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Stability of non-Lipschitz continuous cascaded systems and
its application
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(1. School of Electrical and Information Engineering, Jiangsu University, Zhenjiang Jiangsu 212013, China;
2. Electrical and Computer Engineering Department, California State University, Northridge 91330, USA)

Abstract: The local/global Lipschitz continuity is always required when considering the stability of the cascaded sys-
tems. Being different from the exiting methods proposed in the literature, we give a method to handle the non-Lipschitz
continuous cascaded systems. By using the definition of iISS (integral input-to-state stability), the Lyapunov-like condi-
tions for global stability of non-Lipschitz continuous cascaded systems are derived. Then, based on this, the finite-time
stability for non-Lipschitz continuous cascaded systems is further studied. The stability analysis results are applied to the
control design problem for a class of cascaded systems with upper-triangular deriving subsystem. Finally, some examples
are proposed to validate the effectiveness of the proposed results.
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1 Introduction

To verify the stability of a nonlinear control system,
it is usually required to construct a Lyapunov function,
while such a kind of Lyapunov functions are not easy
to find, especially for some complex nonlinear systems.
According to [1], if we can transform the nonlinear sys-
tem into a system with cascaded structure, the controller
design and stability analysis will become much easy. In
this case, instead of looking for a Lyapunov function for
the overall system, we only need to investigate the sta-
bility properties of two subsystems separately and ex-
ploit the structure of the interconnection.

Since the cascaded design can be used to reduce
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the complexity of controller design and stability analy-
sis, the research on cascaded systems has been attracted
much attention in recent years and various methods
have been proposed in the literature (see, e.g., [2—11]
and the reference therein). Among them, the representa-
tive methods can be summarized as Lyapunov method,
ISS (input to state stability, introduced in [12]) method,
passivity method, etc. The Lyapunov method has been
widely used for control design problem of cascaded sys-
tems, and tremendous results have been obtained. This
method is first applied to analyze autonomous cascaded
systems, such as [3,7, 13]. Later, it has also been ap-
plied to global stability of non-autonomous systems in
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[10,14].

Another effective method is the ISS theory since
it is an effective tool for verifying the boundedness of
the trajectories. It is stated in [12] that when the driv-
ing subsystem is globally asymptotically stable, the cas-
caded system is globally asymptotically stable under the
condition the driven subsystem is ISS with the states
of the driving subsystem. In [9, 15], the partial-state
feedback controllers are developed for global stabiliza-
tion of cascaded systems by utilizing ISS properties.
Later, it is pointed out in [16] that the ISS properties, to
some extent, are restrictive. To this end, the integral ISS
(iISS) property is studied for a class of nonlinear time-
invariant cascaded systems in [2, 17], and some suffi-
cient conditions for the preservation of the iISS property
under a cascaded interconnection are presented. On the
other hand, the passivity method is also an effective tool
to analyze the stability of the cascaded systems. Two
control schemes for a nonlinear system in cascade with
a linear system is derived based on passivity property
in [18] and [19], respectively. In [18], the analysis is
carried out for the case of partially linear composite sys-
tems whose linear system is relative degree one. Then
the results in [18] are generalized in [19] with the linear
system being relative degree than one.

However, as can be seen from the above literature,
all the mentioned results are based on one condition,
i.e., the local or global Lipschitz continuity of the cas-
caded systems. It should be pointed out that there are
many cascaded systems, which are not locally/globally
Lipschitz continuous. This mainly attributes to two as-
pects. On one hand, there are many non-Lipschitz con-
tinuous dynamic systems, such as the frequencies of
the oscillators considered in [20], which is apparently
non-Lipschitz continuous when using cascaded method
to test stability. On the other hand, to improve the
disturbance rejection property, the non-smooth terms
are always introduced in the controller, such as in [8].
In this circumstance, the closed-loop cascaded sys-
tems are also non-Lipschitz continuous. For the above
mentioned non-Lipschitz continuous cascaded systems,
the existing methods only for locally/globally Lipschitz
continuous systems can not be applied directly to con-
trol design or stability analysis problems.

In this paper, we will propose a method to deal
with the stability analysis problem for a class of non-
Lipschitz continuous cascaded systems. By imposing
the iISS assumption on the driven subsystem, sufficient
conditions are derived to ensure the global asymptotic

stability of the cascaded systems. Then, we also show
that the cascaded system is globally finite-time stable
if the zero dynamics of the driven subsystem and the
driving subsystem are globally finite-time stable. Mean-
while, based upon the homogeneous theory!?!l, the pro-
posed results are applied to stabilize a class of cascaded
system with the driving subsystem having an upper-
triangular structure, and show that the stabilization of
the driving subsystem implies stabilization of the whole
cascaded system.
2 Notations and definitions

Notation A continuous function f : R~y — R>¢
is of class IC (f € K), if it is strictly increasing and
f(0) = 0. A continuous function g : R>y — Rx
is of class £ (¢ € L) if it is decreasing and tends
to zero as its argument tends to infinity. A function
h: Rsy x R>o — Rx¢ is said to be a class KL func-
tion (h € KL) if h(-,t) € K for any t € R, and
h(s,-) € Lforany s € Rx.

Then, we introduce the iISS definition for non-
Lipschitz continuous systems.

Consider the following nonlinear system

&= f(z,u),z € R",u € R™, (D

where f(z,u) : R"*™ — R" is non-Lipschitz con-
tinuous but Holder continuous. The Holder continuity
guarantees the existence of the solution, while it can not
guarantee the uniqueness of the solution. Note that the
conventional iISS is defined only for locally Lipschitz
continuous systems. Therefore, we can not apply the
conventional iISS to the non-Lipschitz continuous sys-
tem directly.

For system (1), we let the set U(xg) including all
the solutions denoted by x(t, () from the the initial
state x( in forward time. Then by extending the iISS
definition in [22], we have the iISS definition for sys-
tem (1) as follows.

Definition 1 System (1) is said to be iISS if there
exist functions §(-,¢t) € KL and v,(-),7%=(-) € K
such that, for all x5 € R™ and v € R™, each solution
x(t,xo) € U(xp) is defined for ¢ > 0 and satisfies

[t o) $§/3(Hon,t)-+-71(JZ'72(HU(S)H)d8)-

Definition 2 It is called (cv, p1)-iISS pair, if there
are a C'* positive-definite and proper Lyapunov function
V(x) : R" — R, and two continuous positive-definite
functions «(-) and p(-) € K such that

V@)l < —adllz])) + u(lull)-

According to Theorem 1 in [16], if there exists a
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(ct, p)-iISS pair for system (1), then system (1) is iISS.
3 Main results

In this paper, we consider the following cascaded
systems
&= f(z,y), (2a)
y=29(), (2b)
with x € R",y € R™ and f(z,y),g(y) are Holder
continuous in their arguments.

Regarding the state of driving subsystem (2b) as
the input of driven subsystem (2a), by Sontag’s ISS
theory!!?!, the cascaded system (2) is globally asymp-
totically stable if subsystem (2a) is ISS and subsys-
tem (2b) is globally asymptotically stable. It implies
ISS+GAS=GAS. However, if ISS property of driven
subsystem (2a) is relaxed to be iISS, the above prop-
erty will not hold, i.e., iISS+GAS# GAS. To ensure the
global stability of system (2), some additional condi-
tions are also required, such as/>'%1. However, it can
be observed from the literature that almost all the re-

2161 require that the vec-

sults for system (2) including!
tor fields at least should be locally Lipschitz continuity.
If the cascaded systems are not local/global Lipschitz
continuous, these methods can not be applied directly.
In this paper, we will focus on deriving some suffi-
cient conditions in terms of Lyapunov-like conditions to
guarantee the global stability of the non-Lipschitz con-

tinuous cascaded system (2).
3.1 Global asymptotical stability based on iISS

We first show that under the iISS property for sub-
system (2a), some Lyapunov-like sufficient conditions
will be proposed to guarantee the global asymptotical
stability of cascaded system (2).

Theorem 1 Assume that there is a («, p)-iISS
pair for subsystem (2a) and subsystem (2b) is globally
asymptotically stable. If there exist a constant k, a C'!
positive-definite Lyapunov function V5(y), a continu-
ous positive-definite function w(y) and a region {2 of
the origin such that for Vy € 2\ {0},

Va()lany < —w(y), p(llyll) <

then the cascaded system (2) is globally asymptotically
stable.

kw(y), (3)

Proof Since there is a (v, pt)-iISS pair for subsys-
tem (2a), it can be concluded that there exists a proper
and positive-definite Lyapunov function V; (z) such that

Vi(z) < —a(llzl) + u(lyl)- @
Let V(z,y) = Vi(z) + 2kVa(y), k > 0 and

Q={(z,y):x e R", ye 2\{0}}.
Then, by (3) and (4), we have

Vi(z,y) < —a(llz]) — kw(y), Y(z,y) € Q.
By strong stability theorem [23], system (2a)-(2b) is lo-
cally stable. Consequently, there exists an attractive re-
gion for system (2a)-(2b), denoted by

Q1 ={(z,y)" : =] <ri,llyll <ri,r >0}

To prove the globally asymptotic stability, we only need
to show the global attractivity.

First of all, we will prove that the states will con-
verge to the region (J; from any initial state. Assume
that the trajectory of cascaded system (2a)-(2b) starts
from the initial state (xg, yo). Note that system (2b) is
globally asymptotically stable. It is clear that there exist
a time instant T and a ball of the origin denoted by

Ql = {y : ”yH < T, 71 > T2 > 0}7
such that
y €, vVt > T. (5)

Next, we show the state x will not escape to in-
finity in a finite time. Note that the state y is always
bounded. It is clear that there exists a constant y such
that u(||ly||) < . Then, by (4), we have

Vi(z) < pdllyll) <.
Taking an integration from both sides of the above in-
equality, one has

Vi(z(t)) < Vi(z(0)) +~t,Vt > 0. (6)

It implies that the state of system (2a) will not escape to
infinity in a finite time.

In the following, we will prove the states will fur-
ther converge to the region (); in a finite time. Note
from (5) that for ¢ > 77, the state y enters and stays
in the region (2. In addition, by (6), we know the state
x is bounded during the time interval [0, 77]. With this
in mind, taking the derivative of V'(z, y) along system
(2a)-(2b) again, we get for t > T,

V(a,y) <
—a([lz]]) = 2kw(y) + p(llyl) <
—a(fla]) - kw(y), ¥(z,y) € R" x 21,

This implies that there exists a time instant 75 > T3
such that fort > T5

xz(t) e S={x:||z|]| < re}. (7)

In conclusion, by (5) and (7), when ¢ > T5, the states x
and y will converge to the region

SU = {(z,y): [lzl| < 7o lyll <72}
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Since ry > 7o, itis clear that the set S U (2, is included
in the set (01, which also shows that the set S U (2, is
an attractive region. Finally, the states will converge to
the origin. This completes the proof.

Remark 1 When the driven subsystem (2a) is
iISS, some results on global stability of cascaded sys-
tem (2) have already been reported in [2, 16]. However,
it can be observed that a precondition for the meth-
ods proposed in [2, 16] is the locally Lipschitz conti-
nuity. Consequently, these methods can not be applied
to the non-Lipschitz continuous cascaded system (2)
directly. As a matter of fact, when system (2) satis-
fies local Lipschitz continuity, a similar result to The-
orem | can be found in [2]. Under the locally Lips-
chitz continuity assumption, if we replace the condition

Y
(vl < PO e
Yy

0,Vy € {2, Theorem 1 will reduce to the result in [2].
In this paper, we relax the locally Lipschitz continuity
to locally Holder continuity. Noting that local Lipschitz

kw(y), Yy € 2 with lin[l)
y*}

continuity implies the local Holder continuity, the result
proposed in this paper can also be applied to the system
considered in [2].

To apply Theorem 1, it is usually required to con-
struct some Lyapunov-like conditions for subsystems
(2a) and (2b). However, in many cases, it is not easy
to construct such Lyapunov-like conditions as (3) and
(4). For example, it is difficult to find a Lyapunov func-
tion for testing the following system:

T = T2,

/s (®)
1'2—_.1‘1

—a”,
although it is globally asymptotically stable. To this
end, we relax the conditions given in Theorem 1 and
propose the following theorem, whose proof is the same
as that of Theorem 1.

Theorem 2 Assume that subsystem (2b) is glob-
ally asymptotically stable and there exist two C*
positive-definite Lyapunov functions V;(z) and V5(y),
a constant k > 0 and a region {2 of the origin such that
for V(z,y) € R**™

V()| 20y < —a(2) + fi(y), 9)
and for Vy € £2\{0}

Va(@)len < —@(y), ply) <ko(y),  (10)
with positive-definite function &(z) and semi-positive-
definite functions w(y) and fi(y). Then the cascaded
system (2) is globally asymptotically stable.

The advantage of Theorem 2 lies in that the func-
tions fi(y) and w(y) are not required to be positive def-

inite. This property leads to two advantages. Firstly,
there is no need to find a positive-definite function
to dominate the semi-positive-definite function i(y),
which is required in Theorem 1. Secondly, it is not re-
quired to find the positive-definite functions V3 (y) and
w(y) to test the stability of subsystem (2b). In many
cases, we can only obtain a semi-positive-definite func-
tion w(y). To this end, compared with Theorem 1, this
property allows Theorem 2 to be applied for a more gen-
eral class of cascaded systems.

On the other hand, we can observe that the exist-
ing control methods proposed in the literature lead to at
best the exponential convergence of the closed-loop sys-
tems. Compared with these existing control methods,
it has been proved in [24-26] that the finite-time con-
trol method will yield better convergence performance
and disturbance rejection property. Therefore, finite-
time control of nonlinear systems has attracted much
attention in recent years, e.g., [24,26-28]. In this sec-
tion, based on the iISS property of driven subsystem,
we will show an interesting result on finite-time stabil-
ity for cascaded system (2).

Theorem 3 Assume that there is a (a, p)-iISS
pair for subsystem (2a). If subsystems & = f(z,0) and
(2a) are globally finite-time stable, the cascaded system
(2) is globally finite-time stable.

Proof Note that subsystem (2a) is iISS with re-
spect to the state of subsystem (2b), and subsystem (2b)
is globally finite-time stable. Similar to the local stabil-
ity proof in Theorem 1, we know that the cascaded sys-
tem (2a)-(2b) is locally stable. Since the local stability
plus the global finite-time attractivity implies the global
finite-time stability, to prove the global finite-time of
system (2a)-(2b), we only required to prove the global
finite-time attractivity.

From the global finite-time stability of subsystem
(2b), it can be concluded that there exists a time instant
t] < 400 such that all the solutions from the initial
state o, denoted by y(t, yo), satisfy

y(tayO) = 07 vt = t;
In addition, consider that there is a (cv, p)-iISS pair for
subsystem (2a), which indicates there exist positive-

definite Lyapunov function V;j(z), positive-definite
functions «/(+) and p(+) € K such that

Vi(@)l @y < —a(llz]]) + u(llyl)-
This together with the global finite-time stability of sub-

system (2b) implies that the state = will not diverge to
infinity in a finite time. Thus, the state of subsystem (2a)
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is bounded during the time interval [0, ¢;]. As a conse-
quence, for ¢ > t7, system (2a) reduces to subsystem
& = f(z,0), which is a globally finite-time stable sys-
tem. Obviously, the state = will converge to the origin
in finite time. This completes the proof of Theorem 3.

3.2 Stabilizing a class of cascaded systems

The control design problem for cascaded system
has been paid considerable attention in the literature.
Nevertheless, almost all the results are focused on the
cascaded system with a lower-triangular driving subsys-
tem. There are no results on the stabilization of cas-
caded systems with upper-triangular driving subsystem.
The reason may be that it is not easy to verify the stabil-
ity of the cascaded system with upper-triangular driv-
ing subsystem. It should be noted that there are many
dynamical systems whose driving subsystems possess
the upper-triangular structure, for example, the verti-
cal take-off landing aircraft attitude control system [29].
Consequently, it is important to consider the control de-
sign problem for cascaded system with upper-triangular
driving subsystem.

Consider the following cascaded systems described
by

T = f(x,y), (11a)
=Yz + 912y 5 Ym),s
Yo =Ys+ 92(Ys, s Ym)s

: (11b)

Ym—1 = Ym + Gm—1(Ym),
Ym = U,
where f(z,vy) and ¢;(Yir 1, ,Ym), i =1, ,m—1
are non-Lipschitz continuous functions. The driving
subsystem (11b) satisfies the following assumption:
Assumption 1 In a neighborhood of the origin,

the following holds

Qim)

"y y7rL)‘< P(’yz_H Qi+l .. '+‘y7n
'l-:]_’...7m_1’ (12)

’gi(yi-i-la s

?

for positive constants p and g;; satisfying

G > 50, i=1 - m—1, j=it1, - m.
j (13)
where r; > 0, ¢ = 1,--- ,m are defined as
m=1Lry=r+7>0 i=1,---'m (14)

with a positive constant 7 being a ratio of even and odd
numbers.

In addition, the driven subsystem (11a) satisfies the

'b(2) = O(a(x)) means there exists positive constant ¢ such that 1irr%J
T—

following condition:

Assumption 2 For system (1la), there exist
positive-definite functions a(z) € C° and ju(y) =
O(lylx) ' with

ylla = (g™ + - 4 lym )2,
such that
Vi(z) < —alz) + iy).

By Assumption 2, it is obvious that subsystem (11a)
is iISS with respect to the state of subsystem (11b).

Different from the considered cascaded systems in
the literature, subsystem (11b) has an upper-triangular
structure. It implies the conventional control design
methods can not be applied to system (11). In this sub-
section, we will design a controller for system (11) un-
der Assumptions 1-2. Before giving the main result, we
first list the following two lemmas.

Lemma 1% There exist a small constant € > 0
and gains 3,, > B,,_1 > --- > (1 > 0 such that the
following controller

U= um(Ym(t)) =

Tm+1

_ﬁmo_ m (ym - um—l(Ym—l))u (15)

where
Ti41

uo = 0,u;(Yi(t))=—pioc 7 (yi—wi—1(Yiz1)),
1=1,--- . m-—1,

€" sgny, for |y| > €,
oly) = {
Y, for |y| <e

globally stabilizes system (11b).

Remark 2 Since 7 is aratio of an even integer and
an odd integer, the parameters 7; in controller (15) have
to be ratio of positive odd integers. As a matter of fact,
similar to [4], we can extend 7 to be any real number
and relax this restriction by defining

< - >%=sgn(4)]-|Y a>0. (16)

Then controller (15) can be rewritten as

Tml

u=—PFn < U(ym - um—l(Ym—l)) > rm

Lemma 28! Suppose that the positive-definite
function v(z) : R™ — R is homogeneous of degree r
with respect to the dilation (ry, - - - , 7, ). If the positive-
definite function ¢ (x) : R" — R is also homogeneous
of degree r with respect to the dilation (71, ,7,),
then there exist positive constants ¢ and ¢ such that
clz) < vlw) < culz).

Then, we have the following theorem.
Theorem 4 Under Assumptions 1-2, controller

bz) _
a(z) ¢
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(15) globally stabilizes cascaded system (11).

Proof Note that Assumption 2 implies condition
(9). Then, by Lemma 1, it is clear that the closed-loop
system (11b)(15) is globally asymptotically stable. Ac-
cording to Theorem 2, to prove the global asymptotical
stability of the closed-loop cascaded system (11)(15),
we only need to show condition (10).

Let the candidate Lyapunov function as

Tl 2rp—T o 2rm =7

V _ - "1 72

5(y) 27,7”_7_51 + 2Tm_7—§2 +
Tom 2rim =7
T a7n
2r’m - T
with
yik:()v Slzyla yf /81 1§z 1 )

According to Lemma 2.1 in [30], with a proper selection
of §;’s satisfying 3,, > Bn_1 > -+ > (31, the deriva-
tive of Lyapunov function V;(y) along the trajectory of
the multiple integrators

Y ="Yo5 s Um = U (18)
yields
VZ(y) < 7(5?“’“/761 + §2T"L/T"L 1 é-QT’m /rm)
(19)

By (17) and (19), the derivative of V5(y) along sys-
tem (11b) under controller (15) is

Vay) < = (&7 o T )+
Wi)g1(-) + -+ + W1 () gm-1(:),

(20)
Vs (y
where W;(y) = 62(),i:1,~-- m — 1. By ho-
yi
mogeneous definition?!l it is easy to verify for i =
2, ,m,
yr(EMyr, e e" i) = €yl (Y, L Y1)
and
%(grlyb e Tmy ) — 527‘m—7"/2(y>.
In addition, we can also verify that
ey, e"y) =& (Y, L), 1)
Wi(erl Y1y 75T’”’ym) = 527’771_7—_” Wz(y)
Meanwhile, according to Assumption 1, one obtains
|gi(yi+17 e aym)| <
P(Yiga |7+ + o Y| T ) X
(|yi+1 9iit+1— L+1 ++|ym qim — ;jy—zl)
Denote
27‘7711 27‘771, 27‘m
pr(y) =& + -+ 60 +Ea

%)_f__f_

p2(y) = Wi(y)(|y2 B + -+ Ym
Wmfl(y)|ym

™m

Taking (21) into account, we can easily verify that both
p1(y) and p,(y) are homogeneous of degree r = 2r,,
with respect to the dilation (7q,--- ,7,,). By Lemma
2, it can be concluded that there exists a positive con-
stant ¢ such that po(y) < ép;(y). With the help of this

relation, (20) becomes

Va(y) <

m—1 . 17£
pp?(y) Z (|yi+1 DI TS 4+ .4
1) (1) <

m—

cpp1(y) E ([%i42

=1

Tig1
Givit1™ Titl oo

T

Gim——it )

p1(y)- (22)

T2+1

Y

Note from (13) that g;; > . So we can find a

. J
region
20 ={y : Valy) < Ao},

with A\g > 0 such that for all y € QO,

m—1

3 (a4 ey < 1/(20),

i=1

By (22), it can be clearly seen that for all y € (2,
Va(y) < —pi(y) /2. (23)

From Assumption 2, we know fi(y) = O(||y||X™) as
y converges to zero. It implies there exists a constant
¢ > 0 such that

H (“;’) — ¢ (24)

v=0 [ly[|
Note that ||y||%X™ is homogeneous of degree r = 27,.

By Lemma 2 again, we get that there exist positive
constants ¢ and ¢ such that ||y| > ¢pi(|lyl]) and

’27“7,l

llyl|Z™ < ep1(|ly|]). It implies there exists ¢ > 0 such
that
2T m
tim 12" _ (25)
v=0 p1(y)

It can be concluded that there exists a region {2 C 2
of the origin such that for Vy € {2,
{ Iy X < 2¢p1(y) = 4¢p1(y),

(26)

Va(y) < —%pl (y) = —p1(y).

Combining Assumption 2 and (26), it can be concluded
from Theorem 2 that the closed-loop system (11),(15)
is globally asymptotically stable.

Remark 3
4 is partially motivated by [4]. However, there are two

It should be pointed out that Theorem



792 Control Theory & Applications

Vol. 31

main differences between [4] and this paper. The first
one is that the driving subsystems are different. It can be
clearly observed that the driving subsystem of the con-
sidered cascaded system in [4] has a lower-triangular
structure, while the driving subsystem of the system
considered in this paper is an upper-triangular system.
The second one is that the assumptions for the driven
subsystems are different. The former one is based upon
the homogeneous assumption, and the latter one takes
the iISS property as the precondition.

4 Illustrative examples

In this section, we will give four examples to show
the effectiveness of the above mentioned results.

First of all, an example will be proposed to illus-
trate Theorem 1. Similar to [2], the Lyapunov function
Va(y) in Theorem 1 is not required to be differential in
the origin. This brings some flexibility in stability anal-
ysis, which can be reflected in the following example.

Example 1 Consider the following system

. 1/3
Ty = —T1+ 1Y
.1 - 31/5 191 > (27)
Y=Y, -
Firstly, it can be verified that the subsystem gj; = —y:f/ b

is globally asymptotically stable. Choose Vi(z;) =
1 3

§ln(1 + 22) and Va(yy) = ny/:g. Taking derivatives
of Vi(x1) and V5(y;) along system (27) yields

. B i —z?
Vi(zy) = 11+x1%1 S 1+;% + |y |13
and

Va(yr) = —yi/ "

Note that 4/15 < 1/3. We conclude that there exists a
small region {1 : [|y1]| < 1} such that 31/ > y;/%.
According to Theorem 1, the cascaded system (27) is
globally asymptotically stable.

Then, we will give an example to verify Theorem 2.

Example 2 Consider the following system

&, = —arctan(z;) + x1y§/3,

yl = Y2,
= 0l

Usually, it is not easy to find the proper positive-

(28a)

(28b)

definite fucntions V5(y) and w(y) to test the global
asymptotic stability of the driving subsystem (28b), al-
though it is globally asymptotically stable. Therefore,
Theorem 1 can not be used to handle cascaded system
(28). However, we can show in the sequel that the sta-
bility analysis of cascaded system (28) is solvable by
Theorem 2.

1
Let ‘/1(131) = 5111(1 + LL’%) and ‘/2(y17y2) =

5 1
gyfﬁ + iyg. Taking the derivative of V;(x;) along

the driven subsystem (28a) yields

: —ay arctan(z;) + 22y5°
it + "
1
—a(z) + ay), (29)
t
with a(z) = o arctan(z, ) and fi(y) = |y2|*/®. In

1+ 22
addition, we also have for Vy € R?,

Va(y) =y ys + ya(—”° —40'%) =

—y? = —a(y), (30)

with w(y) = yg/ ®_ Note that the driving subsystem
(28D) is globally asymptotically stable. By letting {2 =
{y : |lyl| <1}, itis clear that

w(y) = i(y), Yy € 0.
Till now, we have verified the sufficient conditions pro-

posed in Theorem 2. According to Theorem 2, cascaded
system (28) is globally asymptotically stable.

The following example shows how to verify the
finite-time stability of a cascaded system by Theorem3.

Example 3 Consider the following academic ex-

ample
. 1/3
T1 =2To — 2] + Toy1,
{ '1 - 2 1 s 2Y1 (la)
T2 = —T1 — $2 )
n=—u" (31b)

1
By choosing Vi (71, z3) = iln(l + 2?2 4+ 22), we have

x‘i/3+x;‘/3

V B T1T2Y1
1($1;m2)|(31a)__1+$%+x% 1—1—3}%—1—:{,‘% S
4/3 4/3
"+
1 2 m

Tz tad
It follows that the driven subsystem (31a) is iISS. In ad-
1
dition, taking Vy(z1, z2) = 5(93% + 22) and V(y;) =
1
3 y?, according to the finite-time Lyapunov theory in

[24], it is easy to verify that subsystem

. 1/3
$1—ZC2—$1 )

. 1/3
To=—T1 — X",
and (31b) are globally finite-time stable. By Theorem

3, cascaded system (31) is globally finite-time stable.

Finally, we show how to use Theorem 4 to design a
controller for a cascaded system with upper-triangular
driving subsystem.

Example 4 Consider the following system
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1/3, 2

T =—Ts— X1+ T ,

R (32a)
To =1 — Ty + X2Ys,

9= ys + 3+,

Y2 = Y3, (32b)
y'3:u.

LetT = 2. Ityieldsr; = 1,7 = 3,73 = 95,1y = T.
By taking qio = 3/2 > 1ro/ry = 1,qu3 = 2/3 >
ro/T3 = 3/5, one can easily verify that Assumption 1
holds. Then, the controller can be designed as

u=—P307 (ys + B0 (y2 + P10°(11))). (33)
1
In addition, let V; (21, 22) = §ln(1 + 22 + 22). Tak-

ing the derivative of V; (1, z5) along subsystem (32a)
yields

: —a? — 25 + 21y} + ady
Vi(z,22) = D) B <
1+ 27+ 235
2 8/3
Tty 4 2
z2 4+ 2>/3
Leta(x) = ——"2 _ 7i(y) = y* + 2. Note that
(z) 1H:%Jﬁ,cg,/ut(y) Ya + U3

lylla =y + [y=l>7 + [ys77*)'/? =
(lya® + |yl + |ys[7%)'/2.

It can be easily verified that ji(y) = O(]|y||% ), which
implies Assumption 2 holds. By Theorem 4, we con-
clude that system (32) can be globally stabilized by con-
troller (33).

5 Conclusion

This paper has studied the stability analysis prob-
lem for a class of non-Lipschitz continuous cascaded
systems. During the stability analysis, the iISS prop-
erty of the driven subsystem plays an important role.
It has been shown that the iISS of the driving sub-
system, global stability of the driving subsystem plus
a matching condition imply the global stability of the
non-Lipschitz continuous cascaded systems. Further-
more, a special case of global stability, i.e., the finite-
time stability for the non-Lipschitz continuous cascaded
system are also studied. Finally, as an application, the
control design problem for a class of cascaded system
with driving subsystem being upper-triangular structure
has been presented.

References:

[1] LORIA A,PANTELEY E. Cascaded nonlinear time-varying systems:
analysis and design [M] // Lecture notes in Control and Information
Sciences. Berlin, Germany: Springer-Verlag, 2005: 23 — 64.

[2] CHAILLET A, ANGELI D. Integral input to state stable systems in
cascade [J]. Systems and Control Letters, 2008, 57(7): 519 — 527.

[3] CHEN Z, HUANG J. Global robust stabilization of cascade polyno-
mial systems [J]. Systems and Control Letters, 2002, 47(5): 445 —
453.

[4] DING S H, LIS H, ZHENG W X. Nonsmooth stabilization of a class
of nonlinear cascaded systems [J]. Automatica, 2012, 48(10): 2597 —
2606.

[5] HEMERN, YOlelss, R, —REMANGIARLIEYHR R G 2R
SE 1. FERIEE S, 2000, 26(1): 35 - 38.

(DONG Yali, FAN Jiaojiao, QIN Huashu. Global stabilization of a
class of multi-input cascade switched nonlinear systems [J]. Control
Theory & Applications, 2009, 26(1): 35 — 38.)

[6] AL E AR, B AR, 5 — SR I aF) SR g il R 4t
M H oo BUE [7]. LR 5, 2013, 30(6): 753 - 759.

(DU Zhaoping, YUE Dong, HU Songlin, et al. H-infinity stabiliza-
tion for a class of singular cascade control systems with state delay
[J1. Control Theory & Applications, 2013, 30(6): 753 —759.)

[71 JANKOVIC M, SEPULCHRE R, KOKOTOVIC P V. Constructive
Lyapunov stabilization of nonlinear cascade systems [J]. I[EEE Trans-
actions on Automatic Control, 1996, 41(12): 1723 — 1735.

[8] LIS H, TIAN Y P. Finite-time stability of cascaded time-varying sys-
tems [J]. International Journal of Control, 2007, 80(4): 646 — 657.

[9] LIN W, PONGVUTHITHUM R. Global stabilization of cascade sys-
tems by C© partial-state feedback [J]. IEEE Transactions on Auto-
matic Control, 2002, 47(8): 1356 — 1362.

[10] PANTELEY E, LORIA A, SOKOLOV A. Global uniform asymp-
totic stability of cascaded non-autonomous non-linear systems: ap-
plication to stabilisation of a diesel engine [J]. European Journal of
Control, 1999, 5(1): 107 - 115.

[11] gk¥a, 452 ag. — 28 8 e 5 4 R 46 (M A 4k B¢ it Backstepping /7
2 (1], FEHlER 5N, 2005, 22(3): 481 - 486.

(ZHANG Yan, LI Shaoyuan. Optimization design for a class of cas-
cade control systems: backstepping approach [J]. Control Theory &
Applications, 2005, 22(3): 481 — 486.)

[12] SONTAG E. Smooth stabilization implies coprime factorization [J].

IEEE Transactions on Automatic Control, 1989, 34(4): 435 — 443,

[13] CHEN Z. A Lyapunov’s direct method for the global robust stabiliza-
tion of nonlinear cascaded systems [J]. Automatica, 2008, 44(3): 745
—-752.

[14] PANTELEY E, LORIA A. Growth rate conditions for uniform
asymptotic stability of cascaded time-varying systems [J]. Automat-
ica, 2001, 37(3): 453 — 460.

[15] LIN W, GONG Q. A remark on partial-state feedback stabilization of
cascade systems using small gain theorem [J]. IEEE Transactions on
Automatic Control, 2003, 48(3): 497 — 500.

[16] ANGELI D, SONTAG E D, WANG Y. A characterization of integral
input to state stability [J]. IEEE Transactions on Automatic Control,
2000, 45(6): 1082 — 1097.

[17] ITO H. A Lyapunov approach to cascade interconnection of integral
input-to-state stable systems [J]. [EEE Transactions on Automatic
Control, 2010, 55(3): 702 — 708.

[18] KOKOTOVIC P V, SUSSMAN H. A positive real condition for
global stabilization of nonlinear systems [J]. Systems & Control Let-
ters, 1989, 13(2): 125 — 133.

[19] LOZANO R, BROGLIATO B, LANDAU I D. Passivity and global
stabilization of cascaded nonlinear systems [J]. IEEE Transactions
on Automatic Control, 1992, 37(9): 1386 — 1389.

[20] GOTTLIEB H P. Frequencies of oscillators with fractional-power
nonlinearities [J]. Journal of Sound and Vibration, 2003, 261: 557
- 566.

[21] HERMES H. Homogeneous coordinates and continuous asymptoti-
cally stabilizing feedback controls [J]. Differential Equations, Stabil-
ity and Control, 1991, 109: 249 — 260.

[22] SONTAG E. Comments on integral variants of ISS [J]. Systems &
Control Letters, 1998, 34(1/2): 93 — 100.



794

Control Theory & Applications

Vol. 31

(23]

[24]

(25]

[26]

[27]

(28]

KURZWEIL J. On the inversion of Lyapunov’s second theorem on
stability of motion [J]. American Mathematical Society Translations,
1956, 2(24): 19 -1717.

BHAT S P, BERNSTEIN D S. Finite-time stability of continuous au-
tonomous systems [J]. SIAM Journal on Control and Optimization,
2000, 38(3): 751 —766.

DING S H, LI S H, LI Q. Stability analysis for a second-order contin-
uous finite-time control system subject to a disturbance [J]. Journal
of Control Theory and Applications, 2009, 7(3): 271 — 176.

HONG Y. Finite-time stabilization and stabilizability of a class of
controllable systems [J]. Systems & Control Letters, 2002, 46(4): 231
—236.

HUANG X Q, LIN W, YANG B. Global finite-time stabilization of
a class of uncertain nonlinear systems [J]. Automatica, 2005, 41(5):
881 — 888.

WANG J K, ZHANG G S, LI H Y. Adaptive control of uncertain non-
holonomic systems in finite time [J]. Kybernetika, 2009, 45(5): 809 —
824.

[29]

[30]

[31]

YE H W, WANG H, WANG H B. Stabilization of a PVTOL aircraft
and an inertia wheel pendulum using saturation technique [J]. /[EEE
Transactions on Automatic Control, 2007, 15(6): 1143 — 1150.
DING S H, QIAN C, LI S H. Global stabilization of a class of feedfor-
ward systems with lower-order nonlinearities [J]. /[EEE Transactions
on Automatic Control, 2010, 55(3): 691 — 696.

QIAN C, LI J. Global output feedback stabilization of upper-
triangular nonlinear systems using a homogeneous domination ap-

proach [J]. International Journal of Robust and Nonlinear Control,
2006, 16(9): 441 — 463.

Ve A

5 H (1982-), L, W, Y, HETEFFT AR R e,

E-mail: mali@mail.ujs.edu.cn;

B (1982-), L, Wk, YR, HATHTSOT AR R g

W# T, E-mail: ida_jia@hotmaill.com;

TR (1983-), 3, Wi, B, HArwEFtr s iy DC-DCH

BT WA HES, B-mail: dsh@mail.ujs.edu.cn.



