
第 32卷第 10期
2015年 10月

控 制 理 论 与 应 用
Control Theory & Applications

Vol. 32 No. 10
Oct. 2015

有有有向向向图图图下下下非非非线线线性性性无无无人人人机机机群群群自自自适适适应应应合合合围围围控控控制制制

DOI: 10.7641/CTA.2015.50220

余 瑶, 任 昊, 张 兰, 孙长银†

(北京科技大学自动化学院,北京 100083)

摘要:本文研究了有向图下具有非线性和干扰的无人机群的分布式合围控制问题.其中仅部分跟随者是领导者的邻
居,对于每一个跟随者,至少存在一条从领导者到这个跟随者有向路径. 文中假设无人机的空气动力学特性是非线性不
确定的,并且领导者的输出是时变的. 结合反推设计方法提出了仅利用邻居信息的分布式合围控制方法,使得跟随者的
状态收敛于领导者状态所张成的凸包里. 利用神经网络函数逼近技术补偿无人机系统中的非线性不确定项,通过李雅普
诺夫稳定性理论证明了合围误差可以以任意收敛速度收敛到原点任意小的邻域.最后通过仿真结果验证了控制协议的
有效性.
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Distributed adaptive neural containment control for multi-UAV systems
with nonlinear uncertainties under a directed graph

YU Yao, REN Hao, ZHANG Lan, SUN Chang-yin†

(School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China)

Abstract: We investigate the distributed containment control problem for multiple unmanned aerial vehicles (UAVs)
systems with nonlinear uncertainties and bounded disturbances under a directed graph, where the leaders are neighbors of
only a subset of the followers. For each follower, there exists at least one leader that has a directed path to the follower.
It is assumed that aerodynamic characteristics of UAVs are nonlinear uncertainties, and the outputs of leaders are time-
varying. A distributed containment control protocol combined with backstepping design method is proposed by using
neighbors’information, so that the states of the followers will converge to the convex hull spanned by the dynamic leaders.
The function approximation technique using neural networks is employed to compensate unknown nonlinear terms induced
from the controller design procedure. By Lyapunov stability theorem, it is shown that the containment control errors will
converge to an expected neighborhood of the origin with an arbitrary convergence rate. Simulation examples are presented
to illustrate the effectiveness of the proposed control algorithm.
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1 Introduction
An unmanned aerial vehicle (UAV) is an aircraft

with no on-board human pilot. UAVs are usually de-
ployed for military and special operation applications,
and used in numerous civil tasks falling within the
dull, dirty and dangerous category. Potential and ex-
isting applications of UAVs include acrobatic aerial
footage in filmmaking, forest fire detection, search
and rescue missions. The research on cooperative
control of multi-UAV systems[1] has drawn consider-
able interests in recent years due to several superiori-
ties of multi-UAV systems in contrast with individual

UAV systems, such as higher efficiency, better robust-
ness, and larger survival probability. The distributed
cooperative control[2–3] for multi-UAV systems re-
quires that the protocol for each UAV use only limited
local information to reach an overall goal in compli-
cated environment, which makes the control a great
challenge. To achieve the goals above, much progress
has been made in study of consensus control[4–8], con-
tainment control[9–10], and formation control[11–13].
Among these control problems, consensus is an im-
portant and fundamental problem, which means that
all agent states reach an agreement with their neigh-
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bors in a certain sense. Consensus is a typical col-
lective behavior[14–15], which can be classified into
leaderless consensus[16–17] and leader-following con-
sensus[18–21]. In practice, it may be safer and more
efficient for multi-UAV systems if there are multiple
leaders and followers in battlefield environment, e.g.,
only some of UAVs are equipped with high precision
sensors, so that other UAVs may be safer and easier
to avoid obstacles if they converge to the convex hull.

For multiple leaders case, containment control
problems arise, which require that the states of fol-
lowers converge to the convex hull formed by the
leaders. The containment control problem has re-
cently gained much attention. Containment prob-
lems for first-order and second-order multi-agent sys-
tems have been studied in [9, 22–25]. In [9], the dis-
tributed containment control for double-integrator dy-
namics in the presence of both stationary and dynamic
leaders was studied. In [22], the problem of dis-
tributed containment control of a group of mobile au-
tonomous agents was discussed with multiple station-
ary or dynamic leaders under both fixed and switching
directed network topologies. In [23], a stop-and-go
strategy was proposed for a group of single-integrator
agents to the convex polytope spanned by the lead-
ers under a fixed undirected network topology. The
finite-time containment control problem for second-
order multi-agent systems under a fixed communi-
cation topology is addressed in [24]. For double-
integrator dynamics, distributed containment control
in the presence of both stationary and dynamic leaders
was discussed in [25]. There have been also some re-
sults on the problem of distributed containment con-
trol for linear high-order multi-agent systems[26–27].
In [26], the behavior of multiple agents with linear
dynamics was investigated by the study of interac-
tion topologies. Formation-containment problem was
transformed into asymptotic stability problem by us-
ing state transformation and state space decomposi-
tion approaches in [27]. All these results focused
on containment control of linear multi-agent systems.
For multi-UAV systems, there have been a few re-
sults of containment control[28]. In [28], formation-
containment control problems for multi-UAV systems
with directed interaction topologies were addressed,
where each UAV system was modeled as a second or-
der linear system.

Nonlinear uncertainties are inevitable in real sys-
tems due to imprecise measurements, unmodeled dy-
namics, external disturbances, etc. Therefore, dif-
ferent kinds of control strategies, such as back-
stepping[29–31], sliding mode control[32], neural net-

works[33–35], adaptive control[36], have been devel-
oped to deal with nonlinear systems. We notice that
there are many results on tracking or consensus prob-
lems for multi-agent systems with nonlinear uncer-
tainties[37–41], but there are only a few results on con-
tainment control problem with nonlinear uncertain
agents. Despite these efforts, little progress has been
made in distributed adaptive containment control for
multi-UAV systems with nonlinear uncertainties un-
der a directed graph, which is the main content of our
research.

In this paper, containment control is investigated
for multi-UAV systems with nonlinear uncertainty un-
der a directed graph topology. Nonlinear uncertain
aerodynamic characteristics of UAVs are considered.
Matching condition is not satisfied. And the lead-
ers are neighbors of only a subset of the followers.
The dynamic characteristics of a single UAV are di-
vided into nominal model and unknown nonlinear un-
certainties. A distributed adaptive containment con-
troller combined with backstepping method is pro-
posed so that all of the followers converge to the dy-
namic convex hull spanned by the dynamic leaders.
The function approximation technique using neural
networks is employed to compensate unknown non-
linear terms. The stability of the closed-loop systems
is analyzed via a Lyapunov-based method, which
shows that the containment error can be reduced as
small as desired.

This paper is organized as follows. Section 2 in-
troduces useful results of the graph theory and the dy-
namics model of multi-UAV systems. In Section 3, an
adaptive neural controller with backstepping design
method is proposed and stability analysis is presented
by Lyapunov function. In Section 4, simulation exam-
ples are presented to illustrate the analytical results.
Finally, conclusions are drawn in Section 5.

2 Preliminaries
2.1 Graph theory

For M + N UAVs, a directed graph G , (ν, ε)

is a pair (ν, ε), where the set of nodes or vertices is
ν , {1, · · · ,M + N} and the set of edges or arcs
is ε ⊆ ν × ν. An edge (j, i) ∈ ε means that UAV
i can obtain information from UAV j, but not vice
versa where j and i are the parent node and child
node, respectively. Ni = {j|(j, i) ∈ ε} means the set
of neighbors of the node i, which is the set of nodes
with edges incoming to node i. A directed path from
node i1 to node ik is a sequence of edges of the form
(i1, i2), (i2, i3), · · · , (ik−1, ik) in a directed graph. A
directed tree is a special directed graph where every
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node has exactly one parent except for the root and
the root has directed paths to every other node. If
there exists at least one UAV that has directed paths
to all other UAVs, we can believe that the directed
graph has a directed spanning tree[42–43].

For a directed graph G, the adjacent matrix A =

(aij) ∈ R(M+N)×(M+N) is defined as aij > 0 if
(j, i) ∈ ε, otherwise, aij = 0. Self-edges are not
allowed, i.e., aii = 0. The (nonsymmetric) Lapla-
cian matrix L = D − A ∈ R(M+N)×(M+N), where
D = diag{d1, d2, · · · , dM , dM+1, · · · , dM+N},

di =
M+N∑
j=1,j ̸=i

aij is the diagonal element of the degree

matrix D.

Lemma 1 For a directed graph G, it is easy
to see that zero is always an eigenvalue of L with 1

as a corresponding right eigenvector, and all of the
nonzero eigenvalues of L have positive real parts. Be-
sides, zero is a simple eigenvalue of L if and only if
the directed graph G has a directed spanning tree[44].

2.2 Problem statement
It is assumed that there existM followers, labeled

as UAVs 1 to M , and N leaders, labeled as an UAV
M + 1 to M + N under a directed communication
graph topology. Each UAV should be equipped with
a sensor suite to determine its own position and ori-
entation in the inertial reference frame and receive
the (relative) position information from its neighbors.
Assume that all the UAVs have fixed attitudes. The
translational dynamics of the ith UAV can be written
as[45] {

ṗi = gi(Θi)vi,

Miv̇i = −Di(vi)vi −Ri(Θi) + τi,
(1)

where pi = [Xi Yi Zi]
T ∈ R3, Θi = [ϕi θi ψi]

T

means position and attitude (described by Euler an-
gles, i.e., roll ϕi, pitch θi, and yaw ψi) vectors in
the inertial reference frame, respectively. gi(Θi) is
the kinematic transformation matrix from the body-
fixed reference frame to the inertial reference frame,
vi = [µi, νi, ωi]

T is translational velocity vector in the
body-fixed reference frame, Mi is the inertia matrix,
Di(vi) is the damping matrix, Ri(Θi) is the restoring
force vector, and τi is the control force vector. For
an angle α ∈ R, denote sα = sinα, cα = cosα for
brevity. gi(Θi) is defined as

gi(Θi) =cψi
cθi −sψi

cϕi+sϕisθicψi
sψi

sϕi+sθicψi
cϕi

sψi
cθi cψi

cϕi+sϕisθisψi
−cψi

sϕi+sθisψi
cϕi

−sθi sϕicθi cϕicθi

 ,

Mi = diag{mi1,mi2,mi3},
Di(vi) = diag{dLi1 + dQi1 |µi|, dLi2 + dQi2 |νi|,

dLi3 + dQi2 |ωi|}, mij , dLij , dQij > 0,

Ri(Θi) = [(Wi −Bi)sθi ,−(Wi −Bi)cθisϕi ,

−(Wi −Bi)cθicϕi ]
T,

where Wi and Bi represent the gravitational and
buoyancy forces, respectively.

For the position containment control of M + N

UAVs system, the dynamic models of M followers
can be simplified as

ẋi,1 = gi(Θi)xi,2,

ẋi,2 = ui + Φi(xi,1, xi,2, κi),

yi = xi,1,

(2)

where i = 1, 2, · · · ,M , xi,1 = [Xi Yi Zi]
T, Θi =

[ϕi θi ψi]
T means position and attitude (described

by Euler angles, i.e., roll ϕi, pitch θi, and yaw ψi)
vectors in the inertial reference frame, respectively,
xi,2 ∈ R3 is translational velocity vector in the body-
fixed reference frame, ui ∈ R3 is the input vector of
the ith follower, yi ∈ R3 is the output vector, which
is the position vector of the ith follower in the inertial
reference frame, Φi(xi,1, xi,2, κi) are unknown non-
linear smooth functions, which include the aerody-
namic forces, the pitch and elevation channels cou-
plings, the parameters perturbation, and time-varying
disturbances κi. It’s supposed that the motions of N
leaders are independent of the motions of M follow-
ers, the followers 1 to M have at least one neighbor,
and the leaders M + 1 to M +N have no neighbors.

The communication topology for theM+N UAVs
is considered as a directed graph G , (ν, ε) with ν ,
{0, 1, 2, · · · ,M,M + 1, · · · ,M + N}. We denote
νf = 1, 2, · · · ,M and νl = {M + 1, · · · ,M + N}
as the node set of the followers and the leaders, re-
spectively. It is considered that νf ∪ νl = ν and
νf ∩νl = ∅. To represent the communications among
followers and the communications between the fol-
lowers and the leaders, the Laplacian matrix L is de-
fined as

L =

[
L̄f L̄l

0N×M 0N×N

]
, (3)

where L̄f ∈ RM×M is the matrix related to the com-
munication among the M followers and L̄l ∈ RN×N

is the matrix related to the communication from the
N leaders to the M followers.

The following technical lemmas and assumptions
of bounded input and bounded output property for sta-
ble dynamic inequalities are considered for the conve-
nience of stability analysis.
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Remark 1 The set C ∈ Rn is said to be convex if for
any x1, x2 ∈ C and any ∂ ∈ [0, 1], the point ∂x1 + (1 − ∂)x2

is in C. The convex hull Co(X) for a set of points X =

[x1 · · · xn] id the minimal convex set containing all points

in X and is defined as Co(X) =
n∑

i=1
∂i = 1[46].

Assumption 1 Both multiple dynamic leaders
rj(t) ∈ C2, j = M + 1, · · · ,M +N and its deriva-
tive ṙj(t) ∈ R3 are bounded, and the leaders rj(t) are
only available for the ith follower satisfying j ∈ Ni,
i = 1, · · · ,M .

Assumption 2 The states xi,1 and xi,2 of the
ith follower are only known and available for the
j-th followers satisfying i ∈ Nj , i = 1, · · · ,M ,
j = 1, · · · ,M and i ̸= j.

Assumption 3 For any one of theM followers,
there exists at least one leader that has a directed path
to that follower.

Lemma 2 According to Assumption 3, L̄f is a
nonsingular M matrix, and thus it is invertible. Addi-
tionally, each entry of −L̄−1

f L̄l is nonnegative and all
row sums of −L̄−1

f L̄l equal to one[47].

Let r(t) = [rTM+1(t) · · · rTM+N (t)]
T, rd(t) =

[rTd,1(t) · · · rTd M (t)]T = −(L̄−1
f L̄l⊗Ip)r(t),where

rd,i(t) ∈ Rp, i = 1, · · · ,M , ⊗ stands for Kro-
necker product, and Ip is an identity matrix of order p.
For ith follower, rd,i(t) can be regard as a reference
point in the convex hull spanned by the leaders. From
Lemma 2, we get that inf

h(t)∈R(t)
∥ rd,i(t)− h(t) ∥< ϵ,

with i = 1, · · · ,M for all t > 0, where R(t) =

Co{rM+1(t), · · · , rM+N (t)}, and ϵ is a positive con-
stant which can be made sufficiently small, while all
signals in the total class-loop systems are bounded.
Therefore, the containment control problem can be
regarded as the tracking problem of each follower
such that ∥ yi(t) − rd,i(t) ∥= ∥y(t) + (L̄−1

f L̄l ⊗
Ip)r(t)∥ < ϵ̄, where i = 1, · · · ,M and ϵ̄ is a posi-
tive constant which can be made sufficiently small[48].
When each follower tracks to its own reference point,
we can consider that all followers converge to the con-
vex hull spanned by the leaders.

As we know, radial basis function (RBF) neural
networks are usually employed as the function ap-
proximator to model nonlinear functions, which we
believe to have reached a fairly good point in terms
of stability and flexibility. The following RBF NN
is used to approximate the continuous function h(Z):
Rq → R,

hnn(Z) =WTS(Z), (4)

where the input vector Z ∈ Ω ⊂ Rq, weight vector

W = [w1 w2 · · · wl]
T ∈ Rk, the number of neuron

k > 1; and S(Z) = [s1(Z) s2(Z) · · · sk(Z)]T with

si(Z) = exp[
−(Z − µi)

T(Z − µi)

φ2
i

], (5)

where i = 1, 2, · · · , k, µi = [µi1 µi2 · · · µiq]
T is

the center of the receptive field and φi is the width of
the Gaussian function[49].

It has been proven that the aforementioned
RBFNN can approximate any smooth function over
a compact set to arbitrarily any accuracy as

h(Z) =W ∗TS(Z) + ξ, ∀Z ∈ ΩZ , (6)

where the compact set ΩZ ⊂ Rq, Z is the input vari-
ables of the NNs, W ∗ is the ideal constant weights
vector, and ξ is the bounded function approximation
error. If Z remain within some prefixed compact set
ΩZ which have a sufficiently large size, there ex-
ists controllers with sufficiently large number of NN
nodes such that all the signals in the closed-loop re-
main bounded.

For convenience of analysis, the ideal constant
weights W ∗ is defined as the value of that minimizes
for all, i.e.,

W ∗ , arg min
W∈Rk

{ sup
Z∈ΩZ

|h(Z)−WTS(Z)|}, (7)

and there exists W ∗ such that |ξ| 6 ξ∗ with constant
ξ∗ > 0 for all Z ∈ ΩZ .
3 Adaptive containment controller design

and stability analysis
For the second-order system of the ith follower,

the idea of backstepping is employed to design con-
trollers. The design procedure of the ith follower con-
tains two steps. Based on the distributed dynamic sur-
face design, we define the graph based error surfaces
si,k, k = 1, 2, for the ith follower as

si,1 =
M∑
j=1

aij(yi − yj)+

M+N∑
j=M+1

aij(yi − rj),

si,2 = xi,2 − vi,2,

(8)

where i = 1, · · · ,M , vi,2 are the virtual control.
Step 1 The derivative of si,1 along (2) and (8) is

ṡi,1 =
M∑
j=1

aij(ẏi − ẏj) +
M+N∑
j=M+1

aij(ẏi − ṙj) =

−
M∑
j=1

aijgj(Θj)xj,2 −
M+N∑
j=M+1

aij ṙj +

(
M∑
j=1

aij +
M+N∑
j=M+1

aij)gi(Θi)xi,2 =
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−
M∑
j=1

aijgj(Θj)xj,2 −
M+N∑
j=M+1

aij ṙj +

digi(Θi)(si,2 + vi,2). (9)

Choose the Lyapunov candidate function Vi,1 as

Vi,1 =
1

2
s2i,1. (10)

To stabilize (9), the distributed first virtual control
law vi,2 for the ith follower is designed as

vi,2 =
1

di
(−ρsi,1 +

M∑
j=1

aijgj(Θj)xj,2 +
M+N∑
j=M+1

ṙj),

(11)

where ρ is a positive constant.
Substituting (11) into (9), one obtains

ṡi,1 = −ρsi,1 + digi(Θi)si,2. (12)

Differentiating (10) along (12) yields

V̇i,1 = −ρs2i,1 + digi(Θi)si,1si,2. (13)

Step 2 Using (2) and (8), the derivative of si,2
can be represented by

ṡi,2 = ui + Φi(xi,1, xi,2, κi)− v̇i,2. (14)

To stabilize (14), there exists a desired feedback
control

u∗i = −ρsi,2 − (Φi(xi,1, xi,2, κi)− v̇i,2),

where v̇i,2 can be expressed as

v̇i,2 =

M∑
j=1

∂vi,2
∂xj,1

(xj,2 + Φi(xi,1, xi,2, κi)) +
M+N∑
j=M+1

∂vi,2
∂rj

ṙj .

For the desired feedback control u∗i , from As-
sumption 1 we can get that

hi(Zi) = Φi(xi,1, xi,2, κi)− v̇i,2

are smooth functions, which denote the unknown part
of u∗i , where

Zi = [xTi,1 xTi,2 κi (
∂vi,2
∂xi,1

)T · · · (
∂vi,2
∂xM,1

)T,

∂vi,2
∂rM+1

ṙM+1 · · · ∂vi,2
∂rM+N

ṙM+N ]
T.

By employing an RBF neural networkWT
i Si(Zi)

to approximate hi(Zi), u∗i can be expressed

u∗i = −ρsi,2 −W ∗T
i Si(Zi)− ξi,

where W ∗T
i denote the ideal constants weights, and

|ξi| 6 ξ∗i is the approximation error with constant
ξ∗i > 0.

Since W ∗
i is unknown, u∗i cannot be realized in

practice. Consider

ui = −ρsi,2 − ŴT
i Si(Zi). (15)

Then, we have

ṡi,2 = ui + Φi(xi,1, xi,2, κi)− v̇i,2 =

−ρsi,2 − W̃T
i Si(Zi) + ξi. (16)

Consider the Lyapunov function candidate Vi,2 as

Vi,2 =
1

2
s2i,2 +

1

2
W̃T
i Γ

T
i W̃i. (17)

The derivative of Vi,2 is

V̇i,2 = si,2ṡi,2 + W̃T
i Γ

T
i

˙̂
Wi =

−ρs2i,2 + si,2ξi − W̃T
i Si(Zi)si,2 + W̃T

i Γ
T
i

˙̂
Wi.

(18)

Consider the adaptation law for Ŵi as
˙̂
Wi =

˙̃Wi = ΓWi [Si(Zi)si,2 − σiŴi], (19)

where σi > 0 and ΓWi = ΓT
Wi

> 0 are design con-
stants, W̃i = Ŵi −W ∗

i .
Let ρ = ρ1+ρ2, where ρ1 and ρ2 > 0. Then, (18)

becomes

V̇i,2 = −ρ1s2i,2 − ρ2s
2
i,2 + si,2ξi − σiW̃

T
i Ŵi. (20)

By completion of squares, one has

−σiW̃T
i Ŵi = −σiW̃T

i (W̃i +W ∗
i ) 6

−σi∥W̃i∥2 + σi∥W̃i∥∥W ∗
i ∥ 6

−σi∥W̃i∥2

2
+
σi∥W ∗

i ∥2

2
− ρ2s

2
i,2 + si,2ξi 6

ξ2i
4ρ2

6 ξ∗2i
4ρ2

. (21)

Then one has the following inequality

V̇i,2 6 −ρ1s2i,2 −
σi∥W̃i∥2

2
+ δi, (22)

where δi 6 σi∥W ∗
i ∥2/2 + ξ∗2i /4ρ2.

Let Vi = Vi,1 + Vi,2. If we choose

ρ = ρ∗ +
digi(Θi)

2
, ρ1 = ρ∗1 +

digi(Θi)

2
,

where ρ∗ > γ

2
, ρ∗1 > γ

2
, γ is a positive constant, and

choose σi and Γi such that σi > γλ{Γ−1
i }, then from

(13) and (22) we have the following inequality:

V̇i =

−ρs2i,1+digi(Θi)si,1si,2−ρs2i,2−
σi∥W̃i∥2

2
+δi 6

−(ρ− digi(Θi)

2
)s2i,1 − (ρ1 −

digi(Θi)

2
)s2i,2 −

σiW̃
T
i Γ

T
i W̃i

2
+ δi =

−ρ∗s2i,1 − ρ∗1s
2
i,2 −

σiW̃
T
i Γ

T
i W̃i

2
+ δi 6

−γ(1
2
s2i,1 +

1

2
s2i,2 +

1

2
W̃T
i Γ

T
i W̃i) + δi =



No. 10

YU Yao et al.: Distributed adaptive neural containment control for multi-UAV systems

with nonlinear uncertainties under a directed graph 1389

−γVi + δi. (23)

Let V =
M∑
i=1

Vi. Its derivative is

V̇ =
M∑
i=1

V̇i 6
M∑
i=1

(−γVi + δi) 6 −γV + δ, (24)

where δ =
M∑
i=1

δi is positive constant.

The inequality (24) implies V̇ < 0 on V > δ/γ.
Therefore, if V (0) 6 δ/γ, then V (t) 6 δ/γ for all
t > 0. In addition, one has that V (t) 6 e−γtV (0) +

δ/γ(1 − e−γt). Using ∥s1∥2/2 6 V (t) with s1 =

[sT1,1 · · · sTM,1]
T, one gets ∥s1∥2 6 2e−γtV (0)

+2δ/γ(1−e−γt). Therefore, as time increases, all er-
ror surfaces ∥s1∥ exponentially converge to the com-
pact set Ωs = {s1|∥s1∥ 6

√
2δ/γ}. The compact

set Ωs can be kept arbitrarily small by increasing γ.
Then, from s1 = (L̄f ⊗ Ip)y+ (L̄l ⊗ Ip)r where y =

[yT1 · · · yTM ]T, since s1 can be reduced sufficiently
small, we know that the follower output vector y(t)
converge to the convex hull spanned by the dynamic
leaders r(t), i.e., ∥y(t) + (L̄−1

f L̄l ⊗ Ip)r(t)∥ < ϵ̄. So
the containment control errors in the overall closed-
loop system can be converged to an adjustable neigh-
borhood of the origin with an arbitrary convergence
rate.
4 Simulation results

In this section, three cases are preformed to il-
lustrate the effectiveness of the proposed approach.
A multi-UAV system with 3 leaders and 4 followers
in a three-dimensional space is considered. Fig.1
shows the topological directed graph of the interac-
tion among the leaders (L5 to L7) and the followers
(F1 to F4).

It is assumed that aij = 1 if (j, i) ∈ ε, otherwise,
aij = 0. Then one can get the adjacent matrix A as

A =



0 1 0 0 0 1 0

0 0 1 0 1 0 0

0 0 0 1 0 1 0

0 1 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


,

and the degree matrix D = diag{2, 2, 2, 2, 0, 0, 0}.
The dynamics models of M followers are given
by (2). The RBF neural network approximation
technique is used to estimate unknown nonlinear
functions Φi(xi,1, xi,2, κi), which include the aero-
dynamic forces, couplings, the parameters pertur-
bation, and time-varying disturbances. It is as-
sumed that the bound of nonlinear smooth functions

|Φi(xi,1, xi,2, κi)| = |xi,1| + |xi,2| + 3. The contain-
ment control input (15) of the proposed approach is
applied.

Case 1 We consider the trajectories of UAVs are
in a 3-D space. The reference trajectories of three
leaders are set to be static, i.e., the position states
of leaders L5, L6 and L7 are rL5 = [−1 1 1]T,
rL6 = [5 5 − 5]T and rL7 = [3 − 3 3]T, respectively.
The initial positions of the four followers are random.
In the feedback controller (15), we set ρ = 50. The
states trajectories of the followers in simulations are
shown in Fig.2.

Fig. 1 Topological directed graph

Fig. 2 The states trajectories of UAVs for Case 1

Case 2 Compared with Case 1, the reference
trajectories one of three leaders to is assumed to be
sine or cosine functions, and other two leaders keep
static, i.e., the reference trajectories of leaders L5, L6
and L7 are rL5 = [−1 1 1]T, rL6 = [5 5 − 5]T and
rL7(t) = [2+sin(5t) 3+cos(5t) −2+sin t2]T, re-
spectively. The same distributed containment control
protocol is applied. The states trajectories of UAVs is
shown in Fig. 3.

Case 3 In order to further illustrate the versatil-
ity of the proposed approach, the reference trajecto-
ries of three leaders are set to periodic functions. We
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choose the reference trajectories of leaders L5, L6 and
L7 as rL5(t) = [5+2 sin(5t+1) 10+cos(8t−2) 3+

sin 10t + cos(7t + 1)]T, rL6(t) = [10 + cos(8t −
2) 3+ sin 10t+cos(7t+1) 5+ 2 sin(5t+1)]T and
rL7(t) = [3 + sin 10t + cos(7t + 1) 5 + 2 sin(5t +

1) 10 + cos(8t − 2)]T, respectively. One practi-
cal problem corresponding to this model is the se-
cure landing of multi-UAV systems on the deck of a
galley. The multi-UAV systems have to protect itself
from wave-induced oscillations which are usually de-
scribed by a sinusoid signal with variable frequency.
The same distributed containment control protocol
is applied. Figure 4 shows the states trajectories of
UAVs in this simulation.

Fig. 3 The states trajectories of UAVs for Case 2

Fig. 4 The states trajectories of UAVs for Case 3

In Cases 1, 2, 3, the same containment control
protocol is applied to multi-UAV systems with differ-
ent types of reference trajectories of three leaders. It

is obvious that all followers can converge to the static
convex hull spanned by leaders quickly and the con-
tainment control protocol designed by the proposed
method is robust and effective.
5 Conclusions

In this paper, distributed containment control
problem for multi-UAV systems with nonlinear un-
certainty under a directed graph topology is consid-
ered. The dynamic characteristics of a single UAV
are divided into nominal model and unknown non-
linear function. A distributed adaptive containment
controller based on the dynamic surface design is pro-
posed so that all of the followers converge to the dy-
namic convex hull spanned by the dynamic leaders.
Neural networks method is used as the function ap-
proximation technique to compensate unknown non-
linear terms derived from the controller design pro-
cedure for the followers. It has been shown that the
system has achieved semi-global uniform ultimate
boundedness and the containment control error can
converge to any small neighbourhood of the origin
with an arbitrary convergence rate. Simulation exam-
ples has been given to verify the algorithms.
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