactions* on Systems, Man, and Cybernetics, Part B: Cybernetics, 2002, 32(4): 538 – 545.
- [10] 孙明轩, 王郸维, 陈彭年. 有限区间非线性系统的重复学习控制 [J]. 中国科学: 信息科学, 2010, 40(3): 433 – 444.
  (SUN Mingxuan, WANG Danwei, CHEN Pengnian. Repetitive learning control of nonlinear systems over finite intervals [J]. Scientia Sinica Informationis, 2010, 40(3): 433 – 444.)
- [11] 孙明轩, 王辉, 范伟云. 以幂次趋近的离散变结构重复控制 [J]. 控制 理论与应用, 2012, 29(11): 1426 – 1432.
  (SUN Mingxuan, WANG Hui, FAN Weiyun. Discrete-time variablestructure repetitive control with power-rate reaching [J]. Control Theory & Applications, 2012, 29(11): 1426 – 1432.)
- [12] LIMONGI L R, BOJOI R, GRIVA G, et al. New control scheme for single-phase active power filters [C] //Power Electronics Specialists

Conference. Rhodes: IEEE, 2008: 2894 - 2900.

- [13] 唐欣, 罗安. 基于重复控制的有源滤波器的三态滞环控制方法 [J]. 电工技术学报, 2009, 24(9): 134 – 139.
  (TANG Xin, LUO An. Repetitive control based three-state hysterisis control of a single-phase active filter [J]. *Transactions of China Electrotechnical Society*, 2009, 24(9): 134 – 139.)
- [14] 贾要勤, 王晓滨, 杨强. 并联有源电力滤波器的自适应重复控制 [J]. 电工技术学报, 2011, 26(10): 118 – 122.
  (JIA Yaoqin, WANG Xiaobin, YANG Qiang. Adaptive repetitive control of parallel active power filter [J]. Transactions of China Electrotechnical Society, 2011, 26(10): 118 – 122.)
- [15] RODRIGUEZ A, GIRON C, SAEZ V, et al. Analysis of repetitivebased controllers for selective harmonic compensation in active power filters [C] // 36th Annual Conference on Industrial Electronics Society. Glendale: IEEE, 2010: 2013 – 2018.
- [16] COSTA-CASTELLO R, GRINO R, FOSSAS E. Odd-harmonic digital repetitive control of a single-phase current active filter [J]. *IEEE Transactions on Power Electronics*, 2004, 19(4): 1060 – 1068.
- [17] ESCOBAR G, MARTINEZ P R, LEYYA-RAMOS J. Analog circuits to implement repetitive controllers with feedforward for harmonic compensation [J]. *IEEE Transactions on Industrial Electronics*, 2007, 54(1): 567 – 573.
- [18] ESCOBAR G, HERNANDEZ-BRIONES P G, MARTINEZ P R, et al. A repetitive-based controller for the compensation of  $6l \pm 1$  harmonic components [J]. *IEEE Transactions on Industrial Electronics*, 2008, 55(8): 3150 3158.
- [19] MATTAVELLI P, MARAFAO F P. Repetitive-based control for selective harmonic compensation in active power filters [J]. *IEEE Transactions on Industrial Electronics*, 2004, 51(5): 1018 – 1024.
- [20] GARCIA-CERRADA A, PINZON-ARDILA O, FELIU-BATLLE V. Application of a repetitive controller for a three-phase active power filter [J]. *IEEE Transactions on Power Electronics*, 2007, 22(1): 237 – 246.
- [21] RODRIGUEZ A, GIRON C, RIZO M, et al. Comparison of current controllers based on repetitive-based control and second order generalized integrators for active power filters [C] // Industrial Electronics 35th Annual Conference. Porto: IEEE, 2009: 3223 – 3228.
- [22] RAMOS G A, OLM J M, COSTA-CASTELLO R. Adaptive compensation strategy for the tracking/rejection of signals with time-varying frequency in digital repetitive control systems [C] // Emerging Technologies & Factory Automation. Mallorca: IEEE, 2009: 1–7.
- [23] 陈菊明, 刘锋, 梅生伟. 基于无源化方法的三相四线制APF控制器策略 [J]. 电力系统自动化, 2006, 30(8): 32 37.
  (CHEN Juming, LIU Feng, MEI Shengwei. Passivity-based controller for three-phase four-wire APF [J]. Automation of Electric Power Systems, 2006, 30(8): 32 37.)
- [24] 孙驰,魏光辉,毕增军. 基于同步坐标变换的三相不对称系统的无功 与谐波电流的检测 [J]. 中国电机工程学报, 2003, 23(12): 43 – 48.
  (SUN Chi, WEI Guanghui, BI Zhengjun. Detection for reactive and harmonics currents of unbalanced three-phase systems based on synchronous reference frame transformation [J]. *Proceedings of the CSEE*, 2003, 23(12): 43 – 48.)
- [25] SHAW F R, SRINIVASAN K. Discrete-time repetitive control system design using the regeneration spectrum [C] // American Control Conference. Boston: IEEE, 1991: 2628 – 2633.
- [26] MI-CHING T, WU-SUNG Y. Design of a plug-in type repetitive controller for periodic inputs [J]. *IEEE Transactions on Control Systems Technology*, 2002, 10(4): 547 – 555.

作者简介:

**高 峰** (1975-),男,博士研究生,主要研究方向为电力电子技

术、有源电力滤波器, E-mail: world\_gao@163.com;

**林 辉** (1957-), 男, 教授, 博士生导师, 主要研究方向为电机调速、迭代学习控制理论, E-mail: linhui@nwpu.edu.cn.